This document describes a study that uses machine learning algorithms to analyze flood data and predict flood impacts. The study collected flood data from various states in India containing information on start/end dates, duration, causes, affected districts/states, and casualties including human injuries and deaths as well as animal fatalities. Various machine learning models like decision trees, random forests, SVMs, and neural networks were trained on the data. The models' performance was evaluated based on metrics like accuracy, precision, recall, and F1-score. The results showed that some states experienced higher numbers of human/animal casualties from floods compared to others. Graphs and charts were used to analyze relationships between variables in the data and compare flood impacts like casualties and