Tuning Personalized PageRank for
Semantics-aware Recommendations
based on Linked Open Data
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops
(Università degli Studi di Bari ‘Aldo Moro’, Italy - SWAP Research Group)
ESWC 2017
14th Extended Semantic
Web Conference
Portoroz (Slovenia)
June 1, 2017
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommender Systems
Technology able to push relevant items (movies, news, books, etc.)
to the user according to her preferences.
2
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommender Systems
Largely adopted in industry
3
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommendation Paradigms
Collaborative
Filtering
Content-based
RecSys
4
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommendation Paradigms
Collaborative
Filtering
Exploits the preferences of
the community to generate
recommendations.
Insight: to suggest items
liked by users similar to the
target one
5
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommendation Paradigms
Content-based
RecSys
Exploit descriptive features
of the items (e.g. genre of a
book, director of a movie) to
generate recommendations.
Insight: to suggest items
similar to those the user
already liked
6
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommendation Paradigms
+
Hybrid Recommender Systems
Combine different recommendation paradigms to
provide recommendations.
Advantage: to merge the strength of each paradigm in a
unique representation
7
8
Graph-based RecSys
Focus of this work.
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
9
Graph-based RecSys
They can combine collaborative (user preferences) and
content-based features in a unique and powerful formalism
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
10
Graph-based RecSys
How to model collaborative and
content-based data features as a graph?
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
11
i4
Users = nodes
Items = nodes
Preferences = edges
Collaborative
data model for
Graph-based
RecSys
u1
i1
u2 i2
u3 i3
u4
i4
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
12
i4
Users = nodes
Items = nodes
Preferences = edges
What about
content-based
features?
u1
i1
u2 i2
u3 i3
u4
i4
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
13
i4
Users = nodes
Items = nodes
Preferences = edges
We need a data
source to feed
our items with
descriptive
features
u1
i1
u2 i2
u3 i3
u4
i4
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
14
Linked Open Data (cloud)
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
http://dbpedia.org
Our first contribution: we introduce DBpedia
in a hybrid graph-based representation
15
Wikipedia
unstructured content
example
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
(Wikipedia page)
16
example (Wikipedia page)
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Wikipedia
unstructured content
17
DBpedia
Structured Representation
The Matrix
Don Davis
http://dbpedia.org/resource/Category:Films_shot_in_Australia
Films shot in
Australia
dcterms:subject
dbpedia-owl:m
usicCom
poser
http://dbpedia.org/resource/Don_Davis_(composer)

dcterms:subject
dcterm
s:subject
dbo:runtimedbpedia-owl:director
dcterm
s:subject
dcterm
s:subject
Dystopian Films136
American Action
Thriller Films
Cyberpunk Films The Wachowskis
http://dbpedia.org/resource/The_Wachowskis
http://dbpedia.org/resource/Dystopian_FIlms
http://dbpedia.org/resource/Cyberpunk_Films
http://dbpedia.org/resource/American_Action_Thriller_FIlms
http://dbpedia.org/resource/Films_About_Rebellions
Films about
Rebellions
Several interesting (non-trivial) features come into play!
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
18
The Matrix
Don Davis
http://dbpedia.org/resource/Category:Films_shot_in_Australia
Films shot in
Australia
dcterms:subject
dbpedia-owl:m
usicCom
poser
http://dbpedia.org/resource/Don_Davis_(composer)

dcterms:subject
dcterm
s:subject
dbo:runtimedbpedia-owl:director
dcterm
s:subject
dcterm
s:subject
Dystopian Films136
American Action
Thriller Films
Cyberpunk Films The Wachowskis
http://dbpedia.org/resource/The_Wachowskis
http://dbpedia.org/resource/Dystopian_FIlms
http://dbpedia.org/resource/Cyberpunk_Films
http://dbpedia.org/resource/American_Action_Thriller_FIlms
http://dbpedia.org/resource/Films_About_Rebellions
Films about
Rebellions
Several interesting (non-trivial) features come into play!
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
DBpedia
Structured Representation
19
Linked Open Data (cloud)
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
How to introduce DBpedia data points
in our graph-based representation?
20
Linked Open Data (cloud)
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Key concept: mapping
21
i4
u1
u2
u3
u4
Introducing Linked Open Data
graph-based data model - bipartite representation
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
22
i4
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Introducing Linked Open Data
graph-based data model - DBpedia mapping
i4
u1
u2
u3
u4
23
i4
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Introducing Linked Open Data
graph-based data model - DBpedia mapping
i4
u1
u2
u3
u4
dbr:Django_Unchained
dbr:Kill_Bill
dbr:Eyes_Wide_Shut
dbr:The_Matrix
24
i4
u1
u2
u3
u4
dcterms:subject
http://dbpedia.org/resource/Films_About_Rebellions
Films about
Rebellions
dbprop:director
Quentin Tarantino
dbprop:director
graph-based data model - LOD-boosted representation
1999 films
http://dbpedia.org/resource/1999_films
dcterms:subject
dcterms:subject
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Introducing Linked Open Data
http://dbpedia.org/resource/Quentin_Tarantino
25Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Contribution 1: Tripartite Graph-based Representation
encoding user preferences and descriptive features
gathered from the LOD cloud
Graph-based RecSys
26Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
Research Question 1: how do the features gathered from the
LOD cloud impact on the quality of the representation?
27Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
Research Question 2: are all of the features equally important? Is it
possible to automatically select the most promising ones?
28Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
X
X
Research Question 2: are all of the features equally important? Is it
possible to automatically select the most promising ones?
29Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
How to get the recommendations?
30Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
Recommendations are obtained by identifying the most relevant
(item) nodes for a target user, according to the graph topology.
?
31Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
Recommendations are obtained by identifying the most relevant
(item) nodes for a target user, according to the graph topology.
?
How can we obtain such
information?
32Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
Variant of the original PageRank
?
A possible solution:
Personalized PageRank
33Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
?
A possible solution:
Personalized PageRank
Rationale: Relevant nodes (items) can be identified through
Random Walks. But they have to be influenced by
previous users behaviors (preferences!).
34
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
A large probability (e.g. 80%) is assigned a priori to specific items
(the items the user liked)
Weights are distributed according to a simple heuristic
35
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
A large probability (e.g. 80%) is assigned a priori to specific items
(the items the user liked)
Weights are distributed according to a simple heuristic
36
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
The rest is even distributed among the remaining nodes
Weights are distributed according to a simple heuristic
37
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommendation pipeline
How to get the Recommendations?
38
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recommendation pipeline
- Calculate Personalized PageRank score for each item node.
- Sort PageRank scores in a descending order.
- Select top-k recommendations
39
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
- Calculate Personalized PageRank score for each item node.
- Sort PageRank scores in a descending order.
- Select top-k recommendations
Recommendation pipeline
40
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Workflow
- Calculate Personalized PageRank score for each item node.
- Sort PageRank scores in a descending order.
- Select top-k recommendations
41Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Graph-based RecSys
It is likely that The Matrix is suggested to u1, since it
is more (and better) connected in the graph
42
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
One step back: is this the best weighting scheme?
43
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Is it correct to give a tiny probability to the properties
connected to the items we liked?
44
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Contribution 2: PageRank Weighting Schemas
tuning recommendation algorithm, by giving more importance to the
properties gathered from the LOD
45
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
We can distribute the a priori probabilities
by following different heuristics
46
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
80% to the items we liked, 20% to the other nodes
(baseline)
47
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
60% to the items we liked, 20% to the properties gathered
from the LOD cloud, 20% to the other nodes
++
++
--
--
48
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
40% to the items we liked, 40% to the properties gathered
from the LOD cloud, 20% to the other nodes
+++
+++
---
---
49
Graph-based RecSys
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Research Question 3: how does the recommendation algorithm
perform on varying of the weighting schemes?
50
Experiments
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
51
Research Questions
Do graph-based
recommender systems
benefit of the introduction
of LOD-based features?
How does our methodology
perform when features
selection is used to
automatically select the
most promising features?
1/2
1.
2.
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
52
Research Questions
3.
4.
2/2
How does the
recommendation algorithm
perform on varying of the
weighting schemes?
How does our
methodology perform
with respect to state-of-
the-art algorithms?
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
53
Experimental Evaluation
Description of the dataset
MovieLens 1M
6,040 users
3,883 movies
1,000,209 ratings
57.51% positive ratings
165.59 ratings/user (avg.)
269.88 ratings/item (avg.)
96.4% sparsity
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
54
Experimental Evaluation
Description of the dataset
DBbook
6,181 users
6,733 movies
72,732 ratings
45.86% positive ratings
11.71 ratings/user (avg.)
10.74 ratings/item (avg.)
99.85% sparsity
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
55
Experimental Evaluation
DBpedia mapping
3,300 movies (85%) and 6,600 books (98%) were
mapped to DBpedia by querying a SPARQL
endpoint with the title of the item.
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
56
Experimental Evaluation
DBpedia mapping
60 LOD properties were extracted for MovieLens
70 LOD properties were extracted for DBbook
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
57
Experimental Evaluation
Graph Representations :: Recap
G
Basic Graph with
collaborative data points
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
58
Experimental Evaluation
GLOD Graph extended with all the properties
gathered from the LOD cloud
Graph Representations :: Recap
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
59
Experimental Evaluation
GLOD+FS
Graph encoding only the most relevant properties
selected by a feature selection technique FS
Graph Representations :: Recap
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
60
Experimental Evaluation
GLOD+FS
Selection of the top-10 properties through features
selection (Information Gain and PCA)
Graph Representations :: Recap
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
C.Musto, P. Basile, P. Lops, M. de Gemmis, G. Semeraro:
Introducing linked open data in graph-based recommender systems.
Inf. Process. Manage. 53(2): 405-435 (2017)
61Cataldo Musto, Pierpaolo Basile, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, Simone Rutigliano.
Automatic Selection of Linked Open features in Graph-based Recommender Systems. CBRecSys 2015 Workshop, Vienna, 20.09.2015
Experimental Evaluation
Graph Topologies - Comparison
G G_LOD G_LOD+IG G_LOD+PCA
MovieLens
Nodes 9,625 30,204 18,146 13,288
Edges 460,124 509,481 480,526 465,272
Most of the edges are due to the collaborative part of
the data model. Small number of properties added
through G_LOD
62Cataldo Musto, Pierpaolo Basile, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, Simone Rutigliano.
Automatic Selection of Linked Open features in Graph-based Recommender Systems. CBRecSys 2015 Workshop, Vienna, 20.09.2015
Experimental Evaluation
Graph Topologies - Comparison
G G_LOD G_LOD+IG G_LOD+PCA
Dbbook
Nodes 12,649 211,611 88,669 28,164
Edges 33,189 534,841 142,334 67,411
Huge number of nodes and edges injected in G_LOD.
Features selection strongly filters them.
63
Experimental Evaluation
Weighting Schemes
80/20 Original Weighting Scheme
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
60/20/20 20% for LOD properties
40/40/20 40% for LOD properties
20/60/20 60% for LOD properties
64Cataldo Musto, Pierpaolo Basile, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, Simone Rutigliano.
Automatic Selection of Linked Open features in Graph-based Recommender Systems. CBRecSys 2015 Workshop, Vienna, 20.09.2015
Experimental Evaluation
Experimental Protocol
Algorithm Personalized PageRank
Data Split
5-fold Cross Validation for
MovieLens, Train/Test for DBbook
Graph Topologies G, GLOD, GLOD+PCA, GLOD+IG
Weighting Schemes 80/20 - 60/20/20 - 40/40/20 - 20/60/20
Evaluation Metrics F1@5
Experiment 1
65
Impact of LOD-based features and FS techniques.
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
53,5 53,75 54 54,25 54,5
54,04
53,98
54,06
53,96
Experiment 1
66
Impact of LOD-based features :: F1-measure
Improvement only on both datasets
MovieLens
DBbook
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
54 54,5 55 55,5 56
55,28
55,08
54,94
55,07
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
53,5 53,75 54 54,25 54,5
54,04
53,98
54,06
53,96
Experiment 1
67
Impact of LOD-based features :: F1-measure
MovieLens: improvement due to the LOD
MovieLens
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
54 54,5 55 55,5 56
55,28
55,08
54,94
55,07
DBbook
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
54 54,5 55 55,5 56
55,28
55,08
54,94
55,07
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
53,5 53,75 54 54,25 54,5
54,04
53,98
54,06
53,96
Experiment 1
68
Impact of LOD-based features :: F1-measure
Expected behavior: representation unbalanced towards
collaborative data points
MovieLens
DBbook
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
53,5 53,75 54 54,25 54,5
54,04
53,98
54,06
53,96
Experiment 1
69
Impact of LOD-based features :: F1-measure
DBbook: LOD + FS lead to the best results
MovieLens
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
54 54,5 55 55,5 56
55,28
55,08
54,94
55,07
DBbook
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
53,5 53,75 54 54,25 54,5
54,04
53,98
54,06
53,96
Experiment 1
70
Impact of LOD-based features :: F1-measure
Reason: noisy properties gathered from the LOD cloud. FS helps.
MovieLens
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
F1@5
G
G_LOD
G_LOD+PCA
G_LOD+IG
54 54,5 55 55,5 56
55,28
55,08
54,94
55,07
DBbook
Take-Home Message
71
Linked Open Data and Features
Selection techniques have a good
impact on the effectiveness of the
recommendations
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Experiment 2
72
Impact of different weighting schemes
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Experiment 2
73
Impact of Feature Selection :: MovieLens :: F1@5
G-LOD
G-LOD-PCA
G-LOD-IG
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
53,5 53,75 54 54,25
54
53,93
53,8
54,09
54,01
53,8
54,07
54,03
53,99
54,04
53,98
54,06
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Experiment 2
74
Impact of Feature Selection :: MovieLens :: F1@5
G-LOD
G-LOD-PCA
G-LOD-IG
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
53,5 53,75 54 54,25
54
53,93
53,8
54,09
54,01
53,8
54,07
54,03
53,99
54,04
53,98
54,06
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Improvement when PCA and IG are exploited
Experiment 2
75
Impact of Feature Selection :: MovieLens :: F1@5
G-LOD
G-LOD-PCA
G-LOD-IG
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
53,5 53,75 54 54,25
54
53,93
53,8
54,09
54,01
53,8
54,07
54,03
53,99
54,04
53,98
54,06
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Interesting outcome: even if we have many collaborative data points, different
weighting schemes positively influence the recommendations
Experiment 2
76
Impact of Feature Selection :: DBbook :: F1@5
G-LOD
G-LOD-PCA
G-LOD-IG
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
54,5 54,8 55,1 55,4
55,24
55,04
54,96
55,26
54,99
55,04
55,33
55,03
54,98
55,28
55,07
54,94
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Experiment 2
77
Impact of Feature Selection :: DBbook :: F1@5
G-LOD
G-LOD-PCA
G-LOD-IG
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
Baseline
60-20-20
40-40-20
20-60-20
54,5 54,8 55,1 55,4
55,24
55,04
54,96
55,26
54,99
55,04
55,33
55,03
54,98
55,28
55,07
54,94
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Improvement: IG is the best-performing configuration
Take-Home Message
78
Different Weighting Schemes further
improve (even if with tiny gaps) the
effectiveness of the recommendations
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Experiment 3
79
Comparison to State of the art
U2U-KNN (User to User CF)
I2I-KNN (Item to Item CF)
POPULAR (Popularity-based baseline)
BPRMF (Bayesian Personalized Ranking) [+]
BPRMF+Side information
[+] S. Rendle, C.Freudenthaler, Z. Gantner, L. Schmidt-Thieme: BPR:
Bayesian Personalized Ranking from Implicit Feedback. UAI 2009.
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Experiment 3
80
Comparison to State of the Art :: MovieLens
50
51,25
52,5
53,75
55
F1@5
54,09
51,4
52,18
51,79
52,2
50,43
I2I-KNN U2U-KNN BPRMF BPRMF+Side
POPULAR PR (G_LOD+IG+40/40)
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
PageRank with Priors boosted with LOD
is the best-performing approach
Experiment 3
81
Comparison to State of the Art :: MovieLens
50
51,25
52,5
53,75
55
F1@5
54,09
51,4
52,18
51,79
52,2
50,43
I2I-KNN U2U-KNN BPRMF BPRMF+Side
POPULAR PR (G_LOD+IG+40/40)
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Even approaches based on Matrix Factorization
are overcame by our methodology
Experiment 3
82
50
51,5
53
54,5
56
F1@5
55,33
52,9653,0452,9
51,93
51,11
I2I-KNN U2U-KNN BPRMF BPRMF+Side
POPULAR PR (G_LOD+IG+60/20)
Behavior confirmed on DBbook
Comparison to State of the Art :: DBbook
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Conclusions
83Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Recap
84
Methodolology
1. PageRank with Priors as base algorithm
2. Mapping of the items with nodes in the Linked
Open Data Cloud
3. Expansion of the data points and injection of new
nodes and edges
4. Use of feature selection to automatically select the
most promising properties
5. Introduction of different weighting schemes, to
emphasize properties gathered from the LOD cloud
INVESTIGATION ABOUT THE EFFECTIVENESS OF LINKED OPEN DATA IN
GRAPH-BASED RECOMMENDER SYSTEMS
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
Lessons Learned
85
Evaluation
1. Personalized PageRank benefit of the injection of data
points coming from the LOD cloud
2. Feature Selection techniques improve the results.
3. Properties gathered from the LOD are worth to be
emphasized, since they improve the effectiveness of the
algorithm
4. PageRank with Priors boosted with LOD significantly
overcomes state-of-the-art approaches.
INVESTIGATION ABOUT THE EFFECTIVENESS OF LINKED OPEN DATA IN
GRAPH-BASED RECOMMENDER SYSTEMS
Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops.
Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
questions?
Cataldo Musto, PhD
cataldo.musto@uniba.it
@cataldomusto
http://www.di.uniba.it/~swap

Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data

  • 1.
    Tuning Personalized PageRankfor Semantics-aware Recommendations based on Linked Open Data Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops (Università degli Studi di Bari ‘Aldo Moro’, Italy - SWAP Research Group) ESWC 2017 14th Extended Semantic Web Conference Portoroz (Slovenia) June 1, 2017
  • 2.
    Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommender Systems Technology able to push relevant items (movies, news, books, etc.) to the user according to her preferences. 2
  • 3.
    Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommender Systems Largely adopted in industry 3
  • 4.
    Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommendation Paradigms Collaborative Filtering Content-based RecSys 4
  • 5.
    Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommendation Paradigms Collaborative Filtering Exploits the preferences of the community to generate recommendations. Insight: to suggest items liked by users similar to the target one 5
  • 6.
    Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommendation Paradigms Content-based RecSys Exploit descriptive features of the items (e.g. genre of a book, director of a movie) to generate recommendations. Insight: to suggest items similar to those the user already liked 6
  • 7.
    Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommendation Paradigms + Hybrid Recommender Systems Combine different recommendation paradigms to provide recommendations. Advantage: to merge the strength of each paradigm in a unique representation 7
  • 8.
    8 Graph-based RecSys Focus ofthis work. Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 9.
    9 Graph-based RecSys They cancombine collaborative (user preferences) and content-based features in a unique and powerful formalism Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 10.
    10 Graph-based RecSys How tomodel collaborative and content-based data features as a graph? Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 11.
    11 i4 Users = nodes Items= nodes Preferences = edges Collaborative data model for Graph-based RecSys u1 i1 u2 i2 u3 i3 u4 i4 Graph-based RecSys Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 12.
    12 i4 Users = nodes Items= nodes Preferences = edges What about content-based features? u1 i1 u2 i2 u3 i3 u4 i4 Graph-based RecSys Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 13.
    13 i4 Users = nodes Items= nodes Preferences = edges We need a data source to feed our items with descriptive features u1 i1 u2 i2 u3 i3 u4 i4 Graph-based RecSys Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 14.
    14 Linked Open Data(cloud) Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 http://dbpedia.org Our first contribution: we introduce DBpedia in a hybrid graph-based representation
  • 15.
    15 Wikipedia unstructured content example Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 (Wikipedia page)
  • 16.
    16 example (Wikipedia page) CataldoMusto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Wikipedia unstructured content
  • 17.
    17 DBpedia Structured Representation The Matrix DonDavis http://dbpedia.org/resource/Category:Films_shot_in_Australia Films shot in Australia dcterms:subject dbpedia-owl:m usicCom poser http://dbpedia.org/resource/Don_Davis_(composer) dcterms:subject dcterm s:subject dbo:runtimedbpedia-owl:director dcterm s:subject dcterm s:subject Dystopian Films136 American Action Thriller Films Cyberpunk Films The Wachowskis http://dbpedia.org/resource/The_Wachowskis http://dbpedia.org/resource/Dystopian_FIlms http://dbpedia.org/resource/Cyberpunk_Films http://dbpedia.org/resource/American_Action_Thriller_FIlms http://dbpedia.org/resource/Films_About_Rebellions Films about Rebellions Several interesting (non-trivial) features come into play! Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 18.
    18 The Matrix Don Davis http://dbpedia.org/resource/Category:Films_shot_in_Australia Filmsshot in Australia dcterms:subject dbpedia-owl:m usicCom poser http://dbpedia.org/resource/Don_Davis_(composer) dcterms:subject dcterm s:subject dbo:runtimedbpedia-owl:director dcterm s:subject dcterm s:subject Dystopian Films136 American Action Thriller Films Cyberpunk Films The Wachowskis http://dbpedia.org/resource/The_Wachowskis http://dbpedia.org/resource/Dystopian_FIlms http://dbpedia.org/resource/Cyberpunk_Films http://dbpedia.org/resource/American_Action_Thriller_FIlms http://dbpedia.org/resource/Films_About_Rebellions Films about Rebellions Several interesting (non-trivial) features come into play! Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 DBpedia Structured Representation
  • 19.
    19 Linked Open Data(cloud) Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 How to introduce DBpedia data points in our graph-based representation?
  • 20.
    20 Linked Open Data(cloud) Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Key concept: mapping
  • 21.
    21 i4 u1 u2 u3 u4 Introducing Linked OpenData graph-based data model - bipartite representation Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 22.
    22 i4 Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Introducing Linked Open Data graph-based data model - DBpedia mapping i4 u1 u2 u3 u4
  • 23.
    23 i4 Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Introducing Linked Open Data graph-based data model - DBpedia mapping i4 u1 u2 u3 u4 dbr:Django_Unchained dbr:Kill_Bill dbr:Eyes_Wide_Shut dbr:The_Matrix
  • 24.
    24 i4 u1 u2 u3 u4 dcterms:subject http://dbpedia.org/resource/Films_About_Rebellions Films about Rebellions dbprop:director Quentin Tarantino dbprop:director graph-baseddata model - LOD-boosted representation 1999 films http://dbpedia.org/resource/1999_films dcterms:subject dcterms:subject Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Introducing Linked Open Data http://dbpedia.org/resource/Quentin_Tarantino
  • 25.
    25Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Contribution 1: Tripartite Graph-based Representation encoding user preferences and descriptive features gathered from the LOD cloud Graph-based RecSys
  • 26.
    26Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys Research Question 1: how do the features gathered from the LOD cloud impact on the quality of the representation?
  • 27.
    27Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys Research Question 2: are all of the features equally important? Is it possible to automatically select the most promising ones?
  • 28.
    28Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys X X Research Question 2: are all of the features equally important? Is it possible to automatically select the most promising ones?
  • 29.
    29Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 How to get the recommendations?
  • 30.
    30Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys Recommendations are obtained by identifying the most relevant (item) nodes for a target user, according to the graph topology. ?
  • 31.
    31Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys Recommendations are obtained by identifying the most relevant (item) nodes for a target user, according to the graph topology. ? How can we obtain such information?
  • 32.
    32Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys Variant of the original PageRank ? A possible solution: Personalized PageRank
  • 33.
    33Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys ? A possible solution: Personalized PageRank Rationale: Relevant nodes (items) can be identified through Random Walks. But they have to be influenced by previous users behaviors (preferences!).
  • 34.
    34 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 A large probability (e.g. 80%) is assigned a priori to specific items (the items the user liked) Weights are distributed according to a simple heuristic
  • 35.
    35 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 A large probability (e.g. 80%) is assigned a priori to specific items (the items the user liked) Weights are distributed according to a simple heuristic
  • 36.
    36 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 The rest is even distributed among the remaining nodes Weights are distributed according to a simple heuristic
  • 37.
    37 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommendation pipeline How to get the Recommendations?
  • 38.
    38 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Recommendation pipeline - Calculate Personalized PageRank score for each item node. - Sort PageRank scores in a descending order. - Select top-k recommendations
  • 39.
    39 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 - Calculate Personalized PageRank score for each item node. - Sort PageRank scores in a descending order. - Select top-k recommendations Recommendation pipeline
  • 40.
    40 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Workflow - Calculate Personalized PageRank score for each item node. - Sort PageRank scores in a descending order. - Select top-k recommendations
  • 41.
    41Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Graph-based RecSys It is likely that The Matrix is suggested to u1, since it is more (and better) connected in the graph
  • 42.
    42 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 One step back: is this the best weighting scheme?
  • 43.
    43 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Is it correct to give a tiny probability to the properties connected to the items we liked?
  • 44.
    44 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Contribution 2: PageRank Weighting Schemas tuning recommendation algorithm, by giving more importance to the properties gathered from the LOD
  • 45.
    45 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 We can distribute the a priori probabilities by following different heuristics
  • 46.
    46 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 80% to the items we liked, 20% to the other nodes (baseline)
  • 47.
    47 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 60% to the items we liked, 20% to the properties gathered from the LOD cloud, 20% to the other nodes ++ ++ -- --
  • 48.
    48 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 40% to the items we liked, 40% to the properties gathered from the LOD cloud, 20% to the other nodes +++ +++ --- ---
  • 49.
    49 Graph-based RecSys Cataldo Musto,Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Research Question 3: how does the recommendation algorithm perform on varying of the weighting schemes?
  • 50.
    50 Experiments Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 51.
    51 Research Questions Do graph-based recommendersystems benefit of the introduction of LOD-based features? How does our methodology perform when features selection is used to automatically select the most promising features? 1/2 1. 2. Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 52.
    52 Research Questions 3. 4. 2/2 How doesthe recommendation algorithm perform on varying of the weighting schemes? How does our methodology perform with respect to state-of- the-art algorithms? Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 53.
    53 Experimental Evaluation Description ofthe dataset MovieLens 1M 6,040 users 3,883 movies 1,000,209 ratings 57.51% positive ratings 165.59 ratings/user (avg.) 269.88 ratings/item (avg.) 96.4% sparsity Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 54.
    54 Experimental Evaluation Description ofthe dataset DBbook 6,181 users 6,733 movies 72,732 ratings 45.86% positive ratings 11.71 ratings/user (avg.) 10.74 ratings/item (avg.) 99.85% sparsity Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 55.
    55 Experimental Evaluation DBpedia mapping 3,300movies (85%) and 6,600 books (98%) were mapped to DBpedia by querying a SPARQL endpoint with the title of the item. Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 56.
    56 Experimental Evaluation DBpedia mapping 60LOD properties were extracted for MovieLens 70 LOD properties were extracted for DBbook Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 57.
    57 Experimental Evaluation Graph Representations:: Recap G Basic Graph with collaborative data points Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 58.
    58 Experimental Evaluation GLOD Graphextended with all the properties gathered from the LOD cloud Graph Representations :: Recap Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 59.
    59 Experimental Evaluation GLOD+FS Graph encodingonly the most relevant properties selected by a feature selection technique FS Graph Representations :: Recap Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 60.
    60 Experimental Evaluation GLOD+FS Selection ofthe top-10 properties through features selection (Information Gain and PCA) Graph Representations :: Recap Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 C.Musto, P. Basile, P. Lops, M. de Gemmis, G. Semeraro: Introducing linked open data in graph-based recommender systems. Inf. Process. Manage. 53(2): 405-435 (2017)
  • 61.
    61Cataldo Musto, PierpaoloBasile, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, Simone Rutigliano. Automatic Selection of Linked Open features in Graph-based Recommender Systems. CBRecSys 2015 Workshop, Vienna, 20.09.2015 Experimental Evaluation Graph Topologies - Comparison G G_LOD G_LOD+IG G_LOD+PCA MovieLens Nodes 9,625 30,204 18,146 13,288 Edges 460,124 509,481 480,526 465,272 Most of the edges are due to the collaborative part of the data model. Small number of properties added through G_LOD
  • 62.
    62Cataldo Musto, PierpaoloBasile, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, Simone Rutigliano. Automatic Selection of Linked Open features in Graph-based Recommender Systems. CBRecSys 2015 Workshop, Vienna, 20.09.2015 Experimental Evaluation Graph Topologies - Comparison G G_LOD G_LOD+IG G_LOD+PCA Dbbook Nodes 12,649 211,611 88,669 28,164 Edges 33,189 534,841 142,334 67,411 Huge number of nodes and edges injected in G_LOD. Features selection strongly filters them.
  • 63.
    63 Experimental Evaluation Weighting Schemes 80/20Original Weighting Scheme Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 60/20/20 20% for LOD properties 40/40/20 40% for LOD properties 20/60/20 60% for LOD properties
  • 64.
    64Cataldo Musto, PierpaoloBasile, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, Simone Rutigliano. Automatic Selection of Linked Open features in Graph-based Recommender Systems. CBRecSys 2015 Workshop, Vienna, 20.09.2015 Experimental Evaluation Experimental Protocol Algorithm Personalized PageRank Data Split 5-fold Cross Validation for MovieLens, Train/Test for DBbook Graph Topologies G, GLOD, GLOD+PCA, GLOD+IG Weighting Schemes 80/20 - 60/20/20 - 40/40/20 - 20/60/20 Evaluation Metrics F1@5
  • 65.
    Experiment 1 65 Impact ofLOD-based features and FS techniques. Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 66.
    F1@5 G G_LOD G_LOD+PCA G_LOD+IG 53,5 53,75 5454,25 54,5 54,04 53,98 54,06 53,96 Experiment 1 66 Impact of LOD-based features :: F1-measure Improvement only on both datasets MovieLens DBbook Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 F1@5 G G_LOD G_LOD+PCA G_LOD+IG 54 54,5 55 55,5 56 55,28 55,08 54,94 55,07
  • 67.
    F1@5 G G_LOD G_LOD+PCA G_LOD+IG 53,5 53,75 5454,25 54,5 54,04 53,98 54,06 53,96 Experiment 1 67 Impact of LOD-based features :: F1-measure MovieLens: improvement due to the LOD MovieLens Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 F1@5 G G_LOD G_LOD+PCA G_LOD+IG 54 54,5 55 55,5 56 55,28 55,08 54,94 55,07 DBbook
  • 68.
    F1@5 G G_LOD G_LOD+PCA G_LOD+IG 54 54,5 5555,5 56 55,28 55,08 54,94 55,07 F1@5 G G_LOD G_LOD+PCA G_LOD+IG 53,5 53,75 54 54,25 54,5 54,04 53,98 54,06 53,96 Experiment 1 68 Impact of LOD-based features :: F1-measure Expected behavior: representation unbalanced towards collaborative data points MovieLens DBbook Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 69.
    F1@5 G G_LOD G_LOD+PCA G_LOD+IG 53,5 53,75 5454,25 54,5 54,04 53,98 54,06 53,96 Experiment 1 69 Impact of LOD-based features :: F1-measure DBbook: LOD + FS lead to the best results MovieLens Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 F1@5 G G_LOD G_LOD+PCA G_LOD+IG 54 54,5 55 55,5 56 55,28 55,08 54,94 55,07 DBbook
  • 70.
    F1@5 G G_LOD G_LOD+PCA G_LOD+IG 53,5 53,75 5454,25 54,5 54,04 53,98 54,06 53,96 Experiment 1 70 Impact of LOD-based features :: F1-measure Reason: noisy properties gathered from the LOD cloud. FS helps. MovieLens Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 F1@5 G G_LOD G_LOD+PCA G_LOD+IG 54 54,5 55 55,5 56 55,28 55,08 54,94 55,07 DBbook
  • 71.
    Take-Home Message 71 Linked OpenData and Features Selection techniques have a good impact on the effectiveness of the recommendations Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 72.
    Experiment 2 72 Impact ofdifferent weighting schemes Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 73.
    Experiment 2 73 Impact ofFeature Selection :: MovieLens :: F1@5 G-LOD G-LOD-PCA G-LOD-IG Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 53,5 53,75 54 54,25 54 53,93 53,8 54,09 54,01 53,8 54,07 54,03 53,99 54,04 53,98 54,06 Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 74.
    Experiment 2 74 Impact ofFeature Selection :: MovieLens :: F1@5 G-LOD G-LOD-PCA G-LOD-IG Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 53,5 53,75 54 54,25 54 53,93 53,8 54,09 54,01 53,8 54,07 54,03 53,99 54,04 53,98 54,06 Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Improvement when PCA and IG are exploited
  • 75.
    Experiment 2 75 Impact ofFeature Selection :: MovieLens :: F1@5 G-LOD G-LOD-PCA G-LOD-IG Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 53,5 53,75 54 54,25 54 53,93 53,8 54,09 54,01 53,8 54,07 54,03 53,99 54,04 53,98 54,06 Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Interesting outcome: even if we have many collaborative data points, different weighting schemes positively influence the recommendations
  • 76.
    Experiment 2 76 Impact ofFeature Selection :: DBbook :: F1@5 G-LOD G-LOD-PCA G-LOD-IG Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 54,5 54,8 55,1 55,4 55,24 55,04 54,96 55,26 54,99 55,04 55,33 55,03 54,98 55,28 55,07 54,94 Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 77.
    Experiment 2 77 Impact ofFeature Selection :: DBbook :: F1@5 G-LOD G-LOD-PCA G-LOD-IG Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 Baseline 60-20-20 40-40-20 20-60-20 54,5 54,8 55,1 55,4 55,24 55,04 54,96 55,26 54,99 55,04 55,33 55,03 54,98 55,28 55,07 54,94 Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Improvement: IG is the best-performing configuration
  • 78.
    Take-Home Message 78 Different WeightingSchemes further improve (even if with tiny gaps) the effectiveness of the recommendations Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 79.
    Experiment 3 79 Comparison toState of the art U2U-KNN (User to User CF) I2I-KNN (Item to Item CF) POPULAR (Popularity-based baseline) BPRMF (Bayesian Personalized Ranking) [+] BPRMF+Side information [+] S. Rendle, C.Freudenthaler, Z. Gantner, L. Schmidt-Thieme: BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI 2009. Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 80.
    Experiment 3 80 Comparison toState of the Art :: MovieLens 50 51,25 52,5 53,75 55 F1@5 54,09 51,4 52,18 51,79 52,2 50,43 I2I-KNN U2U-KNN BPRMF BPRMF+Side POPULAR PR (G_LOD+IG+40/40) Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 PageRank with Priors boosted with LOD is the best-performing approach
  • 81.
    Experiment 3 81 Comparison toState of the Art :: MovieLens 50 51,25 52,5 53,75 55 F1@5 54,09 51,4 52,18 51,79 52,2 50,43 I2I-KNN U2U-KNN BPRMF BPRMF+Side POPULAR PR (G_LOD+IG+40/40) Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017 Even approaches based on Matrix Factorization are overcame by our methodology
  • 82.
    Experiment 3 82 50 51,5 53 54,5 56 F1@5 55,33 52,9653,0452,9 51,93 51,11 I2I-KNN U2U-KNNBPRMF BPRMF+Side POPULAR PR (G_LOD+IG+60/20) Behavior confirmed on DBbook Comparison to State of the Art :: DBbook Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 83.
    Conclusions 83Cataldo Musto, GiovanniSemeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 84.
    Recap 84 Methodolology 1. PageRank withPriors as base algorithm 2. Mapping of the items with nodes in the Linked Open Data Cloud 3. Expansion of the data points and injection of new nodes and edges 4. Use of feature selection to automatically select the most promising properties 5. Introduction of different weighting schemes, to emphasize properties gathered from the LOD cloud INVESTIGATION ABOUT THE EFFECTIVENESS OF LINKED OPEN DATA IN GRAPH-BASED RECOMMENDER SYSTEMS Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 85.
    Lessons Learned 85 Evaluation 1. PersonalizedPageRank benefit of the injection of data points coming from the LOD cloud 2. Feature Selection techniques improve the results. 3. Properties gathered from the LOD are worth to be emphasized, since they improve the effectiveness of the algorithm 4. PageRank with Priors boosted with LOD significantly overcomes state-of-the-art approaches. INVESTIGATION ABOUT THE EFFECTIVENESS OF LINKED OPEN DATA IN GRAPH-BASED RECOMMENDER SYSTEMS Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, Pasquale Lops. Tuning Personalized PageRank for Semantics-aware Recommendations based on Linked Open Data. ESWC 2017, Portoroz, 01.06.2017
  • 86.