•Welcome to 
              KMWorld Magazine
               Sponsored Event



© 2008‐2009         Lucid Imagination, Inc.   1
Moderator


                • Andy Moore
                • Publisher
                • KMWorld




  © 2008‐2009                  Lucid Imagination, Inc.   2
Open Source for Enterprise Search: 
       Breaking Down the 
     Barriers to Information
Speakers




  © 2008‐2009   Lucid Imagination, Inc.   4
Going into enterprise search with
your eyes open
Susan Feldman, Vice President
Search and Discovery Technologies
IDC

       Webcast June 23, 2009, sponsored by Lucid Imagination


Copyright 2009 IDC. Reproduction is forbidden unless authorized. All rights reserved.
Outline

    Search defined

    The searching process

    Today’s search platforms

    Types of search applications

    Features to look for

    What’s next?

    Grand challenges




© 2009 IDC
Search: The Status Quo




                         Is luck enough?


© 2009 IDC
Uses of Search Today
    Intranet search                     Publishing applications
    Web search                          Rich media search
    Call centers
                                         Web advertising platforms
    Enterprise Applications like BI,
      ERP and CRM                        Recommendation engines

    eDiscovery and litigation           Reputation and opinion
      support applications                monitoring applications
    Compliance applications
                                         Social media applications
    Predictive analytics
                                         Fraud detection applications
    Product early warning
      applications                       Border security applications
    Ecommerce applications              Spam detection applications


© 2009 IDC
Information Access Technology Map

                                                                                                                            Conversational
                                                                        Decision support                                       systems
                                       inference engines
                                        data plus content:
                                                                Business                                 Gov’t Intelligence
                                        -text analytics                            Voice of Customer            Apps
                                                               Intelligence                                                  Unified access
                                        -BI
number & complexity of technologies




                                        -Reporting tools                                                  Ad Matching
                                        -data mining                  Reputation          Competitive
                                                                     management                                           Customer support
                                       Image search                                        Intelligence
                                       Sentiment extraction             Trend
                                                                       Analysis                                  eDiscovery
                                       Fact/event extraction                              Brand                                Question
                                                                                       management
                                       relationship extraction                                      Search for ideas,          answering
                                       Geo-tagging                    Geo-specific
                                                                       search                          not words                 Online
                                       concept extraction                                                                     tech support
                                                                                  Find people, places
                                       entity extraction                              and things                                Alerting
                                       multilingual support
                                                                          Tag data and
                                       Categorization and browsing          content        Rich media         Phrase          eCommerce
                                       part of speech tagging                                search        identification
                                       Speech to text                           Keyword               Retrieve
                                       Search and relevance ranking              search              Audio files

                                                              Accuracy required
                                      © 2009 IDC
Characteristics

Language is the right vehicle for human interaction, but it is
imprecise.
    Fuzzy matching.

    Dialogue and interaction to define the information need

    Disambiguation of text—context

    Linguistic patterns are predictable and computable:
             – Syntax for context
             – Dictionaries for meaning, semantics

    Relevance ranking to help manage large results sets

    Ad hoc searching

© 2009 IDC
Today’s Search/Discovery Platform

       Disambiguate                                          Visualize


                      Enrich                     Cluster

     Query                              Filter
                               Search
                               Engine
                                                           Interface
    Document
                  Categorize

                                                       BI/Data
Language
 Analysis                 Extract                       Apps


© 2009 IDC
Today’s Search/Discovery Platform

       Disambiguate                                          Visualize


                      Enrich                     Cluster

     Query                              Filter
                               Search
                               Engine
                                                           Interface
 Document         Categorize


                                                       BI/Data
Language                                                Apps
 Analysis                  Extract


© 2009 IDC
Today’s Search/Discovery Platform

     Disambiguate                                          Visualize


                    Enrich                     Cluster


     Query                            Filter
                             Search
                             Engine
                                                         Interface

 Document       Categorize

                                                     BI/Data
Language                                              Apps
 Analysis                Extract


© 2009 IDC
Today’s Search/Discovery Platform

       Disambiguate                                          Visualize


                      Enrich                     Cluster

     Query                              Filter
                               Search
                               Engine
                                                           Interface

 Document         Categorize

                                                       BI/Data
Language                                                Apps
 Analysis                  Extract


© 2009 IDC
© 2009 IDC
Today’s Search/Discovery Platform

       Disambiguate                                          Visualize


                      Enrich                     Cluster

     Query                              Filter
                               Search
                               Engine
                                                           Interface

 Document         Categorize

                                                      BI/Data
Language                                               Apps
 Analysis                  Extract


© 2009 IDC
SPSS
     Concepts and Categories




 © 2009 IDC
Types of Search Products

Analysis and                                                                                       Volume
reporting
                                  Customizable               Integrated Platforms                  -Multiple
Text analytics                                                                                     Sources
                                                                                  Intelligence
              Multipurpose




                                                  Intranet   Call centers
Languages                                          Search                                          -Multiple
Navigation                                                                  ecommerce              Apps:
Relevance                                                                                          BI, CRM,
tuning                                                                                             ERP,
                                                                                                   Finance,
                                          Site                                                     Inventory,
Security                                                                                           Email
                                         Search
                                                                    Voice of
                                                                    Customer
                                                                                 eDiscovery          UI
              Single Purpose
   Features




                                                              Reputation
                                                              Monitoring                          Integrated
                               Desktop                                                               work
                               Search                                                            environments
                                                                  Search-Based
                                  Out of the Box                   Applications
Search
                                Important                                        Strategic


 © 2009 IDC
Types of Search Products

Analysis and                                                                           Volume
                                  Customizable        Integrated Platforms
                                          &
reporting                                                                              -Multiple
Text analytics
                                       ed Intranet                 &
                                                                 d Intelligence
                                                                                       Sources

                                    dd uilSearch               de uilt
              Multipurpose




                                           t
                                                      Call centers

                                                            edecommerce
Languages
                                  be B
                                                                                       -Multiple
                                                           b mB
                                Em m e
Navigation                                                                             Apps:

                                                         Em sto                        BI, CRM,

                                 Ho Site
Relevance

                                                          Cu
tuning                                                                                 ERP,
                                                                                       Finance,
                                                                                       Inventory,
Security                                                                               Email
                                         Search
                                                             Voice of

                                                                        ed
                                                             Customer

                                                 ed
                                                                                         UI
                                                                     dd
                                                                        eDiscovery

                                              dd
              Single Purpose




                                                       Monitoring be
   Features




                                                       Reputation

                                           be
                                                                                      Integrated

                                         m                    Em
                               Desktop                                                   work
                               SearchE                     Search-Based              environments

                                  Out of the Box            Applications
Search
                                Important                               Strategic


 © 2009 IDC
Features that first time buyers look for

Search features ranked by priority from our 2008 Survey
1. Relevance based search
2. Browsing and navigation (categorization)
3. Taxonomies/ontologies
4. Parametric search
5. Concept search
6. Auto tagging
7. Visualization by clustering




                       Source: IDC 2008
© 2009 IDC
Experienced search buyers differ

1. Relevance based search           But, after experience, add:
                                    •Customer service
2. Browsing and navigation
   (categorization)                 •Ease of implementation,
                                    •Unified access,
3. Taxonomies/ontologies
                                    •Usability,
4. Parametric search                •Auto tagging,
5. Concept search                   •Better search features like
6. Auto tagging                     stemming and best bets,
                                    •Security
7. Visualization by clustering
                                    •Entity extraction
                                    •Rights management

                       Source: IDC 2008
© 2009 IDC
Directions for NextGen Information Access

 Integration of multiple technologies required

 Integrated platforms for diverse, multiple
  information access requirements
 Search-based apps to address specialized
  workflows and tasks like eDiscovery
 Web scale processing

 Rich media and social media add new
  challenges for search
 Mobile search applications will explode




© 2009 IDC
Contact Information




                Susan Feldman
                VP, Search and Discovery Technologies
                sfeldman@idc.com




© 2009 IDC
Ranga Muvavarirwa
Director 
Product Planning & Development
Comcast Interactive Media


Search for New Business Models:
Setting the requirements 
and choosing the technology
Comcast Interactive Media
• Division of Comcast 
• Dedicated to 
  online/cross‐platform 
  entertainment and media 
  businesses
• Develop and grow
  Internet businesses with 
  compelling technology 
  and product innovations
• Targeting broadband 
  users, customers and 
  non‐subscribers alike
Fancast.com
Search: Business‐critical
Need: 
• Customizable 
• Scalable for volume:
  both traffic 
  and content                5‐6 million  unique monthly users 
                             4 million+ records 200,000+ assets
• Economics:                     • 9K+ hours online video
  New business model,            • 55K+ videos
                                 • 10K+ full‐length shows
  sensitive to fixed             • ~150K other assets
  and operating costs               (photos, tidbits, etc.)
                             100+ content providers
Search Use Cases
• Comprehensive, relevant, up‐to‐date and authoritative
   – Movies, TV shows, clips, celebrities and other media info
• Seamless merge of multiple, heterogenous sources
   – Metadata each with own 
     format, content refresh timing      ?simpson
   – Spider‐Man vs. “spiderman”
• Must Have: 
   – Accurate results in the 
     mind of the user
                                      Jessica = Homer
                                              /
Architecting for Scale
• Scaling metric: operationally 
  simple, scalable and stable.                       +
• Search must be as fast as anything
  else on the site
  <20ms at peak per server instance.                     +
• Data‐center operations gets simple 
  rules for sizing
  “x” users        “y” application servers
• Provided linear scalability with  traffic growth
  from 50K to ~1M  peak uniques/day over 16 months
  Users now visit site >1x week on average
Performance Test: Solr vs “X”
Open source Solr vs. leading commercial search vendor (Brand “X”)
Measured/compared  query response rates
      At multiple load levels
      Range: 100 to 1500 requests/second      TEST BED 
Tested stress failure points                   •   Avalanche load generators 
      Peak queries per second                 •   multiple instances of Sun x64 
                                                   multi‐core 1~2RU servers 
      Failure characteristics
                                               •   Red Hat Linux
Vendor “X” & Lucid Imagination (Solr)          INDEXES 
      Tuned test bed                          •   2 million documents
      Validated results                       •   4 million documents
Solr meaningfully outperformed “X”             •   Each deployed on each 
                                                   of  the competing servers 
      Response Rates                              (Solr vs. “X”)
      Failure‐handling characteristics
Do’s and Don’ts of Open Source
1. DON’T abandon structured analysis of Business 
   or Technical Requirements
     –   Open source must still fit business needs
     –   DO a bake‐off to drive your decision
2.       DO ensure a fit between development culture 
         and business objectives:
     –   Do you Integrate or Develop? 
     –   Do you develop or innovate based on your data?
     –   Do you have a Source for expertise you lack? 
Open Source: Risks & Mitigation
RISKS                                LUCENE/SOLR:
(1) SUFFICIENT COMMUNITY OF          Highly active community; ad‐hoc 
    DEVELOPERS?                       support and answers online community 
                                     SLA based support from Lucid 
                                      Imagination
(2) COMMERCIAL ORGANIZATIONS “BET    Similar businesses: CNET, Netflix; 
    THE COMPANY” ON THIS?            Dissimilar businesses: MySpace, Orbitz
(3) ALIGNMENT WITH INTERNAL          Premium at CIM on software 
    RESOURCES? ENABLES PRODUCT        engineering talent 
    DEVELOPMENT AGILITY?             Flexibility to support innovation without 
                                      steep learning curves
                                     Mutually reinforcing benefits of product 
                                      development culture and highly 
                                      engaged human capital
Tom Morton
Search Architect
Comcast Interactive Media




Improving Search with Solr/Lucene
How you can use this even 
if you’re not in the entertainment business
Document Boost

• Allows pages to be 
  assigned inherent 
  results relevancy 
• Boost is computed 
  using related data
  e.g., box office 
   receipts, recency
• Boost value set when indexing.
• Similar concept to PageRank, but set based on 
  business rules, not just popularity 
Indexing Related Content
• Allows related terms to match a query even if 
  terms don’t need to be surfaced on a page.
   – Add fields and weights to XML.
      <str name="qf"> nameExact^6.5 name^2.0 alias^1.1 related^0.5 
        description^0.1 </str>
   – Similar to how web‐search indexes link terms.
Type‐ahead
   A few small XML changes 
      turns on “type ahead” feature
<fieldtype name="ngramUntokenized" class="solr.TextField" 
positionIncrementGap="100">
  <analyzer type="index">
     <tokenizer class="solr.KeywordTokenizerFactory"/>
     <filter class="solr.LowerCaseFilterFactory"/>
     <filter class="solr.StopFilterFactory"/>

<filterclass="solr.EdgeNGramFilterFactory"minGramSize="2”
       maxGramSize="20"/>
  </analyzer>   
  <analyzer type="query">
     <tokenizer class="solr.KeywordTokenizerFactory"/>
     <filter class="solr.LowerCaseFilterFactory"/>
     <filter class="solr.StopFilterFactory"/>
  </analyzer>
</fieldtype>
Generating Content from 
              Relationships
• Using relationships to generate descriptions of 
  search entities.
  – Allows description results to be displayed even if 
    data is unavailable.
Generating Content from 
              Relationships
• Using relationships to generate descriptions of 
  search entities.
  – Allows description results to be displayed even if 
    data is unavailable.
More Like This
• Using more‐like‐this 
  functionality to produce 
  recommendations.
  – Based on relationships: 
    movie, TV series, actor, 
    and tag
  – Specify fields to use and 
    weights in XML.
Key Solr Search Strategies
• Metadata holds great value for both:
  – Improved Relevancy
     • Take a broad view of “content”, not just text
  – Better Search Experience
     • Search is only as good as the users think it is
• Solr/Lucene can accomplish much of this 
  with just a dab of XML
  – Little real programming required
Q & A


                •Question and Answer Session
                  •(please submit questions)




  © 2008‐2009               Lucid Imagination, Inc.   40
Archive


      Please use the same URL you used to view today’s live event 
     for the archive event, plus we will be sending you a follow‐up 
                email with that URL once the archive is posted!




  © 2008‐2009                      Lucid Imagination, Inc.             41
Thank You
                   Thank you for participating in
                        today’s web event

    Just by attending this event you could win this
                TomTom GPS car navigation system

                 Winner to be announced June 30th




  © 2008‐2009                  Lucid Imagination, Inc.   42
Thank you

Open Source for Enterprise Search: Breaking Down the Barriers to Information

  • 1.
    •Welcome to  KMWorld Magazine Sponsored Event © 2008‐2009 Lucid Imagination, Inc. 1
  • 2.
    Moderator • Andy Moore • Publisher • KMWorld © 2008‐2009 Lucid Imagination, Inc. 2
  • 3.
    Open Source for Enterprise Search:  Breaking Down the  Barriers to Information
  • 4.
    Speakers ©2008‐2009 Lucid Imagination, Inc. 4
  • 5.
    Going into enterprisesearch with your eyes open Susan Feldman, Vice President Search and Discovery Technologies IDC Webcast June 23, 2009, sponsored by Lucid Imagination Copyright 2009 IDC. Reproduction is forbidden unless authorized. All rights reserved.
  • 6.
    Outline  Search defined  The searching process  Today’s search platforms  Types of search applications  Features to look for  What’s next?  Grand challenges © 2009 IDC
  • 7.
    Search: The StatusQuo Is luck enough? © 2009 IDC
  • 8.
    Uses of SearchToday  Intranet search  Publishing applications  Web search  Rich media search  Call centers  Web advertising platforms  Enterprise Applications like BI, ERP and CRM  Recommendation engines  eDiscovery and litigation  Reputation and opinion support applications monitoring applications  Compliance applications  Social media applications  Predictive analytics  Fraud detection applications  Product early warning applications  Border security applications  Ecommerce applications  Spam detection applications © 2009 IDC
  • 9.
    Information Access TechnologyMap Conversational Decision support systems inference engines data plus content: Business Gov’t Intelligence -text analytics Voice of Customer Apps Intelligence Unified access -BI number & complexity of technologies -Reporting tools Ad Matching -data mining Reputation Competitive management Customer support Image search Intelligence Sentiment extraction Trend Analysis eDiscovery Fact/event extraction Brand Question management relationship extraction Search for ideas, answering Geo-tagging Geo-specific search not words Online concept extraction tech support Find people, places entity extraction and things Alerting multilingual support Tag data and Categorization and browsing content Rich media Phrase eCommerce part of speech tagging search identification Speech to text Keyword Retrieve Search and relevance ranking search Audio files Accuracy required © 2009 IDC
  • 10.
    Characteristics Language is theright vehicle for human interaction, but it is imprecise.  Fuzzy matching.  Dialogue and interaction to define the information need  Disambiguation of text—context  Linguistic patterns are predictable and computable: – Syntax for context – Dictionaries for meaning, semantics  Relevance ranking to help manage large results sets  Ad hoc searching © 2009 IDC
  • 11.
    Today’s Search/Discovery Platform Disambiguate Visualize Enrich Cluster Query Filter Search Engine Interface Document Categorize BI/Data Language Analysis Extract Apps © 2009 IDC
  • 12.
    Today’s Search/Discovery Platform Disambiguate Visualize Enrich Cluster Query Filter Search Engine Interface Document Categorize BI/Data Language Apps Analysis Extract © 2009 IDC
  • 13.
    Today’s Search/Discovery Platform Disambiguate Visualize Enrich Cluster Query Filter Search Engine Interface Document Categorize BI/Data Language Apps Analysis Extract © 2009 IDC
  • 14.
    Today’s Search/Discovery Platform Disambiguate Visualize Enrich Cluster Query Filter Search Engine Interface Document Categorize BI/Data Language Apps Analysis Extract © 2009 IDC
  • 15.
  • 16.
    Today’s Search/Discovery Platform Disambiguate Visualize Enrich Cluster Query Filter Search Engine Interface Document Categorize BI/Data Language Apps Analysis Extract © 2009 IDC
  • 17.
    SPSS Concepts and Categories © 2009 IDC
  • 18.
    Types of SearchProducts Analysis and Volume reporting Customizable Integrated Platforms -Multiple Text analytics Sources Intelligence Multipurpose Intranet Call centers Languages Search -Multiple Navigation ecommerce Apps: Relevance BI, CRM, tuning ERP, Finance, Site Inventory, Security Email Search Voice of Customer eDiscovery UI Single Purpose Features Reputation Monitoring Integrated Desktop work Search environments Search-Based Out of the Box Applications Search Important Strategic © 2009 IDC
  • 19.
    Types of SearchProducts Analysis and Volume Customizable Integrated Platforms & reporting -Multiple Text analytics ed Intranet & d Intelligence Sources dd uilSearch de uilt Multipurpose t Call centers edecommerce Languages be B -Multiple b mB Em m e Navigation Apps: Em sto BI, CRM, Ho Site Relevance Cu tuning ERP, Finance, Inventory, Security Email Search Voice of ed Customer ed UI dd eDiscovery dd Single Purpose Monitoring be Features Reputation be Integrated m Em Desktop work SearchE Search-Based environments Out of the Box Applications Search Important Strategic © 2009 IDC
  • 20.
    Features that firsttime buyers look for Search features ranked by priority from our 2008 Survey 1. Relevance based search 2. Browsing and navigation (categorization) 3. Taxonomies/ontologies 4. Parametric search 5. Concept search 6. Auto tagging 7. Visualization by clustering Source: IDC 2008 © 2009 IDC
  • 21.
    Experienced search buyersdiffer 1. Relevance based search But, after experience, add: •Customer service 2. Browsing and navigation (categorization) •Ease of implementation, •Unified access, 3. Taxonomies/ontologies •Usability, 4. Parametric search •Auto tagging, 5. Concept search •Better search features like 6. Auto tagging stemming and best bets, •Security 7. Visualization by clustering •Entity extraction •Rights management Source: IDC 2008 © 2009 IDC
  • 22.
    Directions for NextGenInformation Access  Integration of multiple technologies required  Integrated platforms for diverse, multiple information access requirements  Search-based apps to address specialized workflows and tasks like eDiscovery  Web scale processing  Rich media and social media add new challenges for search  Mobile search applications will explode © 2009 IDC
  • 23.
    Contact Information Susan Feldman VP, Search and Discovery Technologies sfeldman@idc.com © 2009 IDC
  • 24.
  • 25.
    Comcast Interactive Media • Division of Comcast  • Dedicated to  online/cross‐platform  entertainment and media  businesses • Develop and grow Internet businesses with  compelling technology  and product innovations • Targeting broadband  users, customers and  non‐subscribers alike
  • 26.
    Fancast.com Search: Business‐critical Need:  • Customizable  • Scalable for volume: both traffic  and content  5‐6 million  unique monthly users   4 million+ records 200,000+ assets • Economics:  • 9K+ hours online video New business model,  • 55K+ videos • 10K+ full‐length shows sensitive to fixed  • ~150K other assets and operating costs (photos, tidbits, etc.)  100+ content providers
  • 27.
    Search Use Cases • Comprehensive, relevant, up‐to‐date and authoritative – Movies, TV shows, clips, celebrities and other media info • Seamless merge of multiple, heterogenous sources – Metadata each with own  format, content refresh timing ?simpson – Spider‐Man vs. “spiderman” • Must Have:  – Accurate results in the  mind of the user Jessica = Homer /
  • 28.
    Architecting for Scale • Scaling metric: operationally  simple, scalable and stable.  + • Search must be as fast as anything else on the site <20ms at peak per server instance.  + • Data‐center operations gets simple  rules for sizing “x” users        “y” application servers • Provided linear scalability with  traffic growth from 50K to ~1M  peak uniques/day over 16 months Users now visit site >1x week on average
  • 29.
    Performance Test: Solr vs “X” Open source Solr vs. leading commercial search vendor (Brand “X”) Measured/compared  query response rates  At multiple load levels  Range: 100 to 1500 requests/second TEST BED  Tested stress failure points • Avalanche load generators   Peak queries per second  • multiple instances of Sun x64  multi‐core 1~2RU servers   Failure characteristics • Red Hat Linux Vendor “X” & Lucid Imagination (Solr) INDEXES   Tuned test bed • 2 million documents  Validated results • 4 million documents Solr meaningfully outperformed “X” • Each deployed on each  of  the competing servers   Response Rates  (Solr vs. “X”)  Failure‐handling characteristics
  • 30.
    Do’s and Don’ts of Open Source 1. DON’T abandon structured analysis of Business  or Technical Requirements – Open source must still fit business needs – DO a bake‐off to drive your decision 2. DO ensure a fit between development culture  and business objectives: – Do you Integrate or Develop?  – Do you develop or innovate based on your data? – Do you have a Source for expertise you lack? 
  • 31.
    Open Source: Risks & Mitigation RISKS LUCENE/SOLR: (1) SUFFICIENT COMMUNITY OF  Highly active community; ad‐hoc  DEVELOPERS?  support and answers online community  SLA based support from Lucid  Imagination (2) COMMERCIAL ORGANIZATIONS “BET  Similar businesses: CNET, Netflix;  THE COMPANY” ON THIS?  Dissimilar businesses: MySpace, Orbitz (3) ALIGNMENT WITH INTERNAL  Premium at CIM on software  RESOURCES? ENABLES PRODUCT  engineering talent  DEVELOPMENT AGILITY? Flexibility to support innovation without  steep learning curves Mutually reinforcing benefits of product  development culture and highly  engaged human capital
  • 32.
  • 33.
    Document Boost • Allows pages to be  assigned inherent  results relevancy  • Boost is computed  using related data  e.g., box office  receipts, recency • Boost value set when indexing. • Similar concept to PageRank, but set based on  business rules, not just popularity 
  • 34.
    Indexing Related Content • Allows related terms to match a query even if  terms don’t need to be surfaced on a page. – Add fields and weights to XML. <str name="qf"> nameExact^6.5 name^2.0 alias^1.1 related^0.5  description^0.1 </str> – Similar to how web‐search indexes link terms.
  • 35.
    Type‐ahead A few small XML changes  turns on “type ahead” feature <fieldtype name="ngramUntokenized" class="solr.TextField"  positionIncrementGap="100"> <analyzer type="index"> <tokenizer class="solr.KeywordTokenizerFactory"/> <filter class="solr.LowerCaseFilterFactory"/> <filter class="solr.StopFilterFactory"/> <filterclass="solr.EdgeNGramFilterFactory"minGramSize="2” maxGramSize="20"/> </analyzer>    <analyzer type="query"> <tokenizer class="solr.KeywordTokenizerFactory"/> <filter class="solr.LowerCaseFilterFactory"/> <filter class="solr.StopFilterFactory"/> </analyzer> </fieldtype>
  • 36.
    Generating Content from  Relationships • Using relationships to generate descriptions of  search entities. – Allows description results to be displayed even if  data is unavailable.
  • 37.
    Generating Content from  Relationships • Using relationships to generate descriptions of  search entities. – Allows description results to be displayed even if  data is unavailable.
  • 38.
    More Like This • Using more‐like‐this  functionality to produce  recommendations. – Based on relationships:  movie, TV series, actor,  and tag – Specify fields to use and  weights in XML.
  • 39.
    Key Solr Search Strategies • Metadata holds great value for both: – Improved Relevancy • Take a broad view of “content”, not just text – Better Search Experience • Search is only as good as the users think it is • Solr/Lucene can accomplish much of this  with just a dab of XML – Little real programming required
  • 40.
    Q & A •Question and Answer Session •(please submit questions) © 2008‐2009 Lucid Imagination, Inc. 40
  • 41.
    Archive Please use the same URL you used to view today’s live event  for the archive event, plus we will be sending you a follow‐up  email with that URL once the archive is posted! © 2008‐2009 Lucid Imagination, Inc. 41
  • 42.
    Thank You Thank you for participating in today’s web event Just by attending this event you could win this TomTom GPS car navigation system Winner to be announced June 30th © 2008‐2009 Lucid Imagination, Inc. 42
  • 43.