SlideShare a Scribd company logo
1 of 24
HARAMAYA UNIVERSITY
POST GRADUATE PROGRAM DIRECTORATE
COLLEGE OF NATURALAND COMPUTATIONAL SCIENCE
MSC PROGRAM IN MATHEMATICAL MODELING
Prepared by: -
1. Abdella Kereme Ahmed ID No: PGP/646/14
2. Alemseged Kifle ID No: PGP/646/14
Presentation Assignment of Optimization and Optimal Control
Submitted to: - Getinet A. (Ph.D.)
June, 2021 GC.
Haramaya University, Ethiopia
1. FIBONACCI AND GOLDEN SECTION METHOD
1.1 INTRODUCTION
๏ƒ˜Optimization problem involves the objective function and/or constraints that are not stated as
explicit functions of the design variables or which are too complicated to manipulate, we cannot
solve it by using the classical analytical methods.
๏ƒ˜So, we consider now algorithms for locating a local minimum in the nonlinear optimization
problem with no constraints. In such cases we need to use the numerical methods of
optimization for solution.
๏ƒ˜Like that Fibonacci method, golden section method
1.2 Fibonacci method
Fibonacci method can be used to find the minimum of a function of one variable even if the
function is not continuous. This method, like many other elimination methods, has the following
limitations:
๏ƒ˜The initial interval of uncertainty, in which the optimum lies, has to be known.
๏ƒ˜The function being optimized has to be unimodal in the initial interval of uncertainty.
๏ƒ˜The exact optimum cannot be located in this method
๏ƒ˜The number of function evaluations to be used in the search or the resolution required has to be
specified beforehand.
Cont.โ€ฆ
๏ƒ˜This method makes use of the sequence of Fibonacci numbers, ๐น๐‘› for placing the experiments.
These numbers are defined as
๐น0 = ๐น1 = 1.
๐น๐‘› = ๐น๐‘›โˆ’1 + ๐น๐‘›โˆ’2 , ๐‘› = 2,3,4 โ€ฆ
๏ƒ˜which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, โ€ฆ
๏ƒ˜Procedure. Let L0 be the initial interval of uncertainty defined by ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘ and n be the total
number of experiments to be conducted. Define
๐ฟ2
โˆ—
=
๐น๐‘›โˆ’2
๐น๐‘›
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (1)
CONT.โ€ฆ
and place the first two experiments at points x1 and x2, which are located at a
distance of ๐ฟ2
โˆ—
from each end of L0. This gives
๐‘‹1 = ๐‘Ž + ๐ฟ2
โˆ—
= ๐‘Ž +
๐น๐‘›โˆ’2
๐น๐‘›
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2)
๐‘‹2 = ๐‘ โˆ’ ๐ฟ2
โˆ—
= ๐‘ โˆ’
๐น๐‘›โˆ’2
๐น๐‘›
๐ฟ0 = ๐‘Ž +
๐น๐‘›โˆ’1
๐น๐‘›
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (3)
๏ƒ˜Discard part of the interval by using the unimodality assumption.
Cont.'sโ€ฆ.
๏ƒ˜Then there remains a smaller interval of uncertainty ๐น2 given by
๐ฟ2 = ๐ฟ0 โˆ’ ๐ฟ2
โˆ—
= ๐ฟ0 1 โˆ’
๐น๐‘›โˆ’2
๐น๐‘›
=
๐น๐‘›โˆ’1
๐น๐‘›
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (4)
and with one experiment left in it. This experiment will be at a distance of
๐ฟ2
โˆ—
=
๐น๐‘›โˆ’2
๐น๐‘›
๐ฟ0 =
๐น๐‘›โˆ’2
๐น๐‘›โˆ’1
๐ฟ2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (5)
from one end and
๐ฟ2 โˆ’ ๐ฟ2
โˆ—
=
๐น๐‘›โˆ’3
๐น๐‘›
๐ฟ0 =
๐น๐‘›โˆ’3
๐น๐‘›โˆ’1
๐ฟ2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (6)
from the other end.
Cont.'sโ€ฆ.
๏ƒ˜Now place the third experiment in the interval ๐ฟ2 so that the current two experiments are
located at a distance of
๐ฟ3
โˆ—
=
๐น๐‘›โˆ’3
๐น๐‘›
๐ฟ0 =
๐น๐‘›โˆ’3
๐น๐‘›โˆ’1
๐ฟ2 =
๐ฟ0
๐›พ3 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (7)
from each end of the interval ๐ฟ2 .
๏ƒ˜Again, the unimodality property will allow us to reduce the interval of uncertainty to ๐ฟ3 given
by ๐ฟ3 = ๐ฟ2 โˆ’ ๐ฟ3
โˆ—
= ๐ฟ2 โˆ’
๐น๐‘›โˆ’3
๐น๐‘›โˆ’1
๐ฟ2 =
๐น๐‘›โˆ’2
๐น๐‘›โˆ’1
๐ฟ2 =
๐น๐‘›โˆ’2
๐น๐‘›
๐ฟ0 =
๐ฟ0
๐›พ2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (8
๏ƒ˜This process of discarding a certain interval and placing a new experiment in the remaining
interval can be continued, so that the location of the j th experiment and the interval of
uncertainty at the end of j experiments are, respectively, given by
CONTโ€ฆ
๏ƒ˜๐ฟ๐‘—
โˆ—
=
๐น๐‘›โˆ’๐‘—
๐น๐‘›โˆ’(๐‘—โˆ’1)
๐ฟ๐‘—โˆ’1 =
๐น๐‘›โˆ’๐‘—
๐น๐‘›
๐ฟ0 =
๐ฟ0
๐›พ๐‘— โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (9)
๏ƒ˜๐ฟ๐‘— =
๐น๐‘›โˆ’(๐‘—โˆ’1)
๐น๐‘›
๐ฟ0 =
๐ฟ0
๐›พ๐‘—โˆ’1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (10)
๏ƒ˜The ratio of the interval of uncertainty remaining after conducting j of the n
predetermined experiments to the initial interval of uncertainty becomes
๐ฟ๐‘—
๐ฟ0
=
๐น๐‘›โˆ’(๐‘—โˆ’1)
๐น๐‘›
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (11)
and for ๐‘— = ๐‘›, we obtain
๐ฟ๐‘›
๐ฟ0
=
๐น1
๐น๐‘›
=
1
๐น๐‘›
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (12)
CONTโ€™S โ€ฆ
๏ƒ˜The ratio ๐ฟ๐‘›
๐ฟ0
will permit us to determine n, the required number of experiments, to achieve
any desired accuracy in locating the optimum point. Table 1 gives the reduction ratio in the
interval of uncertainty obtainable for different number of experiments.
๏ƒ˜The symbol ๐ฟ๐‘— is used to denote the interval of uncertainty remaining after conducting ๐‘—
experiments,
๏ƒ˜while the symbol ๐ฟ๐‘—
โˆ—
๐‘— is used to define the position of the ๐‘— ๐‘กโ„Ž experiment.
Table 1 Reduction Ratios
Value of n Fibonacci number,๐น๐‘› Reduction ratio,
๐ฟ๐‘›
๐ฟ0
0 1 1.0
1 1 1.0
2 2 0.5
3 3 0.3333
4 5 0.2
5 8 0.1250
6 13 0.07692
7 21 0.04762
8 34 0.02941
9 55 0.01818
10 89 0.01124
11 144 0.006944
12 233 0.004292
13 377 0.002653
14 610 0.001639
15 987 0.001013
16 1597 0.0006406
17 2584 0.0003870
18 4181 0.0002392
19 6765 0.0001479
20 10946 0.00009135
1.3 GOLDEN SECTION METHOD
๏ƒ˜ The golden section method is same as the Fibonacci method except that in the Fibonacci
method the total number of experiments to be conducted has to be specified before beginning
the calculation, whereas this is not required in the golden section method.
๏ƒ˜ In the Fibonacci method, the location of the first two experiments is determined by the total
number of experiments, N.
๏ƒ˜ In the golden section method we start with the assumption that we are going to conduct a large
number of experiments. Of course, the total number of experiments can be decided during the
computation.
๏ƒ˜ Set ๐ฟ = ๐‘Ž and ๐‘… = ๐‘
๏ƒ˜ Pick two points, ๐‘ฅ1 and ๐‘ฅ2, with ๐‘ฅ1 < ๐‘ฅ2, and both points in ๐ฟ, ๐‘…
๏ƒ˜ Find ๐‘“(๐‘ฅ1) and ๐‘“(๐‘ฅ2)
Cont.'s โ€ฆ
๏ƒ˜ If ๐‘“(๐‘ฅ1) > ๐‘“(๐‘ฅ2), then the minimizer must be to the right of ๐‘ฅ1.
๏ƒ˜Redefine the range as ๐‘… = ๐‘ฅ1, ๐ฟ = ๐‘ i.e. the minimizer must be in the interval [๐‘ฅ1, ๐‘].
๏ƒ˜ Repeat the algorithm from Step 2 until the interval length is smaller than some pre-set
tolerance.
๏ƒ˜ Otherwise (i.e. ๐‘“(๐‘ฅ1) < ๐‘“(๐‘ฅ2)), the minimizer must be to the left of ๐‘ฅ2.
๏ƒ˜ Redefine the range as ๐‘… = ๐‘Ž, ๐ฟ = ๐‘ฅ2 i.e. the minimizer must be in the interval [๐‘Ž, ๐‘ฅ2].
๏ƒ˜ Repeat the algorithm from Step 2 until the interval length is smaller than some pre-set tolerance
Cont.โ€ฆ
____________ ๐ฟ__________________
______๐ฟ1 ___________
_____๐ฟ2 _____
L__________________________________ R
๐‘ฅ1 ๐‘ฅ2
๏ƒ˜The intervals of uncertainty remaining at the end of different number of experiments can be
computed as follows:
๐ฟ2 = lim
๐‘โ†’โˆž
๐น๐‘โˆ’1
๐น๐‘
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (13)
CONTโ€ฆ.
๏ƒ˜๐ฟ3 = lim
๐‘โ†’โˆž
๐น๐‘โˆ’2
๐น๐‘
๐ฟ0 = lim
๐‘โ†’โˆž
๐น๐‘โˆ’2
๐น๐‘โˆ’1
๐น๐‘โˆ’1
๐น๐‘
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (14)
๏ƒ˜๐ฟ3 โ‰ƒ lim
๐‘โ†’โˆž
๐น๐‘โˆ’1
๐น๐‘
2
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (15)
This result can be generalized to obtain
๐ฟ๐พ = lim
๐‘โ†’โˆž
๐น๐‘โˆ’1
๐น๐‘
๐พโˆ’1
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (16)
Using the relation
๐น๐‘› = ๐น๐‘›โˆ’1 + ๐น๐‘›โˆ’2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (17)
we obtain, after dividing both sides by ๐น๐‘›โˆ’1,
Cont.โ€ฆ.
๏ƒ˜
๐น๐‘
๐น๐‘โˆ’1
= 1 +
๐น๐‘โˆ’2
๐น๐‘โˆ’1
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (18)
By defining a ratio ๐›พ as
๐›พ = lim
๐‘โ†’โˆž
๐น๐‘
๐น๐‘โˆ’1
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (19)
Equation (18) can be expressed as
๐›พ2 โ‰ƒ
1
๐›พ
+ 1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (20)
that is,
๐›พ2
โˆ’ ๐›พ โˆ’ 1 = 0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (21)
CONTโ€ฆ
Solve for ๐›พ ( ๐›พ is called the Golden Ratio, named by ancient Greeks)
๏ƒ˜This gives the root ๐›พ = 1.618, and hence Eq. (16) yields
๐ฟ๐พ =
1
๐›พ
๐พโˆ’1
๐ฟ0 = 0.618 ๐พโˆ’1
๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (22)
๏ƒ˜In Eq. (15) the ratios
๐น๐‘โˆ’2
๐น๐‘โˆ’1
and
๐น๐‘โˆ’1
๐น๐‘
have been taken to be same for large values of ๐‘.
๏ƒ˜ Procedure. The procedure is same as the Fibonacci method except that the location of the first
two experiments is defined by
Cont.โ€ฆ.
๏ƒ˜ ๐ฟ2
โˆ—
=
๐น๐‘โˆ’2
๐น๐‘โˆ’1
๐น๐‘โˆ’1
๐น๐‘
๐ฟ0 =
1
๐›พ2 = 0.382๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (23)
The desired accuracy can be specified to stop the procedure.
So, for the range [a , b],
๏ƒ˜ ๐‘‹1 = ๐‘Ž + ๐ฟ2
โˆ—
= ๐‘Ž + 0.382๐ฟ0
= a + 0.382(b โˆ’ a) = 0.6183a + 0.38197b
๏ƒ˜ ๐‘‹2 = ๐‘ โˆ’ ๐ฟ2
โˆ—
= ๐‘ โˆ’ 0.382๐ฟ0
= b โˆ’ 0.382(b โˆ’ a) = 0.6183b + 0.38197a
Example 1:
Find an approximation to the minimum of ๐‘“ ๐‘ฅ = 4๐‘ฅ3
+ ๐‘ฅ2
โˆ’ 7๐‘ฅ + 14 ๐‘ค๐‘–๐‘กโ„Ž๐‘–๐‘› ๐‘กโ„Ž๐‘’ interval [0,1]
using Golden ratio method with and iterate until the width of the interval is less than 0.15
Solution
Step1: ๐ฟ0 = 0,1 , stopping tolerance โˆˆ= 0.15
Step2: ๐ฟ2
โˆ—
=
1
๐›พ2 = 0.6182 2 = 0.3819
0_______________________________1
____๐ฟ2
โˆ—
____ ๐‘ฅ1 ๐‘ฅ2____๐ฟ2
โˆ—
___
Cont.โ€ฆ
๐‘ฅ1 = 0 + 0.3819 = 0.3819 , ๐‘“ ๐‘ฅ1 = 11. 6953
๐‘ฅ2 = 1 โˆ’ ๐ฟ2
โˆ—
= 0.6181 , ๐‘“ ๐‘ฅ2 = 11. 9999
๏ƒ˜Here, ๐‘ฅ1 < ๐‘ฅ2 but ๐‘“ ๐‘ฅ1 > ๐‘“ ๐‘ฅ1
๏ƒ˜Thus, minimizer must be to the right of ๐‘ฅ1
๏ƒ˜Therefore, the interval of uncertainty is [ ๐‘ฅ1, 1] => [0.3819,1]
๐ฟ2 = ๐‘… โˆ’ ๐ฟ = 1 โˆ’ ๐‘ฅ1 = 1 โˆ’ 0.3819 = 0.6181
Step3: to generate ๐‘ฅ3 ๐ฟ3
โˆ—
=
1
๐›พ3 = 0.6182 3 = 0.2361
๐‘ฅ1 _______________________________1
____๐ฟ3
โˆ—
____ ๐‘ฅ2 ๐‘ฅ3____๐ฟ3
โˆ—
___
CONTโ€ฆ.
๐‘ฅ3 = 1 โˆ’ ๐ฟ3
โˆ—
= 0.7639, ๐‘“ ๐‘ฅ3 = 11.093
Now ๐‘ฅ2 < ๐‘ฅ3 ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ2 < ๐‘“ ๐‘ฅ3
Thus, minimizer must be to the left of ๐‘ฅ1
Therefore, the interval of uncertainty is [ ๐‘ฅ1, ๐‘ฅ3] => [0.3819,0.7639]
๐ฟ3 = ๐‘… โˆ’ ๐ฟ = ๐‘ฅ3 โˆ’ ๐‘ฅ1 = 0.7639 โˆ’ 0.3819 = 0.382
Cont.โ€ฆ.
Step4: to generate ๐‘ฅ4 then define ๐ฟ4
โˆ—
=
1
๐›พ4 = 0.6182 4 = 0.1459
๐‘ฅ1 _______________________________๐‘ฅ3
____๐ฟ4
โˆ—
____ ๐‘ฅ4 ๐‘ฅ2____๐ฟ4
โˆ—
___
๐‘ฅ4 = ๐‘ฅ1 + ๐ฟ4
โˆ—
= 0.5278 , ๐‘“ ๐‘ฅ4 = 11.174
Now ๐‘ฅ4 < ๐‘ฅ2 and ๐‘“ ๐‘ฅ4 > ๐‘“ ๐‘ฅ2
Thus, minimizer must be to the right of ๐‘ฅ4
Therefore, the interval of uncertainty is [ ๐‘ฅ4, ๐‘ฅ3] => [0.5278,0.7639]
๐ฟ4 = ๐‘… โˆ’ ๐ฟ = ๐‘ฅ4 โˆ’ ๐‘ฅ3 = 0.7639 โˆ’ 0.5278 = 0.2361
CONTโ€ฆ
Step5: to generate ๐‘ฅ5 then define ๐ฟ5
โˆ—
=
1
๐›พ5 = 0.6182 5
= 0.0902
๐‘ฅ4 _______________________________๐‘ฅ3
____๐ฟ5
โˆ—
____ ๐‘ฅ2 ๐‘ฅ5____๐ฟ5
โˆ—
___
๐‘ฅ5 = ๐‘ฅ3 โˆ’ ๐ฟ5
โˆ—
= 0.6737 , ๐‘“ ๐‘ฅ5 = 10.9639
Now ๐‘ฅ2 < ๐‘ฅ5 and ๐‘“ ๐‘ฅ2 > ๐‘“ ๐‘ฅ5
Thus, minimizer must be to the right of ๐‘ฅ2
Therefore, the interval of uncertainty is [ ๐‘ฅ2, ๐‘ฅ3] => [0.6181,0.7639]
๐ฟ5 = ๐‘… โˆ’ ๐ฟ = ๐‘ฅ3 โˆ’ ๐‘ฅ2 = 0.7639 โˆ’ 0.6182 = 0.1457 < 0.15
Cont.โ€ฆ.
L R x1 x2 f(x1) f(x2) Update R โ€“ L
0 1 0.3819 0.6181 11. 6953 11. 9999 L=๐‘ฅ1 0.6181
0.3819 1 0.3819 0.7639 11.6953 11.093 L = ๐‘ฅ4 0.382
0.5278 0.7639 0.5278 0.7639 11.174 11.093 R= ๐‘ฅ2 0.2361
0.6182 0.7639 0.6181 0.7639 11. 9999 11.093 L = x2 0.1457
SPECIAL THANKS FOR LISTENING

More Related Content

Similar to Opt Assgnment #-1 PPTX.pptx

Intro. to computational Physics ch2.pdf
Intro. to computational Physics ch2.pdfIntro. to computational Physics ch2.pdf
Intro. to computational Physics ch2.pdfJifarRaya
ย 
Fortran chapter 2.pdf
Fortran chapter 2.pdfFortran chapter 2.pdf
Fortran chapter 2.pdfJifarRaya
ย 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
ย 
Design of Second Order Digital Differentiator and Integrator Using Forward Di...
Design of Second Order Digital Differentiator and Integrator Using Forward Di...Design of Second Order Digital Differentiator and Integrator Using Forward Di...
Design of Second Order Digital Differentiator and Integrator Using Forward Di...inventionjournals
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
ย 
Numerical integration
Numerical integration Numerical integration
Numerical integration Dhyey Shukla
ย 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3MuhannadSaleh
ย 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfFranciscoJavierCaedo
ย 
A05330107
A05330107A05330107
A05330107IOSR-JEN
ย 
Data_Structure_and_Algorithms_Lecture_1.ppt
Data_Structure_and_Algorithms_Lecture_1.pptData_Structure_and_Algorithms_Lecture_1.ppt
Data_Structure_and_Algorithms_Lecture_1.pptISHANAMRITSRIVASTAVA
ย 
Applied Algorithms and Structures week999
Applied Algorithms and Structures week999Applied Algorithms and Structures week999
Applied Algorithms and Structures week999fashiontrendzz20
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
ย 
Definition of statistical efficiency
Definition of statistical efficiencyDefinition of statistical efficiency
Definition of statistical efficiencyRuhulAmin339
ย 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
ย 
2. Random Variables.pdf
2. Random Variables.pdf2. Random Variables.pdf
2. Random Variables.pdfSurajRajTripathy
ย 
Dmitrii Tihonkih - The Iterative Closest Points Algorithm and Affine Transfo...
Dmitrii Tihonkih - The Iterative Closest Points Algorithm and  Affine Transfo...Dmitrii Tihonkih - The Iterative Closest Points Algorithm and  Affine Transfo...
Dmitrii Tihonkih - The Iterative Closest Points Algorithm and Affine Transfo...AIST
ย 

Similar to Opt Assgnment #-1 PPTX.pptx (20)

Intro. to computational Physics ch2.pdf
Intro. to computational Physics ch2.pdfIntro. to computational Physics ch2.pdf
Intro. to computational Physics ch2.pdf
ย 
Fortran chapter 2.pdf
Fortran chapter 2.pdfFortran chapter 2.pdf
Fortran chapter 2.pdf
ย 
Stochastic Optimization
Stochastic OptimizationStochastic Optimization
Stochastic Optimization
ย 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
ย 
Design of Second Order Digital Differentiator and Integrator Using Forward Di...
Design of Second Order Digital Differentiator and Integrator Using Forward Di...Design of Second Order Digital Differentiator and Integrator Using Forward Di...
Design of Second Order Digital Differentiator and Integrator Using Forward Di...
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
ย 
Numerical integration
Numerical integration Numerical integration
Numerical integration
ย 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
ย 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
ย 
A05330107
A05330107A05330107
A05330107
ย 
Data_Structure_and_Algorithms_Lecture_1.ppt
Data_Structure_and_Algorithms_Lecture_1.pptData_Structure_and_Algorithms_Lecture_1.ppt
Data_Structure_and_Algorithms_Lecture_1.ppt
ย 
Romberg
RombergRomberg
Romberg
ย 
Applied Algorithms and Structures week999
Applied Algorithms and Structures week999Applied Algorithms and Structures week999
Applied Algorithms and Structures week999
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
ย 
Definition of statistical efficiency
Definition of statistical efficiencyDefinition of statistical efficiency
Definition of statistical efficiency
ย 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
ย 
Icra 17
Icra 17Icra 17
Icra 17
ย 
2. Random Variables.pdf
2. Random Variables.pdf2. Random Variables.pdf
2. Random Variables.pdf
ย 
Dmitrii Tihonkih - The Iterative Closest Points Algorithm and Affine Transfo...
Dmitrii Tihonkih - The Iterative Closest Points Algorithm and  Affine Transfo...Dmitrii Tihonkih - The Iterative Closest Points Algorithm and  Affine Transfo...
Dmitrii Tihonkih - The Iterative Closest Points Algorithm and Affine Transfo...
ย 
M112rev
M112revM112rev
M112rev
ย 

Recently uploaded

_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
ย 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
ย 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
ย 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
ย 
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,Virag Sontakke
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
ย 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
ย 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
ย 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
ย 

Recently uploaded (20)

_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
ย 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
ย 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
ย 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
ย 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
ย 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
ย 
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
ย 
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
ย 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
ย 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
ย 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
ย 

Opt Assgnment #-1 PPTX.pptx

  • 1. HARAMAYA UNIVERSITY POST GRADUATE PROGRAM DIRECTORATE COLLEGE OF NATURALAND COMPUTATIONAL SCIENCE MSC PROGRAM IN MATHEMATICAL MODELING Prepared by: - 1. Abdella Kereme Ahmed ID No: PGP/646/14 2. Alemseged Kifle ID No: PGP/646/14 Presentation Assignment of Optimization and Optimal Control Submitted to: - Getinet A. (Ph.D.) June, 2021 GC. Haramaya University, Ethiopia
  • 2. 1. FIBONACCI AND GOLDEN SECTION METHOD 1.1 INTRODUCTION ๏ƒ˜Optimization problem involves the objective function and/or constraints that are not stated as explicit functions of the design variables or which are too complicated to manipulate, we cannot solve it by using the classical analytical methods. ๏ƒ˜So, we consider now algorithms for locating a local minimum in the nonlinear optimization problem with no constraints. In such cases we need to use the numerical methods of optimization for solution. ๏ƒ˜Like that Fibonacci method, golden section method
  • 3. 1.2 Fibonacci method Fibonacci method can be used to find the minimum of a function of one variable even if the function is not continuous. This method, like many other elimination methods, has the following limitations: ๏ƒ˜The initial interval of uncertainty, in which the optimum lies, has to be known. ๏ƒ˜The function being optimized has to be unimodal in the initial interval of uncertainty. ๏ƒ˜The exact optimum cannot be located in this method ๏ƒ˜The number of function evaluations to be used in the search or the resolution required has to be specified beforehand.
  • 4. Cont.โ€ฆ ๏ƒ˜This method makes use of the sequence of Fibonacci numbers, ๐น๐‘› for placing the experiments. These numbers are defined as ๐น0 = ๐น1 = 1. ๐น๐‘› = ๐น๐‘›โˆ’1 + ๐น๐‘›โˆ’2 , ๐‘› = 2,3,4 โ€ฆ ๏ƒ˜which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, โ€ฆ ๏ƒ˜Procedure. Let L0 be the initial interval of uncertainty defined by ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘ and n be the total number of experiments to be conducted. Define ๐ฟ2 โˆ— = ๐น๐‘›โˆ’2 ๐น๐‘› ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (1)
  • 5. CONT.โ€ฆ and place the first two experiments at points x1 and x2, which are located at a distance of ๐ฟ2 โˆ— from each end of L0. This gives ๐‘‹1 = ๐‘Ž + ๐ฟ2 โˆ— = ๐‘Ž + ๐น๐‘›โˆ’2 ๐น๐‘› ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (2) ๐‘‹2 = ๐‘ โˆ’ ๐ฟ2 โˆ— = ๐‘ โˆ’ ๐น๐‘›โˆ’2 ๐น๐‘› ๐ฟ0 = ๐‘Ž + ๐น๐‘›โˆ’1 ๐น๐‘› ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (3) ๏ƒ˜Discard part of the interval by using the unimodality assumption.
  • 6. Cont.'sโ€ฆ. ๏ƒ˜Then there remains a smaller interval of uncertainty ๐น2 given by ๐ฟ2 = ๐ฟ0 โˆ’ ๐ฟ2 โˆ— = ๐ฟ0 1 โˆ’ ๐น๐‘›โˆ’2 ๐น๐‘› = ๐น๐‘›โˆ’1 ๐น๐‘› ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (4) and with one experiment left in it. This experiment will be at a distance of ๐ฟ2 โˆ— = ๐น๐‘›โˆ’2 ๐น๐‘› ๐ฟ0 = ๐น๐‘›โˆ’2 ๐น๐‘›โˆ’1 ๐ฟ2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (5) from one end and ๐ฟ2 โˆ’ ๐ฟ2 โˆ— = ๐น๐‘›โˆ’3 ๐น๐‘› ๐ฟ0 = ๐น๐‘›โˆ’3 ๐น๐‘›โˆ’1 ๐ฟ2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (6) from the other end.
  • 7. Cont.'sโ€ฆ. ๏ƒ˜Now place the third experiment in the interval ๐ฟ2 so that the current two experiments are located at a distance of ๐ฟ3 โˆ— = ๐น๐‘›โˆ’3 ๐น๐‘› ๐ฟ0 = ๐น๐‘›โˆ’3 ๐น๐‘›โˆ’1 ๐ฟ2 = ๐ฟ0 ๐›พ3 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (7) from each end of the interval ๐ฟ2 . ๏ƒ˜Again, the unimodality property will allow us to reduce the interval of uncertainty to ๐ฟ3 given by ๐ฟ3 = ๐ฟ2 โˆ’ ๐ฟ3 โˆ— = ๐ฟ2 โˆ’ ๐น๐‘›โˆ’3 ๐น๐‘›โˆ’1 ๐ฟ2 = ๐น๐‘›โˆ’2 ๐น๐‘›โˆ’1 ๐ฟ2 = ๐น๐‘›โˆ’2 ๐น๐‘› ๐ฟ0 = ๐ฟ0 ๐›พ2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (8 ๏ƒ˜This process of discarding a certain interval and placing a new experiment in the remaining interval can be continued, so that the location of the j th experiment and the interval of uncertainty at the end of j experiments are, respectively, given by
  • 8. CONTโ€ฆ ๏ƒ˜๐ฟ๐‘— โˆ— = ๐น๐‘›โˆ’๐‘— ๐น๐‘›โˆ’(๐‘—โˆ’1) ๐ฟ๐‘—โˆ’1 = ๐น๐‘›โˆ’๐‘— ๐น๐‘› ๐ฟ0 = ๐ฟ0 ๐›พ๐‘— โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (9) ๏ƒ˜๐ฟ๐‘— = ๐น๐‘›โˆ’(๐‘—โˆ’1) ๐น๐‘› ๐ฟ0 = ๐ฟ0 ๐›พ๐‘—โˆ’1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (10) ๏ƒ˜The ratio of the interval of uncertainty remaining after conducting j of the n predetermined experiments to the initial interval of uncertainty becomes ๐ฟ๐‘— ๐ฟ0 = ๐น๐‘›โˆ’(๐‘—โˆ’1) ๐น๐‘› โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (11) and for ๐‘— = ๐‘›, we obtain ๐ฟ๐‘› ๐ฟ0 = ๐น1 ๐น๐‘› = 1 ๐น๐‘› โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (12)
  • 9. CONTโ€™S โ€ฆ ๏ƒ˜The ratio ๐ฟ๐‘› ๐ฟ0 will permit us to determine n, the required number of experiments, to achieve any desired accuracy in locating the optimum point. Table 1 gives the reduction ratio in the interval of uncertainty obtainable for different number of experiments. ๏ƒ˜The symbol ๐ฟ๐‘— is used to denote the interval of uncertainty remaining after conducting ๐‘— experiments, ๏ƒ˜while the symbol ๐ฟ๐‘— โˆ— ๐‘— is used to define the position of the ๐‘— ๐‘กโ„Ž experiment.
  • 10. Table 1 Reduction Ratios Value of n Fibonacci number,๐น๐‘› Reduction ratio, ๐ฟ๐‘› ๐ฟ0 0 1 1.0 1 1 1.0 2 2 0.5 3 3 0.3333 4 5 0.2 5 8 0.1250 6 13 0.07692 7 21 0.04762 8 34 0.02941 9 55 0.01818 10 89 0.01124 11 144 0.006944 12 233 0.004292 13 377 0.002653 14 610 0.001639 15 987 0.001013 16 1597 0.0006406 17 2584 0.0003870 18 4181 0.0002392 19 6765 0.0001479 20 10946 0.00009135
  • 11. 1.3 GOLDEN SECTION METHOD ๏ƒ˜ The golden section method is same as the Fibonacci method except that in the Fibonacci method the total number of experiments to be conducted has to be specified before beginning the calculation, whereas this is not required in the golden section method. ๏ƒ˜ In the Fibonacci method, the location of the first two experiments is determined by the total number of experiments, N. ๏ƒ˜ In the golden section method we start with the assumption that we are going to conduct a large number of experiments. Of course, the total number of experiments can be decided during the computation. ๏ƒ˜ Set ๐ฟ = ๐‘Ž and ๐‘… = ๐‘ ๏ƒ˜ Pick two points, ๐‘ฅ1 and ๐‘ฅ2, with ๐‘ฅ1 < ๐‘ฅ2, and both points in ๐ฟ, ๐‘… ๏ƒ˜ Find ๐‘“(๐‘ฅ1) and ๐‘“(๐‘ฅ2)
  • 12. Cont.'s โ€ฆ ๏ƒ˜ If ๐‘“(๐‘ฅ1) > ๐‘“(๐‘ฅ2), then the minimizer must be to the right of ๐‘ฅ1. ๏ƒ˜Redefine the range as ๐‘… = ๐‘ฅ1, ๐ฟ = ๐‘ i.e. the minimizer must be in the interval [๐‘ฅ1, ๐‘]. ๏ƒ˜ Repeat the algorithm from Step 2 until the interval length is smaller than some pre-set tolerance. ๏ƒ˜ Otherwise (i.e. ๐‘“(๐‘ฅ1) < ๐‘“(๐‘ฅ2)), the minimizer must be to the left of ๐‘ฅ2. ๏ƒ˜ Redefine the range as ๐‘… = ๐‘Ž, ๐ฟ = ๐‘ฅ2 i.e. the minimizer must be in the interval [๐‘Ž, ๐‘ฅ2]. ๏ƒ˜ Repeat the algorithm from Step 2 until the interval length is smaller than some pre-set tolerance
  • 13. Cont.โ€ฆ ____________ ๐ฟ__________________ ______๐ฟ1 ___________ _____๐ฟ2 _____ L__________________________________ R ๐‘ฅ1 ๐‘ฅ2 ๏ƒ˜The intervals of uncertainty remaining at the end of different number of experiments can be computed as follows: ๐ฟ2 = lim ๐‘โ†’โˆž ๐น๐‘โˆ’1 ๐น๐‘ ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (13)
  • 14. CONTโ€ฆ. ๏ƒ˜๐ฟ3 = lim ๐‘โ†’โˆž ๐น๐‘โˆ’2 ๐น๐‘ ๐ฟ0 = lim ๐‘โ†’โˆž ๐น๐‘โˆ’2 ๐น๐‘โˆ’1 ๐น๐‘โˆ’1 ๐น๐‘ ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (14) ๏ƒ˜๐ฟ3 โ‰ƒ lim ๐‘โ†’โˆž ๐น๐‘โˆ’1 ๐น๐‘ 2 ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (15) This result can be generalized to obtain ๐ฟ๐พ = lim ๐‘โ†’โˆž ๐น๐‘โˆ’1 ๐น๐‘ ๐พโˆ’1 ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (16) Using the relation ๐น๐‘› = ๐น๐‘›โˆ’1 + ๐น๐‘›โˆ’2 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (17) we obtain, after dividing both sides by ๐น๐‘›โˆ’1,
  • 15. Cont.โ€ฆ. ๏ƒ˜ ๐น๐‘ ๐น๐‘โˆ’1 = 1 + ๐น๐‘โˆ’2 ๐น๐‘โˆ’1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (18) By defining a ratio ๐›พ as ๐›พ = lim ๐‘โ†’โˆž ๐น๐‘ ๐น๐‘โˆ’1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. (19) Equation (18) can be expressed as ๐›พ2 โ‰ƒ 1 ๐›พ + 1 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (20) that is, ๐›พ2 โˆ’ ๐›พ โˆ’ 1 = 0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (21)
  • 16. CONTโ€ฆ Solve for ๐›พ ( ๐›พ is called the Golden Ratio, named by ancient Greeks) ๏ƒ˜This gives the root ๐›พ = 1.618, and hence Eq. (16) yields ๐ฟ๐พ = 1 ๐›พ ๐พโˆ’1 ๐ฟ0 = 0.618 ๐พโˆ’1 ๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (22) ๏ƒ˜In Eq. (15) the ratios ๐น๐‘โˆ’2 ๐น๐‘โˆ’1 and ๐น๐‘โˆ’1 ๐น๐‘ have been taken to be same for large values of ๐‘. ๏ƒ˜ Procedure. The procedure is same as the Fibonacci method except that the location of the first two experiments is defined by
  • 17. Cont.โ€ฆ. ๏ƒ˜ ๐ฟ2 โˆ— = ๐น๐‘โˆ’2 ๐น๐‘โˆ’1 ๐น๐‘โˆ’1 ๐น๐‘ ๐ฟ0 = 1 ๐›พ2 = 0.382๐ฟ0 โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (23) The desired accuracy can be specified to stop the procedure. So, for the range [a , b], ๏ƒ˜ ๐‘‹1 = ๐‘Ž + ๐ฟ2 โˆ— = ๐‘Ž + 0.382๐ฟ0 = a + 0.382(b โˆ’ a) = 0.6183a + 0.38197b ๏ƒ˜ ๐‘‹2 = ๐‘ โˆ’ ๐ฟ2 โˆ— = ๐‘ โˆ’ 0.382๐ฟ0 = b โˆ’ 0.382(b โˆ’ a) = 0.6183b + 0.38197a
  • 18. Example 1: Find an approximation to the minimum of ๐‘“ ๐‘ฅ = 4๐‘ฅ3 + ๐‘ฅ2 โˆ’ 7๐‘ฅ + 14 ๐‘ค๐‘–๐‘กโ„Ž๐‘–๐‘› ๐‘กโ„Ž๐‘’ interval [0,1] using Golden ratio method with and iterate until the width of the interval is less than 0.15 Solution Step1: ๐ฟ0 = 0,1 , stopping tolerance โˆˆ= 0.15 Step2: ๐ฟ2 โˆ— = 1 ๐›พ2 = 0.6182 2 = 0.3819 0_______________________________1 ____๐ฟ2 โˆ— ____ ๐‘ฅ1 ๐‘ฅ2____๐ฟ2 โˆ— ___
  • 19. Cont.โ€ฆ ๐‘ฅ1 = 0 + 0.3819 = 0.3819 , ๐‘“ ๐‘ฅ1 = 11. 6953 ๐‘ฅ2 = 1 โˆ’ ๐ฟ2 โˆ— = 0.6181 , ๐‘“ ๐‘ฅ2 = 11. 9999 ๏ƒ˜Here, ๐‘ฅ1 < ๐‘ฅ2 but ๐‘“ ๐‘ฅ1 > ๐‘“ ๐‘ฅ1 ๏ƒ˜Thus, minimizer must be to the right of ๐‘ฅ1 ๏ƒ˜Therefore, the interval of uncertainty is [ ๐‘ฅ1, 1] => [0.3819,1] ๐ฟ2 = ๐‘… โˆ’ ๐ฟ = 1 โˆ’ ๐‘ฅ1 = 1 โˆ’ 0.3819 = 0.6181 Step3: to generate ๐‘ฅ3 ๐ฟ3 โˆ— = 1 ๐›พ3 = 0.6182 3 = 0.2361 ๐‘ฅ1 _______________________________1 ____๐ฟ3 โˆ— ____ ๐‘ฅ2 ๐‘ฅ3____๐ฟ3 โˆ— ___
  • 20. CONTโ€ฆ. ๐‘ฅ3 = 1 โˆ’ ๐ฟ3 โˆ— = 0.7639, ๐‘“ ๐‘ฅ3 = 11.093 Now ๐‘ฅ2 < ๐‘ฅ3 ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ2 < ๐‘“ ๐‘ฅ3 Thus, minimizer must be to the left of ๐‘ฅ1 Therefore, the interval of uncertainty is [ ๐‘ฅ1, ๐‘ฅ3] => [0.3819,0.7639] ๐ฟ3 = ๐‘… โˆ’ ๐ฟ = ๐‘ฅ3 โˆ’ ๐‘ฅ1 = 0.7639 โˆ’ 0.3819 = 0.382
  • 21. Cont.โ€ฆ. Step4: to generate ๐‘ฅ4 then define ๐ฟ4 โˆ— = 1 ๐›พ4 = 0.6182 4 = 0.1459 ๐‘ฅ1 _______________________________๐‘ฅ3 ____๐ฟ4 โˆ— ____ ๐‘ฅ4 ๐‘ฅ2____๐ฟ4 โˆ— ___ ๐‘ฅ4 = ๐‘ฅ1 + ๐ฟ4 โˆ— = 0.5278 , ๐‘“ ๐‘ฅ4 = 11.174 Now ๐‘ฅ4 < ๐‘ฅ2 and ๐‘“ ๐‘ฅ4 > ๐‘“ ๐‘ฅ2 Thus, minimizer must be to the right of ๐‘ฅ4 Therefore, the interval of uncertainty is [ ๐‘ฅ4, ๐‘ฅ3] => [0.5278,0.7639] ๐ฟ4 = ๐‘… โˆ’ ๐ฟ = ๐‘ฅ4 โˆ’ ๐‘ฅ3 = 0.7639 โˆ’ 0.5278 = 0.2361
  • 22. CONTโ€ฆ Step5: to generate ๐‘ฅ5 then define ๐ฟ5 โˆ— = 1 ๐›พ5 = 0.6182 5 = 0.0902 ๐‘ฅ4 _______________________________๐‘ฅ3 ____๐ฟ5 โˆ— ____ ๐‘ฅ2 ๐‘ฅ5____๐ฟ5 โˆ— ___ ๐‘ฅ5 = ๐‘ฅ3 โˆ’ ๐ฟ5 โˆ— = 0.6737 , ๐‘“ ๐‘ฅ5 = 10.9639 Now ๐‘ฅ2 < ๐‘ฅ5 and ๐‘“ ๐‘ฅ2 > ๐‘“ ๐‘ฅ5 Thus, minimizer must be to the right of ๐‘ฅ2 Therefore, the interval of uncertainty is [ ๐‘ฅ2, ๐‘ฅ3] => [0.6181,0.7639] ๐ฟ5 = ๐‘… โˆ’ ๐ฟ = ๐‘ฅ3 โˆ’ ๐‘ฅ2 = 0.7639 โˆ’ 0.6182 = 0.1457 < 0.15
  • 23. Cont.โ€ฆ. L R x1 x2 f(x1) f(x2) Update R โ€“ L 0 1 0.3819 0.6181 11. 6953 11. 9999 L=๐‘ฅ1 0.6181 0.3819 1 0.3819 0.7639 11.6953 11.093 L = ๐‘ฅ4 0.382 0.5278 0.7639 0.5278 0.7639 11.174 11.093 R= ๐‘ฅ2 0.2361 0.6182 0.7639 0.6181 0.7639 11. 9999 11.093 L = x2 0.1457
  • 24. SPECIAL THANKS FOR LISTENING