NETWORK AS A MEDIA 
• Transmission  Flow 
• Information 
• Goods 
• Service 
• Network Analysis is to STUDY 
• Critical Actors  Vertex Centrality 
• Critical Path 
• Diffusion Rate  Network Centralization
VERTEX CENTRALITY 
HM-1: Articular the Diffusion through all Regions 
HP -6: In Case of Malfunction  Not a Disaster
NETWORK CENTRALIZATION 
Looks Counterintuitive 
The More Number of Central 
Vertex Cause Less Compact 
Network 
Vertex Centrality DEFINES 
Network Centralization 
1 Most, 4 Least Central 3 Most, 2 Least Central 
The More VARIATION in Vertices Centrality  Higher Network Centralization
DEFINITION: TWO PERSPECTIVE 
Vertex Reachability Vertex Intermediary 
How Easily the Information Reach a Vertex 
How Easily a Vertex can Disseminate the Information 
How much Information Traffic is Relayed
DEGREE CENTRALITY: UNDIRECTED NET 
• Degree Centrality of a Vertex 
 Vertex Degree 
• Degree Centralization of a Network 
푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 푣 [푀푎푥 퐷푒푔푟푒푒 − deg(푣)] 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 퐻푎푝푝푒푛푠 푖푛 푆푡푎푟 − 푁푒푡푤표푟푘 푖푛 푈푛푑푖푟푒푐푡푒푑 푆푖푚푝푙푒 푁푒푡푤푟표푘 
퐶푒푛푡푟푎푙푖푧푎푡푖표푛 푉푎푙푢푒 = 
푉푎푟푖푎푡푖표푛 푉푎푙푢푒 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒=(푛−1)×(푛−2) 
푛: 푉푒푟푡푖푐푒푠 퐶표푢푛푡 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 3 ∗ 3 − 1 + 1 ∗ 3 − 3 = 6 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 12 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 20 
For Directed Network this Definition will not Work!
SAMPLE 
퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푧푡푖표푛 = 1 퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푧푡푖표푛 = 0.17 
퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푧푡푖표푛 = 0
CLOSENESS CENTRALITY 
• Degree Centrality has Local View of Vertex Neighborhood 
• Global View 
• Distance to all Other Vertices: The Closer Path  The Faster Diffusion 
• Geodesic  Shortest Path Between Two Vertices 
• Distance Length of Geodesic Path 
• Closeness Centrality of a Vertex 
퐶푣 = 
푛 −1 
푢≠푣 퐷푖푠푡푎푛푐푒(푢,푣) 
• Closeness Centralization of a Network 
푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 푣 [푀푎푥 퐶푒푛푡푟푎푙푖푡푦 − 퐶푣 ] 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 퐻푎푝푝푒푛푠 푖푛 푆푡푎푟 − 푁푒푡푤표푟푘 푖푛 푈푛푑푖푟푒푐푡푒푑 푆푖푚푝푙푒 푁푒푡푤푟표푘 
푉푎푟푖푎푡푖표푛 푉푎푙푢푒 
퐶푒푛푡푟푎푙푖푧푎푡푖표푛 푉푎푙푢푒 = 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒=2 × 푛−1 ×(푛−2) 
푀푎푥 퐶푣 = 1 푖푛 푆푡푎푟 − 푁푒푡푤표푟푘 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 푛 − 1 × 1 + 2 × 푛 − 2 − 1 = 24
BETWEENNESS CENTRALITY 
• Intermarry Vertex, Relaying Node 
How Many Flows of Information are Disrupted or Must Make Longer Detours if 
a Vertex Stops Passing on Information! 
 Betweenness Centrality of a Vertex 
The Proportion of all Geodesics Between Pairs of Other Vertices that Include 
This Vertex 
 Betweenness Centralization 
 푉푎푟푖푎푡푖표푛 푖푛 푡ℎ푒 퐵푒푡푤푒푒푛푛푒푠푠 퐶푒푛푡푟푎푙푖푡푦 표푓 푉푒푟푡푖푐푒푠 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 표푓 퐵푒푡푤푒푒푛푛푒푠 퐶푒푛푡푟푎푙푖푡푦 
Degree Centralization = 
푉푎푟푖푎푡푖표푛 푖푛 푡ℎ푒 퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푡푦 표푓 푉푒푟푡푖푐푒푠 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 표푓 퐷푒푔푟푒푒 퐶푒푛푟푎푙푖푡푦 
Closeness Centralization = 
푉푎푟푖푎푡푖표푛 푖푛 푡ℎ푒 퐶푙표푠푒푛푒푠푠 퐶푒푛푡푟푎푙푖푡푦 표푓 푉푒푟푡푖푐푒푠 
푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 표푓 퐶푙표푠푒푛푒푠푠 퐶푒푛푡푟푎푙푖푡푦
PAJEK 
Network > Create Partition > Degree Network > Create Partition > k-Neighbors 
Network > Create New Network > SubNetwork with Paths > All Shortest Path between Two Vertices
PAJEK 
Closenes Degree 
s 
Betweenness

Exploratory Social Network Analysis with Pajek: Center & Periphery

  • 2.
    NETWORK AS AMEDIA • Transmission  Flow • Information • Goods • Service • Network Analysis is to STUDY • Critical Actors  Vertex Centrality • Critical Path • Diffusion Rate  Network Centralization
  • 3.
    VERTEX CENTRALITY HM-1:Articular the Diffusion through all Regions HP -6: In Case of Malfunction  Not a Disaster
  • 4.
    NETWORK CENTRALIZATION LooksCounterintuitive The More Number of Central Vertex Cause Less Compact Network Vertex Centrality DEFINES Network Centralization 1 Most, 4 Least Central 3 Most, 2 Least Central The More VARIATION in Vertices Centrality  Higher Network Centralization
  • 5.
    DEFINITION: TWO PERSPECTIVE Vertex Reachability Vertex Intermediary How Easily the Information Reach a Vertex How Easily a Vertex can Disseminate the Information How much Information Traffic is Relayed
  • 6.
    DEGREE CENTRALITY: UNDIRECTEDNET • Degree Centrality of a Vertex  Vertex Degree • Degree Centralization of a Network 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 푣 [푀푎푥 퐷푒푔푟푒푒 − deg(푣)] 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 퐻푎푝푝푒푛푠 푖푛 푆푡푎푟 − 푁푒푡푤표푟푘 푖푛 푈푛푑푖푟푒푐푡푒푑 푆푖푚푝푙푒 푁푒푡푤푟표푘 퐶푒푛푡푟푎푙푖푧푎푡푖표푛 푉푎푙푢푒 = 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒=(푛−1)×(푛−2) 푛: 푉푒푟푡푖푐푒푠 퐶표푢푛푡 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 3 ∗ 3 − 1 + 1 ∗ 3 − 3 = 6 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 12 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 20 For Directed Network this Definition will not Work!
  • 7.
    SAMPLE 퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푧푡푖표푛= 1 퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푧푡푖표푛 = 0.17 퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푧푡푖표푛 = 0
  • 8.
    CLOSENESS CENTRALITY •Degree Centrality has Local View of Vertex Neighborhood • Global View • Distance to all Other Vertices: The Closer Path  The Faster Diffusion • Geodesic  Shortest Path Between Two Vertices • Distance Length of Geodesic Path • Closeness Centrality of a Vertex 퐶푣 = 푛 −1 푢≠푣 퐷푖푠푡푎푛푐푒(푢,푣) • Closeness Centralization of a Network 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 푣 [푀푎푥 퐶푒푛푡푟푎푙푖푡푦 − 퐶푣 ] 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 퐻푎푝푝푒푛푠 푖푛 푆푡푎푟 − 푁푒푡푤표푟푘 푖푛 푈푛푑푖푟푒푐푡푒푑 푆푖푚푝푙푒 푁푒푡푤푟표푘 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 퐶푒푛푡푟푎푙푖푧푎푡푖표푛 푉푎푙푢푒 = 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒=2 × 푛−1 ×(푛−2) 푀푎푥 퐶푣 = 1 푖푛 푆푡푎푟 − 푁푒푡푤표푟푘 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 = 푛 − 1 × 1 + 2 × 푛 − 2 − 1 = 24
  • 9.
    BETWEENNESS CENTRALITY •Intermarry Vertex, Relaying Node How Many Flows of Information are Disrupted or Must Make Longer Detours if a Vertex Stops Passing on Information!  Betweenness Centrality of a Vertex The Proportion of all Geodesics Between Pairs of Other Vertices that Include This Vertex  Betweenness Centralization  푉푎푟푖푎푡푖표푛 푖푛 푡ℎ푒 퐵푒푡푤푒푒푛푛푒푠푠 퐶푒푛푡푟푎푙푖푡푦 표푓 푉푒푟푡푖푐푒푠 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 표푓 퐵푒푡푤푒푒푛푛푒푠 퐶푒푛푡푟푎푙푖푡푦 Degree Centralization = 푉푎푟푖푎푡푖표푛 푖푛 푡ℎ푒 퐷푒푔푟푒푒 퐶푒푛푡푟푎푙푖푡푦 표푓 푉푒푟푡푖푐푒푠 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 표푓 퐷푒푔푟푒푒 퐶푒푛푟푎푙푖푡푦 Closeness Centralization = 푉푎푟푖푎푡푖표푛 푖푛 푡ℎ푒 퐶푙표푠푒푛푒푠푠 퐶푒푛푡푟푎푙푖푡푦 표푓 푉푒푟푡푖푐푒푠 푀푎푥 푉푎푟푖푎푡푖표푛 푉푎푙푢푒 표푓 퐶푙표푠푒푛푒푠푠 퐶푒푛푡푟푎푙푖푡푦
  • 10.
    PAJEK Network >Create Partition > Degree Network > Create Partition > k-Neighbors Network > Create New Network > SubNetwork with Paths > All Shortest Path between Two Vertices
  • 11.
    PAJEK Closenes Degree s Betweenness