SlideShare a Scribd company logo
1 of 2
ProceduresforModelingTurbofan:
To beginmodelingourturbojetcore as a turbofanengine,we hadtoinclude the additionof a
bypasschannel aroundthe existingcore.Airflowsthroughthe bypasswithanegligiblyhighervelocity
than free stream(therefore modelledasequal tofree streamvelocityof 166.67[
𝑚
𝑠
]).An increase in
thrustis obtainedthroughthe combinationof massflow originatingfromthe bypass[ 𝑚 𝑓̇ ] andmass flow
throughthe core [𝑚̇ 𝑐].We assumedtemperaturethroughthe bypassisequal toambienttemperature
of 216.67 K,whichinfluencesthe total temperatureof mixedaircalculatedbythe sumof bothmass
flowratesas such:
𝑚̇ 0 = 𝑚̇ 𝑓 + 𝑚̇ 𝑐 (2.1)
Mass flowrate of our bypassiscalculatedbyan equationandgivenvalue foundonNASA’swebsite for
turbojetandturbo jetengines.ForourPrattand WhitneyF-100-PW-229 model turbofanengine,bypass
ratiowas givenasa 0.3. This value isa ratioof massflow ratesby the givenequation:
𝑏𝑝𝑟 =
𝑚 𝑓̇
𝑚 𝑐̇
(2.2)
It iswiththisequationandour givenratioof 0.3 that we are able tosolve formass flow rate of this
particularbypass.
Thisair mixture isthenexpelledthroughacommonnozzle asdetailedinthe originalproblem
withan exitareaof .15[𝑚2]. The temperature of the new airmixture 𝑚̇ 0 ismodelledasa weighted
average of the temperaturesandoriginal comprisingmassflow rates:
𝑇0 = 𝑇 𝑐 (
𝑚̇ 𝑐
𝑚̇ 0
) + 𝑇 𝑓 (
𝑚̇ 𝑓
𝑚̇ 0
) (2.3)
where T0 is the newtemperature of ourmixture.Thisdropintemperature iscompensatedforthe
mixture’sincreasein massflowrate,whichrelatestoahigherforce outputfora turbofanengine versus
a turbojet.Exitvelocityiscalculatedusingthiscommonexitpointandnew airmixture byourfirstlawof
Thermodynamics:
𝐸 = 𝑄 − 𝑊𝑐𝑣 + 𝑚̇ 𝑐ℎ 𝑐 + 𝑚̇ 𝑓ℎ 𝑓 − 𝑚̇ 0ℎ0 +
1
2
𝑚̇ 𝑐 𝑉𝑐
2 +
1
2
𝑚̇ 𝑓 𝑉𝑓
2
−
1
2
𝑚̇ 0 𝑉0
2
(2.4)
⇒ 𝑉0 = √
2
𝑚̇ 0
(𝑚̇ 𝑐ℎ 𝑐 + 𝑚̇ 𝑓ℎ𝑓 − 𝑚̇ 0ℎ0 +
1
2
𝑚̇ 𝑓 𝑉𝑓
2
) (2.5)
Finally,thrustisprovidedusingexitvelocityby:
𝑇 = ( 𝑚̇ 𝑐 + 𝑚̇ 𝑓) 𝑉0 (2.6)
Procedures for Modeling Turbofan

More Related Content

What's hot

J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5Malaysia
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
Thermodynamics problems
Thermodynamics problemsThermodynamics problems
Thermodynamics problemsYuri Melliza
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbM SAQIB
 
J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7Malaysia
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressorYuri Melliza
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10Malaysia
 
Itenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9bItenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9bNoviyantiNugraha
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aNoviyantiNugraha
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3Malaysia
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of FluidsYuri Melliza
 
At231 engineering thermodynamics uq - may june 2007.
At231 engineering thermodynamics   uq -  may june 2007.At231 engineering thermodynamics   uq -  may june 2007.
At231 engineering thermodynamics uq - may june 2007.BIBIN CHIDAMBARANATHAN
 
Me6301 engineering thermodynamics uq - nov dec 2018
Me6301 engineering thermodynamics   uq - nov dec 2018Me6301 engineering thermodynamics   uq - nov dec 2018
Me6301 engineering thermodynamics uq - nov dec 2018BIBIN CHIDAMBARANATHAN
 

What's hot (20)

|
||
|
 
J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5
 
Gas turbine details
Gas turbine detailsGas turbine details
Gas turbine details
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Thermodynamics problems
Thermodynamics problemsThermodynamics problems
Thermodynamics problems
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
 
Maquinas y equipos termicos
Maquinas y equipos termicos Maquinas y equipos termicos
Maquinas y equipos termicos
 
J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressor
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10
 
cengel- thermodynamics 1
cengel- thermodynamics 1cengel- thermodynamics 1
cengel- thermodynamics 1
 
Itenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9bItenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9b
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9a
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Draught and chimney
Draught and chimneyDraught and chimney
Draught and chimney
 
J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3J2006 termodinamik 1 unit3
J2006 termodinamik 1 unit3
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of Fluids
 
At231 engineering thermodynamics uq - may june 2007.
At231 engineering thermodynamics   uq -  may june 2007.At231 engineering thermodynamics   uq -  may june 2007.
At231 engineering thermodynamics uq - may june 2007.
 
Me6301 engineering thermodynamics uq - nov dec 2018
Me6301 engineering thermodynamics   uq - nov dec 2018Me6301 engineering thermodynamics   uq - nov dec 2018
Me6301 engineering thermodynamics uq - nov dec 2018
 

Similar to Procedures for Modeling Turbofan

Et ii --assignment_1.
Et ii --assignment_1.Et ii --assignment_1.
Et ii --assignment_1.sanjeev2011
 
Java gas turbine simulator engine component mathematica models by john a. reed
Java gas turbine simulator   engine component mathematica models by john a. reedJava gas turbine simulator   engine component mathematica models by john a. reed
Java gas turbine simulator engine component mathematica models by john a. reedJulio Banks
 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptxNelyJay
 
Turbofan Engine Design Report
Turbofan Engine Design ReportTurbofan Engine Design Report
Turbofan Engine Design ReportNicholas Cordero
 
Midterm review
Midterm reviewMidterm review
Midterm reviewSporsho
 
Gas Compressor Calculations Tutorial
Gas Compressor Calculations TutorialGas Compressor Calculations Tutorial
Gas Compressor Calculations TutorialVijay Sarathy
 
Turbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptTurbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptsbpatalescoe
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionHashim Hasnain Hadi
 
Design & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat ExchangerDesign & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat ExchangerCPDLR
 
UNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfUNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfManivannan727901
 
oil-and-gas-water-coning-in vertical-well.pdf
oil-and-gas-water-coning-in vertical-well.pdfoil-and-gas-water-coning-in vertical-well.pdf
oil-and-gas-water-coning-in vertical-well.pdfHosnaRahman1
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Rankine Cycle & How to increase its efficiency
Rankine Cycle & How to increase its efficiencyRankine Cycle & How to increase its efficiency
Rankine Cycle & How to increase its efficiencyRaja Dolat
 
Nasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowNasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowJulio Banks
 
205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactoresMelanieQuiroz6
 
turbocharger-and-supercharger.ppt
turbocharger-and-supercharger.pptturbocharger-and-supercharger.ppt
turbocharger-and-supercharger.pptSivaKumarP83
 
Lecture 10 (1).pptx
Lecture 10 (1).pptxLecture 10 (1).pptx
Lecture 10 (1).pptxFathiShokry
 

Similar to Procedures for Modeling Turbofan (20)

Et ii --assignment_1.
Et ii --assignment_1.Et ii --assignment_1.
Et ii --assignment_1.
 
project 2
project 2project 2
project 2
 
Java gas turbine simulator engine component mathematica models by john a. reed
Java gas turbine simulator   engine component mathematica models by john a. reedJava gas turbine simulator   engine component mathematica models by john a. reed
Java gas turbine simulator engine component mathematica models by john a. reed
 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptx
 
Assignment 2
Assignment 2 Assignment 2
Assignment 2
 
Turbofan Engine Design Report
Turbofan Engine Design ReportTurbofan Engine Design Report
Turbofan Engine Design Report
 
Midterm review
Midterm reviewMidterm review
Midterm review
 
Hxequns
HxequnsHxequns
Hxequns
 
Gas Compressor Calculations Tutorial
Gas Compressor Calculations TutorialGas Compressor Calculations Tutorial
Gas Compressor Calculations Tutorial
 
Turbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.pptTurbomachinery Turbine pump Compressor.ppt
Turbomachinery Turbine pump Compressor.ppt
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
Design & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat ExchangerDesign & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat Exchanger
 
UNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdfUNIT-III_Steam_Turbine (1).pdf
UNIT-III_Steam_Turbine (1).pdf
 
oil-and-gas-water-coning-in vertical-well.pdf
oil-and-gas-water-coning-in vertical-well.pdfoil-and-gas-water-coning-in vertical-well.pdf
oil-and-gas-water-coning-in vertical-well.pdf
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Rankine Cycle & How to increase its efficiency
Rankine Cycle & How to increase its efficiencyRankine Cycle & How to increase its efficiency
Rankine Cycle & How to increase its efficiency
 
Nasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowNasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flow
 
205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores
 
turbocharger-and-supercharger.ppt
turbocharger-and-supercharger.pptturbocharger-and-supercharger.ppt
turbocharger-and-supercharger.ppt
 
Lecture 10 (1).pptx
Lecture 10 (1).pptxLecture 10 (1).pptx
Lecture 10 (1).pptx
 

Procedures for Modeling Turbofan

  • 1. ProceduresforModelingTurbofan: To beginmodelingourturbojetcore as a turbofanengine,we hadtoinclude the additionof a bypasschannel aroundthe existingcore.Airflowsthroughthe bypasswithanegligiblyhighervelocity than free stream(therefore modelledasequal tofree streamvelocityof 166.67[ 𝑚 𝑠 ]).An increase in thrustis obtainedthroughthe combinationof massflow originatingfromthe bypass[ 𝑚 𝑓̇ ] andmass flow throughthe core [𝑚̇ 𝑐].We assumedtemperaturethroughthe bypassisequal toambienttemperature of 216.67 K,whichinfluencesthe total temperatureof mixedaircalculatedbythe sumof bothmass flowratesas such: 𝑚̇ 0 = 𝑚̇ 𝑓 + 𝑚̇ 𝑐 (2.1) Mass flowrate of our bypassiscalculatedbyan equationandgivenvalue foundonNASA’swebsite for turbojetandturbo jetengines.ForourPrattand WhitneyF-100-PW-229 model turbofanengine,bypass ratiowas givenasa 0.3. This value isa ratioof massflow ratesby the givenequation: 𝑏𝑝𝑟 = 𝑚 𝑓̇ 𝑚 𝑐̇ (2.2) It iswiththisequationandour givenratioof 0.3 that we are able tosolve formass flow rate of this particularbypass. Thisair mixture isthenexpelledthroughacommonnozzle asdetailedinthe originalproblem withan exitareaof .15[𝑚2]. The temperature of the new airmixture 𝑚̇ 0 ismodelledasa weighted average of the temperaturesandoriginal comprisingmassflow rates: 𝑇0 = 𝑇 𝑐 ( 𝑚̇ 𝑐 𝑚̇ 0 ) + 𝑇 𝑓 ( 𝑚̇ 𝑓 𝑚̇ 0 ) (2.3) where T0 is the newtemperature of ourmixture.Thisdropintemperature iscompensatedforthe mixture’sincreasein massflowrate,whichrelatestoahigherforce outputfora turbofanengine versus a turbojet.Exitvelocityiscalculatedusingthiscommonexitpointandnew airmixture byourfirstlawof Thermodynamics: 𝐸 = 𝑄 − 𝑊𝑐𝑣 + 𝑚̇ 𝑐ℎ 𝑐 + 𝑚̇ 𝑓ℎ 𝑓 − 𝑚̇ 0ℎ0 + 1 2 𝑚̇ 𝑐 𝑉𝑐 2 + 1 2 𝑚̇ 𝑓 𝑉𝑓 2 − 1 2 𝑚̇ 0 𝑉0 2 (2.4) ⇒ 𝑉0 = √ 2 𝑚̇ 0 (𝑚̇ 𝑐ℎ 𝑐 + 𝑚̇ 𝑓ℎ𝑓 − 𝑚̇ 0ℎ0 + 1 2 𝑚̇ 𝑓 𝑉𝑓 2 ) (2.5) Finally,thrustisprovidedusingexitvelocityby: 𝑇 = ( 𝑚̇ 𝑐 + 𝑚̇ 𝑓) 𝑉0 (2.6)