SlideShare a Scribd company logo
Offshore well 17-1/2" Intermediate section
≔ρSteel 65.4 ――
lb
gal
≔bbl 42 gal
1. Well and string Capacities data INPUT
Enter well tubular data into table as shown. From this table,
annular capacity and volumes are calculated.
Tod
((in))
5
5
5
5
8
9.5
Tid
((in))
4.1778
4.1778
4.1778
3
2.812
3
Wo
((in))
18.75
18.415
Wb
((in))
21
17.5
17.5
17.5
17.5
17.5
TL
((m))
30
970
820
90
60
30
Buoyancy, buoyed weight, buoyancy factor
≔ρmw 9.2 ――
lb
gal
≔ρsw 8.33 ――
lb
gal
≔Pumprate 1050 ――
gal
min
≔Bf =
⎛
⎜
⎝
-1 ――
ρmw
ρSteel
⎞
⎟
⎠
0.859
=ρmw 1102 ――
kg
m3
=ρsw 998 ――
kg
m3
=Pumprate
⎛⎝ ⋅3.975 103 ⎞⎠ ――
liter
min
String and wellbore
component volumes ≔Intvol =―――
⋅π Tid
2
4
0.0088
0.0088
0.0088
0.0046
0.004
0.0046
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
≔Annvol =――――――
⋅π ⎛
⎝ -Wb
2
Tod
2 ⎞
⎠
4
0.2108
0.1425
0.1425
0.1425
0.1227
0.1094
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
≔Wellvol =―――
⋅π ⎛
⎝Wb
2 ⎞
⎠
4
0.2235
0.1552
0.1552
0.1552
0.1552
0.1552
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
1a) Internal string volumes 1b) Annular volumes 1c) Well volume ONLY
≔DPid
⟨
0
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
0
⟩
⎞
⎟⎠
4
0.0088[[ ]] ――
m3
m
≔DPvol
⟨
0
⟩
=⋅――――
⋅π
⎛
⎝DPid
⟨
0
⟩
⎞
⎠
4
TL
⟨
0
⟩
0.21[[ ]] m3
≔DPann
⟨
0
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
0
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
0
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
0
⟩
6.32[[ ]] m3
≔Wbore
⟨
0
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
0
⟩
⎞
⎠
2
4
TL
⟨
0
⟩
6.7[[ ]] m3
≔DPid
⟨
1
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
1
⟩
⎞
⎟⎠
4
0.0088[[ ]] ――
m3
m
≔DPvol
⟨
1
⟩
=⋅――――
⋅π
⎛
⎝DPid
⟨
1
⟩
⎞
⎠
4
TL
⟨
1
⟩
6.74[[ ]] m3
≔DPann
⟨
1
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
1
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
1
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
1
⟩
138.24[[ ]] m3
≔Wbore
⟨
1
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
1
⟩
⎞
⎠
2
4
TL
⟨
1
⟩
150.52[[ ]] m3
≔HWDPid
⟨
2
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
2
⟩
⎞
⎟⎠
4
0.0088[[ ]] ――
m3
m
≔HWDPvol
⟨
2
⟩
=⋅―――――
⋅π
⎛
⎝HWDPid
⟨
2
⟩
⎞
⎠
4
TL
⟨
2
⟩
5.7[[ ]] m3
≔HWDPann
⟨
2
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
2
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
2
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
2
⟩
116.86[[ ]] m3
≔Wbore
⟨
2
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
2
⟩
⎞
⎠
2
4
TL
⟨
2
⟩
127.25[[ ]] m3
≔DC2id
⟨
3
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
3
⟩
⎞
⎟⎠
4
0.0046[[ ]] ――
m3
m
≔DC2vol
⟨
3
⟩
=⋅――――
⋅π
⎛
⎝DC2id
⟨
3
⟩
⎞
⎠
4
TL
⟨
3
⟩
0.32[[ ]] m3
≔DC2ann
⟨
3
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
3
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
3
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
3
⟩
12.83[[ ]] m3
≔Wbore
⟨
3
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
3
⟩
⎞
⎠
2
4
TL
⟨
3
⟩
13.97[[ ]] m3
≔DC1id
⟨
4
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
4
⟩
⎞
⎟⎠
4
0.004[[ ]] ――
m3
m
≔DC1vol
⟨
4
⟩
=⋅――――
⋅π
⎛
⎝DC1id
⟨
4
⟩
⎞
⎠
4
TL
⟨
4
⟩
0.19[[ ]] m3
≔DC1ann
⟨
4
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
4
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
4
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
4
⟩
7.36[[ ]] m3
≔Wbore40 =⋅――――
⋅π
⎛
⎝Wb
⟨
4
⟩
⎞
⎠
2
4
TL
⟨
4
⟩
9.31 m3
1.) Pumping times Total volumes
≔ΣTid =⋅―――
⋅π ⎛
⎝Tid
2 ⎞
⎠
4
TL 16.9 m3
≔ΣAnnvol =⋅――――――
⋅π ⎛
⎝ -Wb
2
Tod
2 ⎞
⎠
4
TL 284.9 m3
≔ΣWellvol =⋅―――
⋅π ⎛
⎝Wb
2 ⎞
⎠
4
TL 312.4 m3
≔ΔStime =―――
ΣTid
Pumprate
4.248 min ≔ΔAnntime =―――
ΣAnnvol
Pumprate
71.677 min ≔Totaltime =+ΔStime ΔAnntime 75.92 min
Peter Aird
2a.) Open ended displacement of steel
tubular based on the wall thickness od and id
string dimensions as input. Total 'open and closed ended'
displacement volumes≔OEDS =――――――
⋅π ⎛
⎝ -Tod
2
Tid
2 ⎞
⎠
4
0.0038
0.0038
0.0038
0.0081
0.0284
0.0412
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
≔ΣOEDS =⋅OEDS TL 10.63 m3
2b.) Close ended displacement of steel tubular
based on the od string dimensions as input. ≔ΣCEDS =⋅――――
⋅π ⎛
⎝Tod
2 ⎞
⎠
4
TL 27.51 m3
≔CEDS =――――
⋅π ⎛
⎝Tod
2 ⎞
⎠
4
0.0127
0.0127
0.0127
0.0127
0.0324
0.0457
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
2c1) Total open ended displacement of all steel tubulars
based on the wall thicknesses and lengths input .
≔ΣOED =⋅OEDS TL 10.63 m3
2c2) Total closed ended displacement of all steel
tubulars based on the outer diameter and lengths input .
≔ΣCED =⋅CEDS TL 27.51 m3
≔OET1 =⋅OEDS
⟨
0
⟩
TL
⟨
0
⟩
1 bbl ≔OET2 =⋅OEDS
⟨1⟩
TL
⟨
1
⟩
3.71 m3
≔CET1 =⋅CEDS
⟨
0
⟩
TL
⟨
0
⟩
0.38 m3
≔CET2 =⋅CEDS
⟨
1
⟩
TL
⟨
1
⟩
12.29 m3
≔OEHW =⋅OEDS
⟨
2
⟩
TL
⟨
2
⟩
20 bbl ≔OEDC2 =⋅OEDS
⟨
3
⟩
TL
⟨3⟩
0.73 m3
≔CEHW =⋅CEDS
⟨
2
⟩
TL
⟨
2
⟩
10.39 m3
≔CEDC2 =⋅CEDS
⟨
3
⟩
TL
⟨
3
⟩
1.14 m3
≔OEDc1 =⋅OEDS
⟨
4
⟩
TL
⟨
4
⟩
11 bbl ≔OEDS =++++OET1 OET2 OEHW OEDC2 OEDc1 9.39 m3
≔CEDc1 =⋅CEDS
⟨
4
⟩
TL
⟨
4
⟩
1.95 m3
≔CEDS =++++CET1 CET2 CEHW CEDC2 CEDc1 26.14 m3
3.) Component and Total string weights Total string weigth
(in mud)≔WS =⋅――――――
⋅π ⎛
⎝ -Tod
2
Tid
2 ⎞
⎠
4
ρSteel
30
30
30
63.5
222.7
322.6
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
―
kg
m
≔ΣWS =⋅⋅⋅――――――
⋅π ⎛
⎝ -Tod
2
Tid
2 ⎞
⎠
4
ρSteel TL Bf 79 ton
Individual Component weight calculations
≔Wdp
⟨
0
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
0
⟩
Tid
2
⟨
0
⟩
⎞
⎟⎠
4
ρSteel 30[[ ]] ―
kg
m
≔BWdp
⟨
0
⟩
=⋅
⎛
⎝ ⋅Wdp
⟨
0
⟩
TL
⟨
0
⟩
⎞
⎠ Bf 772[[ ]] kg ≔Wdp
⟨
1
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
1
⟩
Tid
2
⟨
1
⟩
⎞
⎟⎠
4
ρSteel 30[[ ]] ―
kg
m
≔BWdp
⟨
1
⟩
=⋅
⎛
⎝ ⋅Wdp
⟨
1
⟩
TL
⟨
1
⟩
⎞
⎠ Bf 24977[[ ]] ⋅m ―
kg
m
≔Wdp
⟨
2
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
2
⟩
Tid
2
⟨
2
⟩
⎞
⎟⎠
4
ρSteel 30[[ ]] ―
kg
m
≔BWdp
⟨
2
⟩
=⋅
⎛
⎝ ⋅Wdp
⟨
2
⟩
TL
⟨
2
⟩
⎞
⎠ Bf 21114[[ ]] kg ≔Whwdp
⟨
3
⟩ =⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
3
⟩
Tid
2
⟨
3
⟩
⎞
⎟⎠
4
ρSteel 63.5[[ ]] ―
kg
m
≔BWhwdp
⟨
3
⟩
=⋅
⎛
⎝ ⋅Whwdp
⟨
3
⟩
TL
⟨
3
⟩
⎞
⎠ Bf 4914[[ ]] ⋅m ―
kg
m
≔Wdc2
⟨
4
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
4
⟩
Tid
2
⟨
4
⟩
⎞
⎟⎠
4
ρSteel 222.7[[ ]] ―
kg
m
≔BWdc2
⟨
4
⟩
=⋅
⎛
⎝ ⋅Wdc2
⟨
4
⟩
TL
⟨
4
⟩
⎞
⎠ Bf 11484[[ ]] kg ≔Wdc1
⟨
5
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
5
⟩
Tid
2
⟨
5
⟩
⎞
⎟⎠
4
ρSteel 322.6[[ ]] ―
kg
m
≔BWdc1
⟨
5
⟩
=⋅
⎛
⎝ ⋅Wdc1
⟨
5
⟩
TL
⟨
5
⟩
⎞
⎠ Bf 8317[[ ]] ⋅m ―
kg
m
≔Stringweight =+++++BWdp
⟨
0
⟩
BWdp
⟨
1
⟩
BWdp
⟨
2
⟩
BWhwdp
⟨
3
⟩
BWdc2
⟨
4
⟩
BWdc1
⟨
5
⟩
79[[ ]] ton
≔Wdc2 =⋅――――――
4
ρSteel 222.7[ ] ―
m
≔BWdc2 =⋅⎝ ⋅Wdc2 TL ⎠ Bf 11484[ ] kg ≔Wdc1 =⋅――――――
4
ρSteel 322.6[ ] ―
m
≔BWdc1 =⋅⎝ ⋅Wdc1 TL ⎠ Bf 8317[ ] ⋅m ―
m
≔Stringweight =+++++BWdp
⟨
0
⟩
BWdp
⟨
1
⟩
BWdp
⟨
2
⟩
BWhwdp
⟨
3
⟩
BWdc2
⟨
4
⟩
BWdc1
⟨
5
⟩
79[[ ]] ton
Triplex mud pump calculations
Triplex mud pump calculator
Note: A triplex mud pump has three pump liners. For one revolution of the mud pump
drive, each pump piston would therefore have pumped the equivalent of one strokes total
liner volume.
≔Stroke ⋅1 Hz ≔bbl ⋅42 gal
Data input
Liner diameter, d, inches
Liner length, L, inches
Pump efficiency, η %,
≔LL ⋅14 in
≔d ⋅
5
5.5
6
6.5
7
⎡
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥⎦
in ≔Sp ⋅1 Stroke
≔η 0.95
≔Pumpvol ――――――
⋅⋅3 ⋅
⎛
⎜
⎝
――
⋅π d2
4
⎞
⎟
⎠
LL η
Sp
=Pumpvol
12.838
15.534
18.487
21.697
25.163
⎡
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥⎦
―――
liter
Stroke
Step #1; Calculates the triplex mud pump output volume (Pumpvol) for the various pump liner sizes (d, inches),
liner stroke length (L, inches) , and volumetric efficiency (η) as input.
Example hand held calculation;
=――――――――――
⋅⋅⋅⋅3
⎛
⎜
⎜⎝
―――――
⋅π (( ⋅5.5 in))
2
4
⎞
⎟
⎟⎠
12 in 0.95
⋅1 Stroke
13.315 ―――
liter
Stroke =Pumpvol
12.838
15.534
18.487
21.697
25.163
⎡
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥⎦
―――
liter
Stroke
Comments
Depending on rig and pump conditions safe operating speeds of 100-110rpm can normally be achieved particulary if the rig has three pumps.
e.g Best practices would be to work two pumps at optimal rates,maintaining the 3rd pump as contingency back up so that continuous operations would in most cases and circumstances result.
Step #2; For a selected pump liner output (Pout, gal/stroke). This step calculates the total pumping volume of the
triplex mud pump(s) for the range of strokes (n) that can be used, presenting results in both tabular & graphical
output for 2 and 3 pumps.
Liner size = 6inches ≔Pout ⋅4.884 ―――
gal
Stroke
≔f((n)) ⋅⋅Pout
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
2
Define pump rate range (n); ≔n , ‥30 40 110 ≔fa((n)) ⋅⋅Pout
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
3
1.4⋅10³
1.95⋅10³
2.5⋅10³
3.05⋅10³
3.6⋅10³
4.15⋅10³
4.7⋅10³
5.25⋅10³
5.8⋅10³
300
850
6.35⋅10³
38 47 56 65 74 83 92 10120 29 110
⋅4.5 103
⋅3 103
60 90
f((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
fa((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
n
=f((n))
⋅1.109 103
⋅1.479 103
⋅1.849 103
⋅2.219 103
⋅2.588 103
⋅2.958 103
⋅3.328 103
⋅3.698 103
⋅4.067 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min =fa((n))
⋅1.664 103
⋅2.219 103
⋅2.773 103
⋅3.328 103
⋅3.882 103
⋅4.437 103
⋅4.992 103
⋅5.546 103
⋅6.101 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min
Step #3; For a selected pump liner output (Pout2, gal/stroke). This step calculates the total
pumping volume of the triplex mud pump(s) for the range of strokes (n2) that can be used,
presenting results in both tabular & graphical output for two and three mud pumps used.
Liner size = 6 1/2 inches ≔Pout2 ⋅5.732 ―――
gal
Stroke
≔f2((n)) ⋅⋅Pout2
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
2
≔f3((n)) ⋅⋅Pout2
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
3
1.6⋅10³
2.25⋅10³
2.9⋅10³
3.55⋅10³
4.2⋅10³
4.85⋅10³
5.5⋅10³
6.15⋅10³
6.8⋅10³
300
950
7.45⋅10³
38 47 56 65 74 83 92 10120 29 110
⋅4 103
⋅6 103
60 90
f2((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
f3((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
n
=f2((n))
⋅1.302 103
⋅1.736 103
⋅2.17 103
⋅2.604 103
⋅3.038 103
⋅3.472 103
⋅3.906 103
⋅4.34 103
⋅4.774 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min
=f3((n))
⋅1.953 103
⋅2.604 103
⋅3.255 103
⋅3.906 103
⋅4.557 103
⋅5.208 103
⋅5.858 103
⋅6.509 103
⋅7.16 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min

More Related Content

What's hot

Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
KirkMcdowells
 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
Vishal Patel
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
Trupesh Upadhyay
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
Florencio Nuñez
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsasghar123456
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsasghar123456
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersVaidyanathan Ramakrishnan
 
Kill sheet
Kill sheetKill sheet
Kill sheet
amrhaggag
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
World University of Bangladesh
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
Malika khalil
 
Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Solutions manual for thermodynamics an interactive approach 1st edition by bh...Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Beckham000
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
Anurak Atthasit
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_white
jonathan
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
Abrar Hussain
 
Problem 3.1
Problem 3.1Problem 3.1
Problem 3.1
andersondiniz
 
EES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculationsEES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculations
tmuliya
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Βατάτζης .
 

What's hot (20)

Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
 
Pelton turbine (1)
Pelton turbine (1)Pelton turbine (1)
Pelton turbine (1)
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
 
Kaplan turbines
Kaplan turbinesKaplan turbines
Kaplan turbines
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
 
Kill sheet
Kill sheetKill sheet
Kill sheet
 
Me2351 gas dynamics and jet propulsion-qb
Me2351 gas dynamics and jet propulsion-qbMe2351 gas dynamics and jet propulsion-qb
Me2351 gas dynamics and jet propulsion-qb
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
 
Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Solutions manual for thermodynamics an interactive approach 1st edition by bh...Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Solutions manual for thermodynamics an interactive approach 1st edition by bh...
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_white
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
 
Problem 3.1
Problem 3.1Problem 3.1
Problem 3.1
 
EES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculationsEES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculations
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
 

Similar to Offshore well intermediate

Coagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdfCoagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdf
zgrSALAM2
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
AathiraS10
 
Thermo 5th chap05_p001
Thermo 5th chap05_p001Thermo 5th chap05_p001
Thermo 5th chap05_p001
Christian C. Alcantara Juarez
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
Saif al-din ali
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
kesava2004010
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizing
Brock Lesnar
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
sbjhbsbd
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010CangTo Cheah
 
Axial Flow Turbine.ppt
Axial Flow Turbine.pptAxial Flow Turbine.ppt
Axial Flow Turbine.ppt
MuhammadZaki983995
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
Anurak Atthasit
 
Tugas 3 Contoh Perhitungan Pompa.pptx
Tugas 3 Contoh Perhitungan Pompa.pptxTugas 3 Contoh Perhitungan Pompa.pptx
Tugas 3 Contoh Perhitungan Pompa.pptx
Rihfa
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
Paralafakyou Mens
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
Jhayson Carvalho
 
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxechnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
tidwellveronique
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
Younes Sina
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
Gopi Chand
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2
Junea June
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
IyerVasundhara
 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Alamin Md
 
CondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.pptCondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.ppt
ArslanAbbas36
 

Similar to Offshore well intermediate (20)

Coagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdfCoagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdf
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
 
Thermo 5th chap05_p001
Thermo 5th chap05_p001Thermo 5th chap05_p001
Thermo 5th chap05_p001
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizing
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial Flow Turbine.ppt
Axial Flow Turbine.pptAxial Flow Turbine.ppt
Axial Flow Turbine.ppt
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
Tugas 3 Contoh Perhitungan Pompa.pptx
Tugas 3 Contoh Perhitungan Pompa.pptxTugas 3 Contoh Perhitungan Pompa.pptx
Tugas 3 Contoh Perhitungan Pompa.pptx
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxechnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2
 
volumetric properties.ppt
volumetric properties.pptvolumetric properties.ppt
volumetric properties.ppt
 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
 
CondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.pptCondensateFeedwaterSystem Part1.ppt
CondensateFeedwaterSystem Part1.ppt
 

Recently uploaded

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
ssuser7dcef0
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 

Recently uploaded (20)

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 

Offshore well intermediate

  • 1. Offshore well 17-1/2" Intermediate section ≔ρSteel 65.4 ―― lb gal ≔bbl 42 gal 1. Well and string Capacities data INPUT Enter well tubular data into table as shown. From this table, annular capacity and volumes are calculated. Tod ((in)) 5 5 5 5 8 9.5 Tid ((in)) 4.1778 4.1778 4.1778 3 2.812 3 Wo ((in)) 18.75 18.415 Wb ((in)) 21 17.5 17.5 17.5 17.5 17.5 TL ((m)) 30 970 820 90 60 30 Buoyancy, buoyed weight, buoyancy factor ≔ρmw 9.2 ―― lb gal ≔ρsw 8.33 ―― lb gal ≔Pumprate 1050 ―― gal min ≔Bf = ⎛ ⎜ ⎝ -1 ―― ρmw ρSteel ⎞ ⎟ ⎠ 0.859 =ρmw 1102 ―― kg m3 =ρsw 998 ―― kg m3 =Pumprate ⎛⎝ ⋅3.975 103 ⎞⎠ ―― liter min String and wellbore component volumes ≔Intvol =――― ⋅π Tid 2 4 0.0088 0.0088 0.0088 0.0046 0.004 0.0046 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m ≔Annvol =―――――― ⋅π ⎛ ⎝ -Wb 2 Tod 2 ⎞ ⎠ 4 0.2108 0.1425 0.1425 0.1425 0.1227 0.1094 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m ≔Wellvol =――― ⋅π ⎛ ⎝Wb 2 ⎞ ⎠ 4 0.2235 0.1552 0.1552 0.1552 0.1552 0.1552 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m 1a) Internal string volumes 1b) Annular volumes 1c) Well volume ONLY ≔DPid ⟨ 0 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 0 ⟩ ⎞ ⎟⎠ 4 0.0088[[ ]] ―― m3 m ≔DPvol ⟨ 0 ⟩ =⋅―――― ⋅π ⎛ ⎝DPid ⟨ 0 ⟩ ⎞ ⎠ 4 TL ⟨ 0 ⟩ 0.21[[ ]] m3 ≔DPann ⟨ 0 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 0 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 0 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 0 ⟩ 6.32[[ ]] m3 ≔Wbore ⟨ 0 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 0 ⟩ ⎞ ⎠ 2 4 TL ⟨ 0 ⟩ 6.7[[ ]] m3 ≔DPid ⟨ 1 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 1 ⟩ ⎞ ⎟⎠ 4 0.0088[[ ]] ―― m3 m ≔DPvol ⟨ 1 ⟩ =⋅―――― ⋅π ⎛ ⎝DPid ⟨ 1 ⟩ ⎞ ⎠ 4 TL ⟨ 1 ⟩ 6.74[[ ]] m3 ≔DPann ⟨ 1 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 1 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 1 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 1 ⟩ 138.24[[ ]] m3 ≔Wbore ⟨ 1 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 1 ⟩ ⎞ ⎠ 2 4 TL ⟨ 1 ⟩ 150.52[[ ]] m3 ≔HWDPid ⟨ 2 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 2 ⟩ ⎞ ⎟⎠ 4 0.0088[[ ]] ―― m3 m ≔HWDPvol ⟨ 2 ⟩ =⋅――――― ⋅π ⎛ ⎝HWDPid ⟨ 2 ⟩ ⎞ ⎠ 4 TL ⟨ 2 ⟩ 5.7[[ ]] m3 ≔HWDPann ⟨ 2 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 2 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 2 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 2 ⟩ 116.86[[ ]] m3 ≔Wbore ⟨ 2 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 2 ⟩ ⎞ ⎠ 2 4 TL ⟨ 2 ⟩ 127.25[[ ]] m3 ≔DC2id ⟨ 3 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 3 ⟩ ⎞ ⎟⎠ 4 0.0046[[ ]] ―― m3 m ≔DC2vol ⟨ 3 ⟩ =⋅―――― ⋅π ⎛ ⎝DC2id ⟨ 3 ⟩ ⎞ ⎠ 4 TL ⟨ 3 ⟩ 0.32[[ ]] m3 ≔DC2ann ⟨ 3 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 3 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 3 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 3 ⟩ 12.83[[ ]] m3 ≔Wbore ⟨ 3 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 3 ⟩ ⎞ ⎠ 2 4 TL ⟨ 3 ⟩ 13.97[[ ]] m3 ≔DC1id ⟨ 4 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 4 ⟩ ⎞ ⎟⎠ 4 0.004[[ ]] ―― m3 m ≔DC1vol ⟨ 4 ⟩ =⋅―――― ⋅π ⎛ ⎝DC1id ⟨ 4 ⟩ ⎞ ⎠ 4 TL ⟨ 4 ⟩ 0.19[[ ]] m3 ≔DC1ann ⟨ 4 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 4 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 4 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 4 ⟩ 7.36[[ ]] m3 ≔Wbore40 =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 4 ⟩ ⎞ ⎠ 2 4 TL ⟨ 4 ⟩ 9.31 m3 1.) Pumping times Total volumes ≔ΣTid =⋅――― ⋅π ⎛ ⎝Tid 2 ⎞ ⎠ 4 TL 16.9 m3 ≔ΣAnnvol =⋅―――――― ⋅π ⎛ ⎝ -Wb 2 Tod 2 ⎞ ⎠ 4 TL 284.9 m3 ≔ΣWellvol =⋅――― ⋅π ⎛ ⎝Wb 2 ⎞ ⎠ 4 TL 312.4 m3 ≔ΔStime =――― ΣTid Pumprate 4.248 min ≔ΔAnntime =――― ΣAnnvol Pumprate 71.677 min ≔Totaltime =+ΔStime ΔAnntime 75.92 min Peter Aird
  • 2. 2a.) Open ended displacement of steel tubular based on the wall thickness od and id string dimensions as input. Total 'open and closed ended' displacement volumes≔OEDS =―――――― ⋅π ⎛ ⎝ -Tod 2 Tid 2 ⎞ ⎠ 4 0.0038 0.0038 0.0038 0.0081 0.0284 0.0412 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m ≔ΣOEDS =⋅OEDS TL 10.63 m3 2b.) Close ended displacement of steel tubular based on the od string dimensions as input. ≔ΣCEDS =⋅―――― ⋅π ⎛ ⎝Tod 2 ⎞ ⎠ 4 TL 27.51 m3 ≔CEDS =―――― ⋅π ⎛ ⎝Tod 2 ⎞ ⎠ 4 0.0127 0.0127 0.0127 0.0127 0.0324 0.0457 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m 2c1) Total open ended displacement of all steel tubulars based on the wall thicknesses and lengths input . ≔ΣOED =⋅OEDS TL 10.63 m3 2c2) Total closed ended displacement of all steel tubulars based on the outer diameter and lengths input . ≔ΣCED =⋅CEDS TL 27.51 m3 ≔OET1 =⋅OEDS ⟨ 0 ⟩ TL ⟨ 0 ⟩ 1 bbl ≔OET2 =⋅OEDS ⟨1⟩ TL ⟨ 1 ⟩ 3.71 m3 ≔CET1 =⋅CEDS ⟨ 0 ⟩ TL ⟨ 0 ⟩ 0.38 m3 ≔CET2 =⋅CEDS ⟨ 1 ⟩ TL ⟨ 1 ⟩ 12.29 m3 ≔OEHW =⋅OEDS ⟨ 2 ⟩ TL ⟨ 2 ⟩ 20 bbl ≔OEDC2 =⋅OEDS ⟨ 3 ⟩ TL ⟨3⟩ 0.73 m3 ≔CEHW =⋅CEDS ⟨ 2 ⟩ TL ⟨ 2 ⟩ 10.39 m3 ≔CEDC2 =⋅CEDS ⟨ 3 ⟩ TL ⟨ 3 ⟩ 1.14 m3 ≔OEDc1 =⋅OEDS ⟨ 4 ⟩ TL ⟨ 4 ⟩ 11 bbl ≔OEDS =++++OET1 OET2 OEHW OEDC2 OEDc1 9.39 m3 ≔CEDc1 =⋅CEDS ⟨ 4 ⟩ TL ⟨ 4 ⟩ 1.95 m3 ≔CEDS =++++CET1 CET2 CEHW CEDC2 CEDc1 26.14 m3 3.) Component and Total string weights Total string weigth (in mud)≔WS =⋅―――――― ⋅π ⎛ ⎝ -Tod 2 Tid 2 ⎞ ⎠ 4 ρSteel 30 30 30 63.5 222.7 322.6 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ― kg m ≔ΣWS =⋅⋅⋅―――――― ⋅π ⎛ ⎝ -Tod 2 Tid 2 ⎞ ⎠ 4 ρSteel TL Bf 79 ton Individual Component weight calculations ≔Wdp ⟨ 0 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 0 ⟩ Tid 2 ⟨ 0 ⟩ ⎞ ⎟⎠ 4 ρSteel 30[[ ]] ― kg m ≔BWdp ⟨ 0 ⟩ =⋅ ⎛ ⎝ ⋅Wdp ⟨ 0 ⟩ TL ⟨ 0 ⟩ ⎞ ⎠ Bf 772[[ ]] kg ≔Wdp ⟨ 1 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 1 ⟩ Tid 2 ⟨ 1 ⟩ ⎞ ⎟⎠ 4 ρSteel 30[[ ]] ― kg m ≔BWdp ⟨ 1 ⟩ =⋅ ⎛ ⎝ ⋅Wdp ⟨ 1 ⟩ TL ⟨ 1 ⟩ ⎞ ⎠ Bf 24977[[ ]] ⋅m ― kg m ≔Wdp ⟨ 2 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 2 ⟩ Tid 2 ⟨ 2 ⟩ ⎞ ⎟⎠ 4 ρSteel 30[[ ]] ― kg m ≔BWdp ⟨ 2 ⟩ =⋅ ⎛ ⎝ ⋅Wdp ⟨ 2 ⟩ TL ⟨ 2 ⟩ ⎞ ⎠ Bf 21114[[ ]] kg ≔Whwdp ⟨ 3 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 3 ⟩ Tid 2 ⟨ 3 ⟩ ⎞ ⎟⎠ 4 ρSteel 63.5[[ ]] ― kg m ≔BWhwdp ⟨ 3 ⟩ =⋅ ⎛ ⎝ ⋅Whwdp ⟨ 3 ⟩ TL ⟨ 3 ⟩ ⎞ ⎠ Bf 4914[[ ]] ⋅m ― kg m ≔Wdc2 ⟨ 4 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 4 ⟩ Tid 2 ⟨ 4 ⟩ ⎞ ⎟⎠ 4 ρSteel 222.7[[ ]] ― kg m ≔BWdc2 ⟨ 4 ⟩ =⋅ ⎛ ⎝ ⋅Wdc2 ⟨ 4 ⟩ TL ⟨ 4 ⟩ ⎞ ⎠ Bf 11484[[ ]] kg ≔Wdc1 ⟨ 5 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 5 ⟩ Tid 2 ⟨ 5 ⟩ ⎞ ⎟⎠ 4 ρSteel 322.6[[ ]] ― kg m ≔BWdc1 ⟨ 5 ⟩ =⋅ ⎛ ⎝ ⋅Wdc1 ⟨ 5 ⟩ TL ⟨ 5 ⟩ ⎞ ⎠ Bf 8317[[ ]] ⋅m ― kg m ≔Stringweight =+++++BWdp ⟨ 0 ⟩ BWdp ⟨ 1 ⟩ BWdp ⟨ 2 ⟩ BWhwdp ⟨ 3 ⟩ BWdc2 ⟨ 4 ⟩ BWdc1 ⟨ 5 ⟩ 79[[ ]] ton
  • 3. ≔Wdc2 =⋅―――――― 4 ρSteel 222.7[ ] ― m ≔BWdc2 =⋅⎝ ⋅Wdc2 TL ⎠ Bf 11484[ ] kg ≔Wdc1 =⋅―――――― 4 ρSteel 322.6[ ] ― m ≔BWdc1 =⋅⎝ ⋅Wdc1 TL ⎠ Bf 8317[ ] ⋅m ― m ≔Stringweight =+++++BWdp ⟨ 0 ⟩ BWdp ⟨ 1 ⟩ BWdp ⟨ 2 ⟩ BWhwdp ⟨ 3 ⟩ BWdc2 ⟨ 4 ⟩ BWdc1 ⟨ 5 ⟩ 79[[ ]] ton Triplex mud pump calculations Triplex mud pump calculator Note: A triplex mud pump has three pump liners. For one revolution of the mud pump drive, each pump piston would therefore have pumped the equivalent of one strokes total liner volume. ≔Stroke ⋅1 Hz ≔bbl ⋅42 gal Data input Liner diameter, d, inches Liner length, L, inches Pump efficiency, η %, ≔LL ⋅14 in ≔d ⋅ 5 5.5 6 6.5 7 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦ in ≔Sp ⋅1 Stroke ≔η 0.95 ≔Pumpvol ―――――― ⋅⋅3 ⋅ ⎛ ⎜ ⎝ ―― ⋅π d2 4 ⎞ ⎟ ⎠ LL η Sp =Pumpvol 12.838 15.534 18.487 21.697 25.163 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ――― liter Stroke Step #1; Calculates the triplex mud pump output volume (Pumpvol) for the various pump liner sizes (d, inches), liner stroke length (L, inches) , and volumetric efficiency (η) as input. Example hand held calculation; =―――――――――― ⋅⋅⋅⋅3 ⎛ ⎜ ⎜⎝ ――――― ⋅π (( ⋅5.5 in)) 2 4 ⎞ ⎟ ⎟⎠ 12 in 0.95 ⋅1 Stroke 13.315 ――― liter Stroke =Pumpvol 12.838 15.534 18.487 21.697 25.163 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ――― liter Stroke
  • 4. Comments Depending on rig and pump conditions safe operating speeds of 100-110rpm can normally be achieved particulary if the rig has three pumps. e.g Best practices would be to work two pumps at optimal rates,maintaining the 3rd pump as contingency back up so that continuous operations would in most cases and circumstances result. Step #2; For a selected pump liner output (Pout, gal/stroke). This step calculates the total pumping volume of the triplex mud pump(s) for the range of strokes (n) that can be used, presenting results in both tabular & graphical output for 2 and 3 pumps. Liner size = 6inches ≔Pout ⋅4.884 ――― gal Stroke ≔f((n)) ⋅⋅Pout ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 2 Define pump rate range (n); ≔n , ‥30 40 110 ≔fa((n)) ⋅⋅Pout ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 3 1.4⋅10³ 1.95⋅10³ 2.5⋅10³ 3.05⋅10³ 3.6⋅10³ 4.15⋅10³ 4.7⋅10³ 5.25⋅10³ 5.8⋅10³ 300 850 6.35⋅10³ 38 47 56 65 74 83 92 10120 29 110 ⋅4.5 103 ⋅3 103 60 90 f((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ fa((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ n =f((n)) ⋅1.109 103 ⋅1.479 103 ⋅1.849 103 ⋅2.219 103 ⋅2.588 103 ⋅2.958 103 ⋅3.328 103 ⋅3.698 103 ⋅4.067 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min =fa((n)) ⋅1.664 103 ⋅2.219 103 ⋅2.773 103 ⋅3.328 103 ⋅3.882 103 ⋅4.437 103 ⋅4.992 103 ⋅5.546 103 ⋅6.101 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min
  • 5. Step #3; For a selected pump liner output (Pout2, gal/stroke). This step calculates the total pumping volume of the triplex mud pump(s) for the range of strokes (n2) that can be used, presenting results in both tabular & graphical output for two and three mud pumps used. Liner size = 6 1/2 inches ≔Pout2 ⋅5.732 ――― gal Stroke ≔f2((n)) ⋅⋅Pout2 ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 2 ≔f3((n)) ⋅⋅Pout2 ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 3 1.6⋅10³ 2.25⋅10³ 2.9⋅10³ 3.55⋅10³ 4.2⋅10³ 4.85⋅10³ 5.5⋅10³ 6.15⋅10³ 6.8⋅10³ 300 950 7.45⋅10³ 38 47 56 65 74 83 92 10120 29 110 ⋅4 103 ⋅6 103 60 90 f2((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ f3((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ n =f2((n)) ⋅1.302 103 ⋅1.736 103 ⋅2.17 103 ⋅2.604 103 ⋅3.038 103 ⋅3.472 103 ⋅3.906 103 ⋅4.34 103 ⋅4.774 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min =f3((n)) ⋅1.953 103 ⋅2.604 103 ⋅3.255 103 ⋅3.906 103 ⋅4.557 103 ⋅5.208 103 ⋅5.858 103 ⋅6.509 103 ⋅7.16 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min