Neo4j
           And some graph problems



                             #neo4j
Peter Neubauer               @peterneubauer
COO, Neo Technology          peter@neotechnology.com
Any sufficiently advanced technology is
    indistinguishable from magic.
            Arthur C. Clarke




            @kymerawand
First, a recap: NOSQL data models
            Key-value stores
Data size




                          Column Family


                                          Document
                                          databases


                                                         Graph databases

                                                                           We are here




                                                      Data complexity
What makes a good DB?


       Separate Logic and Data
       Support Ad-Hoc queries
       Be persistent
       Scale good enough
The property graph model
 Core abstractions:
                                               name = “Emil”

   Nodes
                                               age = 29
                                               sex = “yes”


   Relationships between nodes
   Properties on both                      1                         2


 Traversal framework
                          type = KNOWS
   High performance       time = 4 years                       3
   queries on connected
   data sets                                                       type = car
                                                                   vendor = “SAAB”

 Other bindings                                                    model = “95 Aero”



   Langs, REST, Gremlin, RDF
Social data (customer: brand-name social network)
                                                                           name = “Marcy Runkle”

                              name = “Hank”
                              last_name = “Moody”
 name = “Mike”
                              age = 42                                                          42
 age = 29                                                                              S
                                                                                   W
                                                                                 NO
                                                 disclosure = public
                                                                                K
                  KNOWS                           KNOWS                           KNO
      1                                 7                              3             W     S

                  KN
                                                                                                   13

                                             S
                     OW                                  name = “Charlie”
                                        KNOW
                          S                              last_name = “Runkle”
                                                                                               name = “Dani”
                                                                                               last_name = “California”
          age = 3 days                                                                         age = 27
                                    2

                              name = “Karen”
Just a social graph?
Spatial data (customer: large telecom company)
                                                                         name = ...

                           name = “The Tavern”
                           lat = 1295238237
 name = “Omni Hotel”
                           long = 234823492                                                42
 lat = 3492848
 long = 283823423                              length = 7 miles                     AD
                                                                               RO
                   ROAD                         ROAD                             ROO
      1                                 7                            3              OAD


                   RO
                                                                                             13
                      AD                               name = ...
                                        ROAD
                                                       lat, long = ...
                                                                                          name = “Swedland”
                                                                                          lat = 23410349
       length = 3 miles                                                                   long = 2342348852
                                  2

                           name = ...
Social? Spatial? … Social AND spatial!
Social AND spatial data (customer: LBS)
                                                                    name = “Peter”

                          name = “The Tavern”
                          lat = 1295238237
name = “Omni Hotel”
                          long = 234823492                                                 42
lat = 3492848                                                                     S
                                                                              W
                                                                            NO
long = 283823423                              weight = 10
                                                                           K
                  ROAD                           LIKES                      SIBL
     1                                 7                        3                IN   G

                  RO
                                                                                              13
                     AD                               name = “Emil”
                                       ROAD
                                                      beer_qual = expert
                                                                                          name = “Maria”
                                                                                          age = 30
      length = 3 miles                                                                    beer_qual = non-existant
                                 2

                          name = ...
Financial data (customer: international bank)
                                                                                 name = ...

                                 name = “The Tavern”
                                 lat = 1295238237
                                 long = 234823492                                                        42
 name = “Mr Godfather”                                                                             AW
 karma = veeeery-low
                                                                                             HDR
 cash = more-than-you                                      amount = $1000
                                                                                           IT
                                                                                       W
                   OWNS                                    TRANSFER                        WIT
      1                                       7                              3                 HDR
                                                                                                   AW

                                                                                                            13

                                                  S FE R
                   DE                                             name = “Emil”
                      P   OS                                      cash = always-too-li'l
                            IT                TRAN
                                                                                                        title = “ATM @ Wall St”
                                                                                                        id = 230918484233
        amount = $1000                                                                                  cash_left = 384204
                                        2

                                 name = ...
Use Cases
 REST in Neo4j
 The graph as an OODB – Roo, Grails
 Jruby, Jo4neo
 Deep graph algos – Routing with A*
 Multiple indexes in the graph – GIS
 Recommendation systems – Gremlin
 and LinkedData
REST in Neo4j
  Build on self describing JSON
  Indexing
  Querying
  Bindings to PHP, C#, JS
  OpenGraph API
  Jruby, Scala
The Graph for objects
 Keep data clean!
 Annotation based
    Grails
    Jo4neo
    Roo
    JPA
 Mixin based
   Django
   JRuby
 C# (REST)
 PHP (REST)
The Graph as an OODB
Routing with Neo4j and A*
Routing with Neo4j and A*
Multiple indexes - GIS
 QuadTree (2D)
 Hierarchy
 Time (1D)
 On-demand index
Multiple indexes - GIS
Multiple indexes - GIS
Recommendation - Gremlin
 gremlin.tinkerpop.com
 XPath based “Perl for Graphs”
 Property Graph Model
    Neo4j, RDF-SAIL, Tinkergraph, MongoDB, FS
 LinkedData SAIL
Recommendation - Gremlin
Recommendation - Gremlin
Other use cases
 Activity streams
 Process automation
   Life-filtering of event streams
   Web-of-Things data f ows
                          l
 Object oriented reporting
   Jasper Reports
   ReportAnywhere
   Scripting
Why graph databases?
                                                       “For anything with multiple
                                                       relationships, multiple
                                                       connections N e o4 j
                                                       ab s ol u t e l y R OCK S!”

                                                               http://bit.ly/dys4nx


   A web where the default is social →
   an explosion of graph-y data


   “Just 3 years ago, the data sets our product
   handled were very simple. But the past 9-12
   months have seen an e x p l os i on of the number
   of relationships between things.”

                                           Manager
                                           of an
                                           enterprise
                                           product
                                           for the
                                           Fortune
                                           5000                      Werner Vogels
                                                                     CTO, Amazon
How ego are you? (aka other impls?)
  Franz’ Al l e g roGrap h      (http://agraph.franz.com)

     Proprietary, Lisp, RDF-oriented but real graphdb
  Sones g rap h DB      (http://sones.com)

     Proprietary, .NET, in beta
  Twitter's Fl oc k DB    (http://github.com/twitter/flockdb)

     Twitter's (graph) database for large and shallow graphs
  Google P re g e l   (http://bit.ly/dP9IP)

     We are oh-so-secret
  Objectivity's I n fi n i te Gra p h    (http://infinitegraph.com)

     New, closed OODB with Graph Layer on top
Why Neo4j?
 Most widely deployed graph db in the world
   Robust: 24/7 production since 2003
   Mature: lots of production deployments
   Community: ecosystem of tools, bindings, frameworks

 Available NOW under AGPLv3 / commercial license
   AGPLv3: “if you’re open source, we’re open source”
   If you have proprietary software? Must buy a commercial
   license
   But the f rst one is free! For ALL use-cases.
           i
 Download
   http://neo4j.org
 Feedback
   http://lists.neo4j.org
Th e N e o4 j te a m
    i s h i ri n g !
Do you see the Matrix?
     Apply now.
Questions?




             Image credit: lost again! Sorry :(
http://neotechnology.com

Neo4j - 5 cool graph examples

  • 1.
    Neo4j And some graph problems #neo4j Peter Neubauer @peterneubauer COO, Neo Technology peter@neotechnology.com
  • 2.
    Any sufficiently advancedtechnology is indistinguishable from magic. Arthur C. Clarke @kymerawand
  • 3.
    First, a recap:NOSQL data models Key-value stores Data size Column Family Document databases Graph databases We are here Data complexity
  • 4.
    What makes agood DB? Separate Logic and Data Support Ad-Hoc queries Be persistent Scale good enough
  • 5.
    The property graphmodel Core abstractions: name = “Emil” Nodes age = 29 sex = “yes” Relationships between nodes Properties on both 1 2 Traversal framework type = KNOWS High performance time = 4 years 3 queries on connected data sets type = car vendor = “SAAB” Other bindings model = “95 Aero” Langs, REST, Gremlin, RDF
  • 6.
    Social data (customer:brand-name social network) name = “Marcy Runkle” name = “Hank” last_name = “Moody” name = “Mike” age = 42 42 age = 29 S W NO disclosure = public K KNOWS KNOWS KNO 1 7 3 W S KN 13 S OW name = “Charlie” KNOW S last_name = “Runkle” name = “Dani” last_name = “California” age = 3 days age = 27 2 name = “Karen”
  • 7.
  • 8.
    Spatial data (customer:large telecom company) name = ... name = “The Tavern” lat = 1295238237 name = “Omni Hotel” long = 234823492 42 lat = 3492848 long = 283823423 length = 7 miles AD RO ROAD ROAD ROO 1 7 3 OAD RO 13 AD name = ... ROAD lat, long = ... name = “Swedland” lat = 23410349 length = 3 miles long = 2342348852 2 name = ...
  • 9.
    Social? Spatial? …Social AND spatial!
  • 10.
    Social AND spatialdata (customer: LBS) name = “Peter” name = “The Tavern” lat = 1295238237 name = “Omni Hotel” long = 234823492 42 lat = 3492848 S W NO long = 283823423 weight = 10 K ROAD LIKES SIBL 1 7 3 IN G RO 13 AD name = “Emil” ROAD beer_qual = expert name = “Maria” age = 30 length = 3 miles beer_qual = non-existant 2 name = ...
  • 11.
    Financial data (customer:international bank) name = ... name = “The Tavern” lat = 1295238237 long = 234823492 42 name = “Mr Godfather” AW karma = veeeery-low HDR cash = more-than-you amount = $1000 IT W OWNS TRANSFER WIT 1 7 3 HDR AW 13 S FE R DE name = “Emil” P OS cash = always-too-li'l IT TRAN title = “ATM @ Wall St” id = 230918484233 amount = $1000 cash_left = 384204 2 name = ...
  • 12.
    Use Cases RESTin Neo4j The graph as an OODB – Roo, Grails Jruby, Jo4neo Deep graph algos – Routing with A* Multiple indexes in the graph – GIS Recommendation systems – Gremlin and LinkedData
  • 13.
    REST in Neo4j Build on self describing JSON Indexing Querying Bindings to PHP, C#, JS OpenGraph API Jruby, Scala
  • 14.
    The Graph forobjects Keep data clean! Annotation based Grails Jo4neo Roo JPA Mixin based Django JRuby C# (REST) PHP (REST)
  • 15.
    The Graph asan OODB
  • 16.
  • 17.
  • 18.
    Multiple indexes -GIS QuadTree (2D) Hierarchy Time (1D) On-demand index
  • 19.
  • 20.
  • 21.
    Recommendation - Gremlin gremlin.tinkerpop.com XPath based “Perl for Graphs” Property Graph Model Neo4j, RDF-SAIL, Tinkergraph, MongoDB, FS LinkedData SAIL
  • 22.
  • 23.
  • 24.
    Other use cases Activity streams Process automation Life-filtering of event streams Web-of-Things data f ows l Object oriented reporting Jasper Reports ReportAnywhere Scripting
  • 25.
    Why graph databases? “For anything with multiple relationships, multiple connections N e o4 j ab s ol u t e l y R OCK S!” http://bit.ly/dys4nx A web where the default is social → an explosion of graph-y data “Just 3 years ago, the data sets our product handled were very simple. But the past 9-12 months have seen an e x p l os i on of the number of relationships between things.” Manager of an enterprise product for the Fortune 5000 Werner Vogels CTO, Amazon
  • 26.
    How ego areyou? (aka other impls?) Franz’ Al l e g roGrap h (http://agraph.franz.com) Proprietary, Lisp, RDF-oriented but real graphdb Sones g rap h DB (http://sones.com) Proprietary, .NET, in beta Twitter's Fl oc k DB (http://github.com/twitter/flockdb) Twitter's (graph) database for large and shallow graphs Google P re g e l (http://bit.ly/dP9IP) We are oh-so-secret Objectivity's I n fi n i te Gra p h (http://infinitegraph.com) New, closed OODB with Graph Layer on top
  • 27.
    Why Neo4j? Mostwidely deployed graph db in the world Robust: 24/7 production since 2003 Mature: lots of production deployments Community: ecosystem of tools, bindings, frameworks Available NOW under AGPLv3 / commercial license AGPLv3: “if you’re open source, we’re open source” If you have proprietary software? Must buy a commercial license But the f rst one is free! For ALL use-cases. i Download http://neo4j.org Feedback http://lists.neo4j.org
  • 28.
    Th e Ne o4 j te a m i s h i ri n g ! Do you see the Matrix? Apply now.
  • 29.
    Questions? Image credit: lost again! Sorry :(
  • 30.