Optical Spectroscopy and Imaging of Porphyrins
and Phthalocyanines:
Self-Aggregation, Microencapsulation and
Plasmon Enhanced Emission
Raquel Alexandra Morais Teixeira
2012
INSTITUTO
SUPERIOR
TÉCNICO
Porphyrins
Conjugated aromatic system
18+4 electrons p
1
Porphyrin dimers in dye-
sensitized solar cells (DSSCs)
Photodynamic Therapy (PDT)
Biomimetic Models
Materials Chemistry
Catalysis
Supramolecular
Chemistry
Photodiagnosis
Cancer therapy (PDT)
Porphyrin Syntheses
Sensors
T1
S0
S1
S2
Soretband
IC
ISC
Phospho-
rescence
Q(1,0)
Q(0,0)
Q(0,1)
2
1
0
2
1
0
2
1
0
2
1
0
Diagrama de Jablonski simplificado
Porphyrins
Strongly coupled dye units in a J-agg.
H-dimer J-dimer
Porphyrins Aggregates: Exciton Theory
E0
E
Parallel
M D
E’’
E’
E0
E
Head-to-tail
M D
E’’
E’
Blue Shift Red Shift
E0
E
Head-to-tail
M D
E’’
E’
Band Splitting
Oblique
2
AD Schwab et al. Nanolett. 2004, 4, 1261
Photoconductivity of self-assembled porphyrin nanorods
3D Self-Assembled Systems
Layer-by-layer assembly of polyelectrolyte microcapsules
Lipid-coated MCs
Space confinement of porphyrins and phthalocyanines
a) Encapsulation of charged or hydrophobic porphyrins (and phthalocyanines).
b) Encapsulation of silver/gold nanoparticles.
c) Distance control: porphyrin-porphyrin, porphyrin-phthalocyanine, porphyrin/phthalocyanine-
nanoparticles.
3
Plasmon-Enhanced Fluorescence
Fluorophore near a metallic surface
(nanoparticle)
Metal-fluorophore interactions result in increased
rates of excitation and emission (thicker arrows)
Plasmophores exhibit increased brightness and reduced decay times (increased photostability)
Nanoparticle
Size
Shape
Fluorophore-Nanoparticle
Distance
Orientation
Spectral overlap
Metal Enhanced Fluorescence (MEF)
Combination of two cooperative near-field
interactions:
(i) an electric field enhancement effect;
(ii) an induced plasmon effect.
   0
2
0
0
,

p
mum rr


nrr
rr







nrr 



1
4
Outline
We present the construction of confined systems prepared by self-
assembly methods:
 Porphyrin dimer and porphyrin aggregates in homogeneous
solutions and in surfactants/lipids self-assembled systems
 Porphyrins/Phthalocyanines in layer-by-layer assembled PE
microcapsules
 Porphyrins/Phthalocyanines and metal nanoparticles in layer-by-
layer assembled PE microcapsules
 Lipid coated PE microcapsules with Pph/Pc and gold core-PE
multilayer-Pc@lipid bilayer nanoparticles
5
Solvent Effects on a Flexible
Porphyrin Dimer
Porphyrin Covalent Dimer
H4DTPP in methanol
400 500 600 700
0.5
1.0
1.5
2.0
2.5
Absorbance(x10
-1
)
Wavelength (nm)
400 500 600 700
0.5
1.0
1.5
2.0
2.5
Intensity(a.u.)
Absorbance(x10
-1
)
Wavelength (nm)
0.1
0.3
0.5
0.7
0.9
1.1
exc
=425 nm
350 400 450 500
0.0
0.2
0.4
0.6
0.8
1.0
em
= 640 nm
Intensity(a.u.)
Wavelength (nm)
400 500 600 700
0.5
1.0
1.5
2.0
2.5
Intensity(a.u.)
Absorbance(x10
-1
)
Wavelength (nm)
0.1
0.3
0.5
0.7
0.9
1.1
exc
=375 nm
exc
=425 nm
350 400 450 500
0.0
0.2
0.4
0.6
0.8
1.0
em
= 540 nm
em
= 640 nm
Intensity(a.u.)
Wavelength (nm)
Tetrahedron Letters 2007, 48, 3145 6
Porphyrin Covalent Dimer
Dioxane-water mixtures
510 540 570 600 630 660 690
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Intensity(a.u.)
Wavelength (nm)
0-55 (% v/v)
water
exc=375 nm
0 15 30 45 60
0
5
10
15
20
Int540/Int650(%)
% water (v/v)
360 390 420 450
1
2
3
4
5
6
7
Intensity(a.u.)
Wavelength (nm)
0-55 (% v/v) water
em=540 nm
ACN-Tol mixtures
400 410 420 430 440 450
0.0
0.1
0.2
0.3 0
0.09
0.20
0.36
0.60
0.77
1
Absorbance
Wavelength (nm)
x(Tol)
7
Self-Assembly of Amphiphilic
Porphyrins
Amino Acid Derivatized Porphyrins
N HN
NH
H
N
O
O
O
O
N
H
O
O
NNH
N HN
N
H
O
O
O
O
N
H
O
O
Fluorescence lifetime decays
• pH=1: PpIX-2Gly diacid form (6.3 ns)
• pH=4: diacid form (6.9 ns) + larger aggregates
(2 ns)
• pH=12: monomer (15.5 ns) + H-dimers (3.9 ns)
+ larger aggregates (0.8 ns)
8
Protoporphyrin IX
(PpIX)
PpIX-2Gly
Amino Acid Derivatized Porphyrins
MGG
400 500 600
0
1
2
3
4
5
Extinction(x10
-1
)
Wavelength (nm)
water
0.1% EtOH
0.25% EtOH
0.5% EtOH
1% EtOH
ethanol
x1/2
Absorption spectra
350 400 450 500 550 600
0.0
0.5
1.0
1.5
2.0
2.5
water
1% EtOH
2% EtOH
5% EtOH
10% EtOH
Intensity(a.u.)
Wavelength (nm)
Resonance Light Scattering (RLS)
J. Phys. Chem. B 2012, 116, 2396 9
Amino Acid Derivatized Porphyrins
25ºC45ºC
0 20 40 60 80 100 120
0.2
0.3
0.4
Extinction@443nm
Time (min) -8
-7
-6
-5
3.2 3.3 3.4
lnk
103/T (K-1)
R
2
=0.9968
A
B C
A) [MGG]=1M; 25% EtOH; 35ºC
B) Kinetic profiles of MGG aggregation at
different temperatures
C) Arrhenius plot: Ea=96 kJ mol-1
Water-ethanol binary mixtures
300 400 500 600 700
0
1
2
3
4
0 300 600 900 1200
1.5
2.0
2.5
3.0
3.5
4.0
Extinction(x10)
Time (s)
Extinction(x10
-1
)
Wavelength (nm)
0 20 min
10
Amino Acid Derivatized Porphyrins
DLS
1.5 ns
7.5 ns
[MGG] = 50 M in water
20 M 2 M
1.5 ns
7.5 ns
[MGG] = 50 M in water-ethanol (25% v/v)
20 M 2 M
FLIM
TEM
Morphology and size of MGG aggregates in water-ethanol mixtures
2 m
water-EtOH (1%)
200 nm
water-EtOH (10%)
2 m
water-EtOH (25%)
Hydrodynamic radius of MGG aggregates in water-
ethanol mixtures
11
Polyelectrolyte Microcapsules with
Porphyrins and Phthalocyanines
Polyelectrolyte Microcapsules
TEM images: MnCO3-(PAH/PSS)5-PAH microcapsules
TMPyP TSPP AlPcS4
Polyelectrolytes: positive PAH and negative PSS
Templates: MnCO3, CaCO3 and commercial PS
Fluorophores: TSPP, TMPyP, ZnTMPyP and AlPcS4
12
PAH
PSS
Polyelectrolyte Microcapsules
Porphyrin covalently linked to polyelectrolyte PAH
TCPP
20 m
750 cnts
8 ns
11 ns
20 m
pH=5.6 pH=7.0
0 5 6 7 8 9 10 11 12 13 14
0
5
10
15
20
25
pH=5.6
pH=7.0
Frequency(counts)
Average Lifetime (ns)
PAH-TCPP
1/ns A1(%) 2/ns A2(%) 3/ns A3(%) avg/ns
pH=5.6 10.1 79 3.6 17 0.5 4 8.7
pH=7.0 11.2 86 4.2 11 0.6 3 10.1
13
Energy Transfer in Polyelectrolyte MCs
CaCO3-(PAH/PSS)4-TMPyP-PAH-AlPcS4
400 500 600 700
0
2
4
6
8
Absorbance(x10
-2
)
Wavelength (nm)
[AlPcS4
]
600 650 700 750 800
0.0
0.5
1.0
1.5
2.0 exc=430 nm
Intensity(a.u.)
Wavelength (nm)
[AlPcS4
]
8 10 12 14 16 18 20
10
2
10
3
10
4
Counts
Time [ns]
[AlPcS4]
exc = 445 nm
em = 650 nm
9 10 11 12
10
2
10
3
10
4
exc = 445 nm
em = 680 nm
Counts
Time [ns]
Rise time
14
Plasmon-Enhanced Fluorescence
in LbL-Assembled Systems
AlPcS4
hu
Au Au Au
Plasmon-Enhanced Emission in Films
0
100 cnts
0
6 ns
5 m
0
6 ns
0
100 cnts
5 m
With AuNPs - 7PE layers
Fluorescence Lifetime Imaging Microscopy (FLIM)
Control 7 PE layers
15
Plasmon Effects in PE Microcapsules
A
5000 nm
B
1000 nm
AgNPs
PAH+
PSS-
A B
AgNPs
PAH+
PSS-
A B Nanoparticles
Silver, gold
Fluorophores
Several ionic porphyrins
Phthalocyanine
Phthalocyanine inside a lipid bilayer
coating the MC
16
Plasmon Effects in PE Microcapsules
5 m 1 m5 m 1 m
2 ns
5 ns
2 ns
5 ns
(PAH/PSS)6-PAH-AlPcS1@lipid BL
2 ns
5 ns
5 m 1 m5 m 1 m
(PAH/PSS)4-PAH-AuNPs-PAH-AuNPs-(PAH/PSS)4-PAH-
AlPcS1@lipid BL
Phthalocyanine inside a lipid bilayer
- Highly polydisperse microcapsules (fluorescence intensity and lifetime fluctuations both
between different capsules and inside each capsule).
- Both quenching and MEF of phthalocyanine due to AuNPs are observed.
- Plasmon effects greatly “diluted” within the microcapsules.
17
Plasmon Effects in AuNP-PE ML-AlPcS1@lipid BL
A - 5 PAH/PSS layers
B - 9 PAH/PSS layers
C - 21 PAH/PSS layers
D - 31 PAH/PSS layers
DMPC vesicles with AlPcS1
DMPC bilayer with AlPcS1
Gold nanoparticle
18
Plasmon Effects in AuNP-PE ML-AlPcS1@lipid BL
19
1 2 3 4 5 6 7
10
0
10
1
10
2
10
3
3L
5L
9L
13L
15L
25L
31L
MCs
Glass
Frequency(Counts)
avg (ns)
Dispersion plot of Intensity vs. lifetime
A B C
E F
0
4 ns
0
4 ns
0
4 ns
5 m 5 m
5 m
D
0
5 ns
5 m
A B C
E F
0
4 ns
0
4 ns
0
4 ns
0
4 ns
0
4 ns
5 m 5 m 5 m
5 m 5 m
D
0
5 ns
5 m
25 layers
31 layers
A B C
E F
0
4 ns
0
4 ns
0
4 ns
0
4 ns
0
4 ns
5 m 5 m 5 m
5 m 5 m
D
0
5 ns
5 m
5 layers 9 layers 13 layers
E
0
5 m
D
0
5 ns
5 m15 layers
4
Main Achievements
This work helped to clarify important aspects about these systems of growing
complexity, such as:
- The driving forces for intra- and intermolecular interactions as well as for the different
self-assembly processes studied;
- The importance of the confinement effect and distance control to the photoinduced
processes investigated;
- The utmost relevance of FLIM technique in revealing important details of the
photoactive confined systems which are totally hidden in ensemble measurements.
20

PhD Thesis Presentation_RT

  • 1.
    Optical Spectroscopy andImaging of Porphyrins and Phthalocyanines: Self-Aggregation, Microencapsulation and Plasmon Enhanced Emission Raquel Alexandra Morais Teixeira 2012 INSTITUTO SUPERIOR TÉCNICO
  • 2.
    Porphyrins Conjugated aromatic system 18+4electrons p 1 Porphyrin dimers in dye- sensitized solar cells (DSSCs) Photodynamic Therapy (PDT) Biomimetic Models Materials Chemistry Catalysis Supramolecular Chemistry Photodiagnosis Cancer therapy (PDT) Porphyrin Syntheses Sensors T1 S0 S1 S2 Soretband IC ISC Phospho- rescence Q(1,0) Q(0,0) Q(0,1) 2 1 0 2 1 0 2 1 0 2 1 0 Diagrama de Jablonski simplificado
  • 3.
    Porphyrins Strongly coupled dyeunits in a J-agg. H-dimer J-dimer Porphyrins Aggregates: Exciton Theory E0 E Parallel M D E’’ E’ E0 E Head-to-tail M D E’’ E’ Blue Shift Red Shift E0 E Head-to-tail M D E’’ E’ Band Splitting Oblique 2 AD Schwab et al. Nanolett. 2004, 4, 1261 Photoconductivity of self-assembled porphyrin nanorods
  • 4.
    3D Self-Assembled Systems Layer-by-layerassembly of polyelectrolyte microcapsules Lipid-coated MCs Space confinement of porphyrins and phthalocyanines a) Encapsulation of charged or hydrophobic porphyrins (and phthalocyanines). b) Encapsulation of silver/gold nanoparticles. c) Distance control: porphyrin-porphyrin, porphyrin-phthalocyanine, porphyrin/phthalocyanine- nanoparticles. 3
  • 5.
    Plasmon-Enhanced Fluorescence Fluorophore neara metallic surface (nanoparticle) Metal-fluorophore interactions result in increased rates of excitation and emission (thicker arrows) Plasmophores exhibit increased brightness and reduced decay times (increased photostability) Nanoparticle Size Shape Fluorophore-Nanoparticle Distance Orientation Spectral overlap Metal Enhanced Fluorescence (MEF) Combination of two cooperative near-field interactions: (i) an electric field enhancement effect; (ii) an induced plasmon effect.    0 2 0 0 ,  p mum rr   nrr rr        nrr     1 4
  • 6.
    Outline We present theconstruction of confined systems prepared by self- assembly methods:  Porphyrin dimer and porphyrin aggregates in homogeneous solutions and in surfactants/lipids self-assembled systems  Porphyrins/Phthalocyanines in layer-by-layer assembled PE microcapsules  Porphyrins/Phthalocyanines and metal nanoparticles in layer-by- layer assembled PE microcapsules  Lipid coated PE microcapsules with Pph/Pc and gold core-PE multilayer-Pc@lipid bilayer nanoparticles 5
  • 7.
    Solvent Effects ona Flexible Porphyrin Dimer
  • 8.
    Porphyrin Covalent Dimer H4DTPPin methanol 400 500 600 700 0.5 1.0 1.5 2.0 2.5 Absorbance(x10 -1 ) Wavelength (nm) 400 500 600 700 0.5 1.0 1.5 2.0 2.5 Intensity(a.u.) Absorbance(x10 -1 ) Wavelength (nm) 0.1 0.3 0.5 0.7 0.9 1.1 exc =425 nm 350 400 450 500 0.0 0.2 0.4 0.6 0.8 1.0 em = 640 nm Intensity(a.u.) Wavelength (nm) 400 500 600 700 0.5 1.0 1.5 2.0 2.5 Intensity(a.u.) Absorbance(x10 -1 ) Wavelength (nm) 0.1 0.3 0.5 0.7 0.9 1.1 exc =375 nm exc =425 nm 350 400 450 500 0.0 0.2 0.4 0.6 0.8 1.0 em = 540 nm em = 640 nm Intensity(a.u.) Wavelength (nm) Tetrahedron Letters 2007, 48, 3145 6
  • 9.
    Porphyrin Covalent Dimer Dioxane-watermixtures 510 540 570 600 630 660 690 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Intensity(a.u.) Wavelength (nm) 0-55 (% v/v) water exc=375 nm 0 15 30 45 60 0 5 10 15 20 Int540/Int650(%) % water (v/v) 360 390 420 450 1 2 3 4 5 6 7 Intensity(a.u.) Wavelength (nm) 0-55 (% v/v) water em=540 nm ACN-Tol mixtures 400 410 420 430 440 450 0.0 0.1 0.2 0.3 0 0.09 0.20 0.36 0.60 0.77 1 Absorbance Wavelength (nm) x(Tol) 7
  • 10.
  • 11.
    Amino Acid DerivatizedPorphyrins N HN NH H N O O O O N H O O NNH N HN N H O O O O N H O O Fluorescence lifetime decays • pH=1: PpIX-2Gly diacid form (6.3 ns) • pH=4: diacid form (6.9 ns) + larger aggregates (2 ns) • pH=12: monomer (15.5 ns) + H-dimers (3.9 ns) + larger aggregates (0.8 ns) 8 Protoporphyrin IX (PpIX) PpIX-2Gly
  • 12.
    Amino Acid DerivatizedPorphyrins MGG 400 500 600 0 1 2 3 4 5 Extinction(x10 -1 ) Wavelength (nm) water 0.1% EtOH 0.25% EtOH 0.5% EtOH 1% EtOH ethanol x1/2 Absorption spectra 350 400 450 500 550 600 0.0 0.5 1.0 1.5 2.0 2.5 water 1% EtOH 2% EtOH 5% EtOH 10% EtOH Intensity(a.u.) Wavelength (nm) Resonance Light Scattering (RLS) J. Phys. Chem. B 2012, 116, 2396 9
  • 13.
    Amino Acid DerivatizedPorphyrins 25ºC45ºC 0 20 40 60 80 100 120 0.2 0.3 0.4 Extinction@443nm Time (min) -8 -7 -6 -5 3.2 3.3 3.4 lnk 103/T (K-1) R 2 =0.9968 A B C A) [MGG]=1M; 25% EtOH; 35ºC B) Kinetic profiles of MGG aggregation at different temperatures C) Arrhenius plot: Ea=96 kJ mol-1 Water-ethanol binary mixtures 300 400 500 600 700 0 1 2 3 4 0 300 600 900 1200 1.5 2.0 2.5 3.0 3.5 4.0 Extinction(x10) Time (s) Extinction(x10 -1 ) Wavelength (nm) 0 20 min 10
  • 14.
    Amino Acid DerivatizedPorphyrins DLS 1.5 ns 7.5 ns [MGG] = 50 M in water 20 M 2 M 1.5 ns 7.5 ns [MGG] = 50 M in water-ethanol (25% v/v) 20 M 2 M FLIM TEM Morphology and size of MGG aggregates in water-ethanol mixtures 2 m water-EtOH (1%) 200 nm water-EtOH (10%) 2 m water-EtOH (25%) Hydrodynamic radius of MGG aggregates in water- ethanol mixtures 11
  • 15.
  • 16.
    Polyelectrolyte Microcapsules TEM images:MnCO3-(PAH/PSS)5-PAH microcapsules TMPyP TSPP AlPcS4 Polyelectrolytes: positive PAH and negative PSS Templates: MnCO3, CaCO3 and commercial PS Fluorophores: TSPP, TMPyP, ZnTMPyP and AlPcS4 12 PAH PSS
  • 17.
    Polyelectrolyte Microcapsules Porphyrin covalentlylinked to polyelectrolyte PAH TCPP 20 m 750 cnts 8 ns 11 ns 20 m pH=5.6 pH=7.0 0 5 6 7 8 9 10 11 12 13 14 0 5 10 15 20 25 pH=5.6 pH=7.0 Frequency(counts) Average Lifetime (ns) PAH-TCPP 1/ns A1(%) 2/ns A2(%) 3/ns A3(%) avg/ns pH=5.6 10.1 79 3.6 17 0.5 4 8.7 pH=7.0 11.2 86 4.2 11 0.6 3 10.1 13
  • 18.
    Energy Transfer inPolyelectrolyte MCs CaCO3-(PAH/PSS)4-TMPyP-PAH-AlPcS4 400 500 600 700 0 2 4 6 8 Absorbance(x10 -2 ) Wavelength (nm) [AlPcS4 ] 600 650 700 750 800 0.0 0.5 1.0 1.5 2.0 exc=430 nm Intensity(a.u.) Wavelength (nm) [AlPcS4 ] 8 10 12 14 16 18 20 10 2 10 3 10 4 Counts Time [ns] [AlPcS4] exc = 445 nm em = 650 nm 9 10 11 12 10 2 10 3 10 4 exc = 445 nm em = 680 nm Counts Time [ns] Rise time 14
  • 19.
  • 20.
    AlPcS4 hu Au Au Au Plasmon-EnhancedEmission in Films 0 100 cnts 0 6 ns 5 m 0 6 ns 0 100 cnts 5 m With AuNPs - 7PE layers Fluorescence Lifetime Imaging Microscopy (FLIM) Control 7 PE layers 15
  • 21.
    Plasmon Effects inPE Microcapsules A 5000 nm B 1000 nm AgNPs PAH+ PSS- A B AgNPs PAH+ PSS- A B Nanoparticles Silver, gold Fluorophores Several ionic porphyrins Phthalocyanine Phthalocyanine inside a lipid bilayer coating the MC 16
  • 22.
    Plasmon Effects inPE Microcapsules 5 m 1 m5 m 1 m 2 ns 5 ns 2 ns 5 ns (PAH/PSS)6-PAH-AlPcS1@lipid BL 2 ns 5 ns 5 m 1 m5 m 1 m (PAH/PSS)4-PAH-AuNPs-PAH-AuNPs-(PAH/PSS)4-PAH- AlPcS1@lipid BL Phthalocyanine inside a lipid bilayer - Highly polydisperse microcapsules (fluorescence intensity and lifetime fluctuations both between different capsules and inside each capsule). - Both quenching and MEF of phthalocyanine due to AuNPs are observed. - Plasmon effects greatly “diluted” within the microcapsules. 17
  • 23.
    Plasmon Effects inAuNP-PE ML-AlPcS1@lipid BL A - 5 PAH/PSS layers B - 9 PAH/PSS layers C - 21 PAH/PSS layers D - 31 PAH/PSS layers DMPC vesicles with AlPcS1 DMPC bilayer with AlPcS1 Gold nanoparticle 18
  • 24.
    Plasmon Effects inAuNP-PE ML-AlPcS1@lipid BL 19 1 2 3 4 5 6 7 10 0 10 1 10 2 10 3 3L 5L 9L 13L 15L 25L 31L MCs Glass Frequency(Counts) avg (ns) Dispersion plot of Intensity vs. lifetime A B C E F 0 4 ns 0 4 ns 0 4 ns 5 m 5 m 5 m D 0 5 ns 5 m A B C E F 0 4 ns 0 4 ns 0 4 ns 0 4 ns 0 4 ns 5 m 5 m 5 m 5 m 5 m D 0 5 ns 5 m 25 layers 31 layers A B C E F 0 4 ns 0 4 ns 0 4 ns 0 4 ns 0 4 ns 5 m 5 m 5 m 5 m 5 m D 0 5 ns 5 m 5 layers 9 layers 13 layers E 0 5 m D 0 5 ns 5 m15 layers 4
  • 25.
    Main Achievements This workhelped to clarify important aspects about these systems of growing complexity, such as: - The driving forces for intra- and intermolecular interactions as well as for the different self-assembly processes studied; - The importance of the confinement effect and distance control to the photoinduced processes investigated; - The utmost relevance of FLIM technique in revealing important details of the photoactive confined systems which are totally hidden in ensemble measurements. 20