This document discusses web document clustering using a hybrid approach in data mining. It begins with an abstract describing the huge amount of data on the internet and need to organize web documents into clusters. It then discusses requirements for document clustering like scalability, noise tolerance, and ability to present concise cluster summaries. Different existing document clustering approaches are described, including text-based and link-based approaches. The proposed approach uses a concept-based mining model along with hierarchical agglomerative clustering and link-based algorithms to cluster web documents based on both their content and hyperlinks. This hybrid approach aims to provide more relevant clustered documents to users than previous methods.