SlideShare a Scribd company logo
RGD’s new physiological pathway diagrams:  linking biological systems to the genome Diane H. Munzenmaier,MelindaDwinell, Mary Shimoyama, Weisong Liu, and Howard J. Jacob Dept. of Physiology,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA  Abstract GENES System level view The Rat Genome Database (RGD) has developed new Physiological Pathway Diagrams that function as navigational hubs, allowing physiologists to easily follow links from known process mechanisms to phenotype and genotype data.  These diagrams, which denote physiological processes occurring on the systems and tissue levels, are designed to seamlessly integrate with RGD’s existing intracellular molecular pathway diagrams, allowing users to drill down from whole animal function to cellular and molecular mechanisms and back up again.   Physiological Pathway Diagrams provide a familiar and logical map for the physiologist and include links to relevant genotype data within RGD, such as gene reports and sequence data, as well as phenotype data, such as experimental data, strains and models, through flowcharts depicting related physiological and regulatory mechanisms and pathways.  Additionally, pharmacological actions, drug-gene interactions, as well as genetic manipulations such as gene knockouts that influence these pathways are depicted within the diagrams and also link to related phenotype and genotype data.     The first diagram to be released depicts the role of vasopressin (AVP, also known as antidiuretic hormone, ADH) in the activation of aquaporin-2 water channels in the renal collecting ducts to promote increased water reabsorption by the kidney when blood and fluid volume has been reduced due to dehydration, hemorrhage, etc.  As with all of the diagrams within this tool, this consists of an overview depicting the stimulus, result, and feedback mechanism.  Then, each involved organ or tissue can be zoomed in to reveal the specific mechanisms of the process at the tissue or multicellular level.  Links to genotype and phenotype data are available at both the system and tissue levels.   Examples of the types of pathways included in this portal are complex regulatory and physiological systems such as blood pressure regulation (including blood vessel reactivity, cardiac contractility, and blood volume regulation as well as neurohumoral modulation of these processes) and glucose homeostasis (including regulation of insulin and glucagon secretion and glucose transport mechanisms).  Additional pathways are planned for and will be incorporated on an ongoing basis.   The Physiological Pathway Diagrams tool at RGD promises to be a dynamic and user-friendly tool with which to access and retrieve physiological and genomic data for researchers who use the rat as a model to study physiological processes and the modulation of these processes through pharmacologic or genetic interventions or for the elucidation of disease mechanisms.   Genes.  Gene symbols will link to their specific gene reports where the user can access  extensive genotype data and annotations on the gene in rat as well as species comparisons in mouse and human.      Diseases.  The disease tab of each physiological pathway contains useful links to diseases information associated with the pathway.  When each disease is selected, the appropriate alterations will be depicted on the pathway diagram and described.  Clicking into this disease will direct the user to the appropriate RGD disease ontology reports.   Renal Fluid Reabsorption Pathway Users can follow the pathways throughout the process from “challenge” (green star) to “resolution” (red target) by hovering their mouse over the shapes on each arrow to reveal a description of each step in the path.  In this example, the challenge to the system is low blood volume.  The resolution is increased renal fluid reabsorption to return blood volume to normal.  Clicking on the kidney allows users to see a zoomed in view of how the process works on the tissue level (below).     DISEASES Intracellular signaling pathways.  Steps that consist of canonical second messenger intracellular signaling pathways link to RGD’s existing Pathways tool to give the user a closer look.  SIGNALING PATHWAYS Tissue level view Physiological Pathways are graphical depictions of multi-organ biological processes that provide the user with a systems biology approach to RGD.  Physiologists will find the Physiological Pathways logically organized making it easy to locate and access pertinent information.   Discrete steps within each process are arranged temporally and regionally with organ/tissue location of each step indicated by symbol and text label for clarity.  Each pathway consists of clickable elements leading to information regarding genes involved in the process, experimental data at specific points in the process, associated diseases due to dysfunction of a step in the process, genetic strains that have been characterized as disease models, drugs classes that can favorably or adversely affect the process, and associated intracellular pathways. Phenotypes & Models.  Clicking on discrete functional steps in the process takes the user to the associated page of the new Phenotypes & Models tool where specific values for related phenotypes can be accessed.  DRUGS PHENOTYPEDATA Drugs.  Another associated tab lists classes of pharmaceuticals that are used to modulate the pathway in some manner.  When a class is selected, the diagram is altered in order to depict the effect of the drug on the pathway.  The drug class names link to the PharmGKB (www.pharmgkb.org) website where information on specific drugs in each class can be found.     Conclusion Let any RGDer know if you have a favorite pathway  that you would  like to see  developed for  RGD Physiological Pathways! The new Physiological Pathways toolserves as a gateway into RGD for researchers in the biological sciences searching for gene function annotation and links to information regarding genotypes, phenotypes and disease associations.  It is organized in a systems biology context through sequential temporal and regional steps in physiological processes with links to gene reports, phenotype data, and intracellular molecular pathways. The genetics researcher will also find it a valuable resource for determining the functional aspects and potential interactions of a particular gene of interest.  New pathways will continually be added on a regular basis.  Pathways currently under construction are: vascular smooth muscle contraction and insulin-mediated glucose transport.   Physiological Pathways seamlessly ties together many of the best features of RGD into a functionally coherent access point making it easier and more efficient than ever to navigate through the diverse but extensive wealth of genomic and phenomic information that is RGD.  Renal Fluid Reabsorption Pathway This level illustrates the intercellular mechanisms that are required in order to achieve the desired “resolution”, shown in the systems level view.  Descriptions of each step in the process appear upon mouse-over.  The user can further zoom in to see associated canonical intracellular pathways available in RGD (e.g. PKA pathway).  Links to RGD gene reports and phenotype data as well as data and information from outside RGD are available by clicking within the diagram.  Alterations in the process that occur as a result of disease or drug intervention are illustrated on associated tabs. The Rat Genome Database is funded by NIH 5R01HL064541

More Related Content

Similar to Physiological pathway diagrams at rgd

Contribution of genome-wide association studies to scientific research: a pra...
Contribution of genome-wide association studies to scientific research: a pra...Contribution of genome-wide association studies to scientific research: a pra...
Contribution of genome-wide association studies to scientific research: a pra...
Mutiple Sclerosis
 
Pathway resources at the rat genome database
Pathway resources at the rat genome databasePathway resources at the rat genome database
Pathway resources at the rat genome database
Jennifer Smith
 
MathiasHibbard_604FinalPaper
MathiasHibbard_604FinalPaperMathiasHibbard_604FinalPaper
MathiasHibbard_604FinalPaper
Mathias Hibbard
 
Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...
Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...
Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...
Chris Southan
 
Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...
Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...
Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...
Chimezie Ogbuji
 
Bascompte lab talk131106
Bascompte lab talk131106Bascompte lab talk131106
Bascompte lab talk131106
Juan C. Rocha
 

Similar to Physiological pathway diagrams at rgd (20)

The Physiological Pathways Portal
The Physiological Pathways PortalThe Physiological Pathways Portal
The Physiological Pathways Portal
 
Multigenic (mechanistic) biomarkers
Multigenic (mechanistic) biomarkersMultigenic (mechanistic) biomarkers
Multigenic (mechanistic) biomarkers
 
Contribution of genome-wide association studies to scientific research: a pra...
Contribution of genome-wide association studies to scientific research: a pra...Contribution of genome-wide association studies to scientific research: a pra...
Contribution of genome-wide association studies to scientific research: a pra...
 
Analysing curated protein targets: Partitioning the drugged and the druggable
Analysing curated protein targets: Partitioning the drugged and the druggable Analysing curated protein targets: Partitioning the drugged and the druggable
Analysing curated protein targets: Partitioning the drugged and the druggable
 
Pathway resources at the rat genome database
Pathway resources at the rat genome databasePathway resources at the rat genome database
Pathway resources at the rat genome database
 
Protein Network Analysis
Protein Network AnalysisProtein Network Analysis
Protein Network Analysis
 
How to analyse large data sets
How to analyse large data setsHow to analyse large data sets
How to analyse large data sets
 
MathiasHibbard_604FinalPaper
MathiasHibbard_604FinalPaperMathiasHibbard_604FinalPaper
MathiasHibbard_604FinalPaper
 
From empirical biomarkers to models of disease mechanisms in the transition t...
From empirical biomarkers to models of disease mechanisms in the transition t...From empirical biomarkers to models of disease mechanisms in the transition t...
From empirical biomarkers to models of disease mechanisms in the transition t...
 
From reads to pathways for efficient disease gene finding
From reads to pathways for efficient disease gene findingFrom reads to pathways for efficient disease gene finding
From reads to pathways for efficient disease gene finding
 
Bioinformatics Introduction and Use of BLAST Tool
Bioinformatics Introduction and Use of BLAST ToolBioinformatics Introduction and Use of BLAST Tool
Bioinformatics Introduction and Use of BLAST Tool
 
COMPUTATIONAL METHODS FOR FUNCTIONAL ANALYSIS OF GENE EXPRESSION
COMPUTATIONAL METHODS FOR FUNCTIONAL ANALYSIS OF GENE EXPRESSIONCOMPUTATIONAL METHODS FOR FUNCTIONAL ANALYSIS OF GENE EXPRESSION
COMPUTATIONAL METHODS FOR FUNCTIONAL ANALYSIS OF GENE EXPRESSION
 
Reconstruction and analysis of cancerspecific Gene regulatory networks from G...
Reconstruction and analysis of cancerspecific Gene regulatory networks from G...Reconstruction and analysis of cancerspecific Gene regulatory networks from G...
Reconstruction and analysis of cancerspecific Gene regulatory networks from G...
 
White paper
White paperWhite paper
White paper
 
Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...
Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...
Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein ...
 
Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...
Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...
Integrating Large, Disparate, Biomedical Ontologies to Boost Organ Developmen...
 
Functional profile of the pre- to post-mortem transition in blood
Functional profile of the pre- to post-mortem transition in bloodFunctional profile of the pre- to post-mortem transition in blood
Functional profile of the pre- to post-mortem transition in blood
 
Identification of PFOA linked metabolic diseases by crossing databases
Identification of PFOA linked metabolic diseases by crossing databasesIdentification of PFOA linked metabolic diseases by crossing databases
Identification of PFOA linked metabolic diseases by crossing databases
 
Bascompte lab talk131106
Bascompte lab talk131106Bascompte lab talk131106
Bascompte lab talk131106
 
Clinical pharmacology.Basics.
Clinical pharmacology.Basics.Clinical pharmacology.Basics.
Clinical pharmacology.Basics.
 

More from Jennifer Smith

PhenoMiner -integrating phenotype values for multiple strains
PhenoMiner -integrating phenotype values for multiple strainsPhenoMiner -integrating phenotype values for multiple strains
PhenoMiner -integrating phenotype values for multiple strains
Jennifer Smith
 
Phenotypes and models at rgd -meet joe rat
Phenotypes and models at rgd -meet joe ratPhenotypes and models at rgd -meet joe rat
Phenotypes and models at rgd -meet joe rat
Jennifer Smith
 
Resources for genomics research
Resources for genomics researchResources for genomics research
Resources for genomics research
Jennifer Smith
 
Phenotypes and models portal at the rat genome database
Phenotypes and models portal at the rat genome databasePhenotypes and models portal at the rat genome database
Phenotypes and models portal at the rat genome database
Jennifer Smith
 
Ontology based phenotype database and mining tool
Ontology based phenotype database and mining toolOntology based phenotype database and mining tool
Ontology based phenotype database and mining tool
Jennifer Smith
 
Disease portals -a platform for genetic and genomic research
Disease portals -a platform for genetic and genomic researchDisease portals -a platform for genetic and genomic research
Disease portals -a platform for genetic and genomic research
Jennifer Smith
 
Collaborative development of a new vertebrate trait ontology
Collaborative development of a new vertebrate trait ontologyCollaborative development of a new vertebrate trait ontology
Collaborative development of a new vertebrate trait ontology
Jennifer Smith
 
Automated data pipelines at the rat genome database
Automated data pipelines at the rat genome databaseAutomated data pipelines at the rat genome database
Automated data pipelines at the rat genome database
Jennifer Smith
 
The rat genome database - genome browser
The rat genome database  - genome browserThe rat genome database  - genome browser
The rat genome database - genome browser
Jennifer Smith
 

More from Jennifer Smith (17)

PhenoMiner -integrating phenotype values for multiple strains
PhenoMiner -integrating phenotype values for multiple strainsPhenoMiner -integrating phenotype values for multiple strains
PhenoMiner -integrating phenotype values for multiple strains
 
Phenotypes and models at rgd -meet joe rat
Phenotypes and models at rgd -meet joe ratPhenotypes and models at rgd -meet joe rat
Phenotypes and models at rgd -meet joe rat
 
Resources for genomics research
Resources for genomics researchResources for genomics research
Resources for genomics research
 
Phenotypes and models portal at the rat genome database
Phenotypes and models portal at the rat genome databasePhenotypes and models portal at the rat genome database
Phenotypes and models portal at the rat genome database
 
Ontology based phenotype database and mining tool
Ontology based phenotype database and mining toolOntology based phenotype database and mining tool
Ontology based phenotype database and mining tool
 
Disease portals -a platform for genetic and genomic research
Disease portals -a platform for genetic and genomic researchDisease portals -a platform for genetic and genomic research
Disease portals -a platform for genetic and genomic research
 
Collaborative development of a new vertebrate trait ontology
Collaborative development of a new vertebrate trait ontologyCollaborative development of a new vertebrate trait ontology
Collaborative development of a new vertebrate trait ontology
 
Automated data pipelines at the rat genome database
Automated data pipelines at the rat genome databaseAutomated data pipelines at the rat genome database
Automated data pipelines at the rat genome database
 
The rat genome database - genome browser
The rat genome database  - genome browserThe rat genome database  - genome browser
The rat genome database - genome browser
 
Phenotype Database and Data Mining at RGD
Phenotype Database and Data Mining at RGDPhenotype Database and Data Mining at RGD
Phenotype Database and Data Mining at RGD
 
Rat Models For Complex Disease
Rat Models For Complex DiseaseRat Models For Complex Disease
Rat Models For Complex Disease
 
Human QTL Data within the Rat Genome Database
Human QTL Data within the Rat Genome DatabaseHuman QTL Data within the Rat Genome Database
Human QTL Data within the Rat Genome Database
 
The Diabetes Portal at the Rat Genome Database
The Diabetes Portal at the Rat Genome DatabaseThe Diabetes Portal at the Rat Genome Database
The Diabetes Portal at the Rat Genome Database
 
RGD--A Repository and Cumulative Resource for Rat Strains
RGD--A Repository and Cumulative Resource for Rat StrainsRGD--A Repository and Cumulative Resource for Rat Strains
RGD--A Repository and Cumulative Resource for Rat Strains
 
Rat QTL Data--Linking Phenotype to the Genome
Rat QTL Data--Linking Phenotype to the GenomeRat QTL Data--Linking Phenotype to the Genome
Rat QTL Data--Linking Phenotype to the Genome
 
Pathway resources at the Rat Genome Database
Pathway resources at the Rat Genome DatabasePathway resources at the Rat Genome Database
Pathway resources at the Rat Genome Database
 
At RGD Education is a Two Way Street
At RGD Education is a Two Way StreetAt RGD Education is a Two Way Street
At RGD Education is a Two Way Street
 

Recently uploaded

Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 

Recently uploaded (20)

Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»НАДІЯ ФЕДЮШКО БАЦ  «Професійне зростання QA спеціаліста»
НАДІЯ ФЕДЮШКО БАЦ «Професійне зростання QA спеціаліста»
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 

Physiological pathway diagrams at rgd

  • 1. RGD’s new physiological pathway diagrams: linking biological systems to the genome Diane H. Munzenmaier,MelindaDwinell, Mary Shimoyama, Weisong Liu, and Howard J. Jacob Dept. of Physiology,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA Abstract GENES System level view The Rat Genome Database (RGD) has developed new Physiological Pathway Diagrams that function as navigational hubs, allowing physiologists to easily follow links from known process mechanisms to phenotype and genotype data. These diagrams, which denote physiological processes occurring on the systems and tissue levels, are designed to seamlessly integrate with RGD’s existing intracellular molecular pathway diagrams, allowing users to drill down from whole animal function to cellular and molecular mechanisms and back up again.   Physiological Pathway Diagrams provide a familiar and logical map for the physiologist and include links to relevant genotype data within RGD, such as gene reports and sequence data, as well as phenotype data, such as experimental data, strains and models, through flowcharts depicting related physiological and regulatory mechanisms and pathways. Additionally, pharmacological actions, drug-gene interactions, as well as genetic manipulations such as gene knockouts that influence these pathways are depicted within the diagrams and also link to related phenotype and genotype data.   The first diagram to be released depicts the role of vasopressin (AVP, also known as antidiuretic hormone, ADH) in the activation of aquaporin-2 water channels in the renal collecting ducts to promote increased water reabsorption by the kidney when blood and fluid volume has been reduced due to dehydration, hemorrhage, etc. As with all of the diagrams within this tool, this consists of an overview depicting the stimulus, result, and feedback mechanism. Then, each involved organ or tissue can be zoomed in to reveal the specific mechanisms of the process at the tissue or multicellular level. Links to genotype and phenotype data are available at both the system and tissue levels.   Examples of the types of pathways included in this portal are complex regulatory and physiological systems such as blood pressure regulation (including blood vessel reactivity, cardiac contractility, and blood volume regulation as well as neurohumoral modulation of these processes) and glucose homeostasis (including regulation of insulin and glucagon secretion and glucose transport mechanisms). Additional pathways are planned for and will be incorporated on an ongoing basis.   The Physiological Pathway Diagrams tool at RGD promises to be a dynamic and user-friendly tool with which to access and retrieve physiological and genomic data for researchers who use the rat as a model to study physiological processes and the modulation of these processes through pharmacologic or genetic interventions or for the elucidation of disease mechanisms.   Genes. Gene symbols will link to their specific gene reports where the user can access extensive genotype data and annotations on the gene in rat as well as species comparisons in mouse and human. Diseases. The disease tab of each physiological pathway contains useful links to diseases information associated with the pathway. When each disease is selected, the appropriate alterations will be depicted on the pathway diagram and described. Clicking into this disease will direct the user to the appropriate RGD disease ontology reports. Renal Fluid Reabsorption Pathway Users can follow the pathways throughout the process from “challenge” (green star) to “resolution” (red target) by hovering their mouse over the shapes on each arrow to reveal a description of each step in the path. In this example, the challenge to the system is low blood volume. The resolution is increased renal fluid reabsorption to return blood volume to normal. Clicking on the kidney allows users to see a zoomed in view of how the process works on the tissue level (below). DISEASES Intracellular signaling pathways. Steps that consist of canonical second messenger intracellular signaling pathways link to RGD’s existing Pathways tool to give the user a closer look. SIGNALING PATHWAYS Tissue level view Physiological Pathways are graphical depictions of multi-organ biological processes that provide the user with a systems biology approach to RGD. Physiologists will find the Physiological Pathways logically organized making it easy to locate and access pertinent information. Discrete steps within each process are arranged temporally and regionally with organ/tissue location of each step indicated by symbol and text label for clarity. Each pathway consists of clickable elements leading to information regarding genes involved in the process, experimental data at specific points in the process, associated diseases due to dysfunction of a step in the process, genetic strains that have been characterized as disease models, drugs classes that can favorably or adversely affect the process, and associated intracellular pathways. Phenotypes & Models. Clicking on discrete functional steps in the process takes the user to the associated page of the new Phenotypes & Models tool where specific values for related phenotypes can be accessed. DRUGS PHENOTYPEDATA Drugs. Another associated tab lists classes of pharmaceuticals that are used to modulate the pathway in some manner. When a class is selected, the diagram is altered in order to depict the effect of the drug on the pathway. The drug class names link to the PharmGKB (www.pharmgkb.org) website where information on specific drugs in each class can be found. Conclusion Let any RGDer know if you have a favorite pathway that you would like to see developed for RGD Physiological Pathways! The new Physiological Pathways toolserves as a gateway into RGD for researchers in the biological sciences searching for gene function annotation and links to information regarding genotypes, phenotypes and disease associations. It is organized in a systems biology context through sequential temporal and regional steps in physiological processes with links to gene reports, phenotype data, and intracellular molecular pathways. The genetics researcher will also find it a valuable resource for determining the functional aspects and potential interactions of a particular gene of interest. New pathways will continually be added on a regular basis. Pathways currently under construction are: vascular smooth muscle contraction and insulin-mediated glucose transport. Physiological Pathways seamlessly ties together many of the best features of RGD into a functionally coherent access point making it easier and more efficient than ever to navigate through the diverse but extensive wealth of genomic and phenomic information that is RGD. Renal Fluid Reabsorption Pathway This level illustrates the intercellular mechanisms that are required in order to achieve the desired “resolution”, shown in the systems level view. Descriptions of each step in the process appear upon mouse-over. The user can further zoom in to see associated canonical intracellular pathways available in RGD (e.g. PKA pathway). Links to RGD gene reports and phenotype data as well as data and information from outside RGD are available by clicking within the diagram. Alterations in the process that occur as a result of disease or drug intervention are illustrated on associated tabs. The Rat Genome Database is funded by NIH 5R01HL064541