40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Modeling Uncertainty For Middleware-based
Streaming Power Grid Applications
Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton
8thMiddleware For Next Generation Internet Computing Workshop
Beijing, China
December 9, 2013
UC Berkeley Ilge Akkaya 1 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
1 Introduction
2 Uncertainty Models and Parameter-Space Exploration
3 Discrete-Event Modeling in Ptolemy II for Uncertainty
Analysis
4 Regression Analysis
5 Conclusion
UC Berkeley Introduction Ilge Akkaya 2 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Introduction
• Cyber-Physical systems rely on the interaction of cyber
and physical system components
• Contemporary "Cyber" systems are about behavioral
correctness and do not have temporal guarantees (e.g.: C
code running on an embedded system, middleware)
• Cyber systems used to regulate physical plants that may
have tight latency requirements ( e.g.: smart grid)
• Uncertainty is inevitable in complex system design:
network latency, execution time, queuing delays, black-box
middleware queues, etc.
• Model-based characterization of uncertainty is useful for
capturing possible worst-case scenarios
UC Berkeley Introduction Ilge Akkaya 3 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Introduction
• Increasing number of high-throughput
sensors (i.e. Phasor Measurement Units
(PMUs)) being integrated into the power
grid
• Wide-area management and control
applications need to satisfy
• Accuracy
• Responsiveness
• Scalability requirements
• Middleware provides coordination and
alignment, at the expense of becoming
the bottleneck
Data
Concentrator
Data
Concentrator
.........
Data
Concentrator
MIDDLEWARE
HPC
Cluster
UC Berkeley Introduction Ilge Akkaya 4 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Heterogeneous Modeling in Ptolemy II
[Edward A. Lee et al., 2010]
UC Berkeley Introduction Ilge Akkaya 5 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Overview: Application Model
• An executable discrete-event Ptolemy model for a
three-area distributed smart-grid application given above
• PMU: Phasor Measurement Unit
• PDC: Phasor Data Concentrator
• Area: Balancing Authority running on a High Performance
Computing (HPC) Cluster
UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 6 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Sources of Uncertainty in Communication
Architectures
• Middleware
• Architecture generally does not scale well with increasing
number of sensor nodes
• Variable data aggregation latency
• Distributed applications
• Distributed State Estimation example: Computationally
expensive, iterative algorithm
• Number of iterations is a function of data quality
• Network
• Link capacity, length, queuing behavior
UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 7 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Capturing Uncertainty
• Complexity and cost of real testbeds promote model-based
performance evaluation of middleware
• We perform uncertainty modeling and analysis of
end-to-end distributed smart grid applications
• Monte Carlo sampling over the parameter space to
encapsulate uncertainties in
• number of sensor streams
• middleware capacity
• application run time
UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 8 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Case Study: Distributed State Estimation
• Distributed State Estimation (DSE) is an algorithm used
for estimating power system state
• Weighted Least-Squares based algorithm
• Distributed version developed to meet tight timing
deadlines
• Typically run every minute ( deadline=60s), likely to run
more frequently on the future power grid
UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 9 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Design Workflow for Uncertainty Analysis
• Parametrization of
uncertainty sources in the
model
• Monte Carlo sampling of the
parameter space
• Execution of the
parameterized model
• Regression analysis
• Design refinement of
influential parameters
UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 10 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Modeling Middleware Architecture
• Middleware modeled
as a thread pool
• Thread pool size is an
uncertainty parameter
• Stochastic delay per
thread processing
[Rician]
• Model trained using
Apache ActiveMQ
TM
benchmark results
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 11 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Distribution Fitting
Ti ∼ Rice(ν(NPMUi ), σ(NPMUi ))
ν(NPMUi ) = 0.0302 log(NPMUi ) + 0.055
σ(NPMUi ) = 0.0007 ∗ NPMUi + 0.0414
where NPMUi is the number of PMU streams at i’th Area
real
estimate
0
2
4
6
8
10
12
14
16
18
20
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Middleware Per File Delay Rician Distribution Fitting
time(s)
frequency
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 12 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Monte Carlo Simulation in Ptolemy II
Top-level data flow model generates
random parameter values
Inner Discrete-Event model is exe-
cuted with these parameters for 100
complete iterations ( 6000 s)
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 13 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Sample Simulation Traces: Time
PMU-PDC
PDC-MW
MW-HPC
p2p_in
END
0.0
0.5
1.0
1.5
2.0
2.5
x102
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Area I
time(s)
events
PMU-PDC
PDC-MW
MW-HPC
p2p_in
END
0.0
0.5
1.0
1.5
2.0
2.5
x102
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Area II
time(s)
events
PMU-PDC
PDC-MW
MW-HPC
p2p_in
END
0.0
0.5
1.0
1.5
2.0
2.5
x10
2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Area III
time(s)
events
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 14 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Sample Simulation Traces: Distribution
sensor-to-concentrator
concentrator-to-MW
iteration runtime
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
0.0 10.0 20.0 122.5
Sample Latency Distribution
time(ms)
EventID
per packet MW delay
0
2
4
6
8
10
12
14
16
18
20
22
24
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Middleware Processing Delay
time(ms)
EventID
Partial Latency Distri-
butions for one sam-
ple run of the DE
model. Captures the un-
certainty in HPC com-
putation [green], sen-
sor network [red], mid-
dleware network [blue]
and middleware process-
ing [black]
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 15 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Monte Carlo Parameter Space
Table : Monte Carlo Variables and Respective Probability Mass
Functions (range format:initial:increment:final )
Variable Parameter Name PMF Range
PMU_Count_1 Uniform 10:10:500
PMU_Count_2 Uniform 10:10:500
PMU_Count_3 Uniform 10:10:500
x1 concurrencyLevel Uniform 2:2:20
x3 numberOfIterations Uniform 1:1:20
x2 max{PMU_Count_1,PMU_Count_2,PMU_Count_3}
y maximum end-to-end run time per parameter sample
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 16 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Exploratory Data Analysis: Middleware
Concurrency
End-to-end deadline: 60s
For maximum number of sensor streams > 280, deadline misses observed at some
runs with lower middleware concurrency
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 17 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Exploratory Data Analysis: Number of DSE
Iterations
100 150 200 250 300 350 400 450
Maximum Number of PMUs per area
Monte−Carlo Simulation Results For Mean DSE Runtime
NumIterations= 1
NumIterations= 2
NumIterations= 3
NumIterations= 4
NumIterations= 5
NumIterations= 6
NumIterations= 7
NumIterations= 8
NumIterations= 9
NumIterations= 10
NumIterations= 11
NumIterations= 12
NumIterations= 13
NumIterations= 14
NumIterations= 15
NumIterations= 16
NumIterations= 17
NumIterations= 18
NumIterations= 19
NumIterations= 20
No observable correlation between number of iterations and run time
UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 18 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Relation Between PMU Count / Concurrency and
Maximum Run Time
UC Berkeley Regression Analysis Ilge Akkaya 19 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Regression Analysis
• Goal: to discover the impact of the number of algorithm
iterations, middleware capacity and number of sensor
streams on the aggregate end-to-end run time
• Polynomial regression with independent variables x1, x2, x3
and dependent variable y
Max PMU Count
Concurrency Level
MaxRuntime(s)
Figure : Polynomial regression fit with 5% confidence intervals
UC Berkeley Regression Analysis Ilge Akkaya 20 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Regression Analysis: Results
• Number of iterations (x3) was found to have little effect on the
dependent variable
• Coefficient estimates for x3 in regression tests were found to be
unreliable, confidence intervals centered around zero
• Data visualization supports regression results: iteration run time
quite insignificant; middleware processing time dominates
0
100
200
300
400
500
0
5
10
15
20
0
10
20
30
40
50
60
Number of PMUs
Number of Iterations vs Total #PMUs vs Runtime
Number of Iterations
MaxEnd−to−endRuntime(s)
UC Berkeley Regression Analysis Ilge Akkaya 21 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Findings
• Concurrency level or the deployment architecture of the
middleware should be improved to scale
• Number of DSE iterations is a minor concern ( some bad
data is tolerable at the expense of more iterations)
• Model-based Parameter Space Exploration provides
pre-deployment results for typical middleware
requirements. Future directions include
• Replacing network fabric/ middleware and re-simulation for
architectural comparisons
• Considering more sources of uncertainty
• Correct-by-construction uncertainty in systems - no
surprises in the end product
UC Berkeley Conclusion Ilge Akkaya 22 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Conclusion
• Distributed power applications are data intensive and
algorithm run times/network latency variance is high
among different deployments
• Pre-deployment analysis on architecture requirements for a
variable number of sensor streams need to be tested under
varying middleware capacity and latency conditions
• Presented a model-based approach for quantifying
uncertainty in middleware based applications
• Monte Carlo sampled parameter space used in populating
an executable heterogeneous model
• Discrete-Event simulation carried out to collect end-to-end
run time measurements
• Regression analysis carried out to account for significant
parameters that have the largest influence on limiting
behavior
UC Berkeley Conclusion Ilge Akkaya 23 / 24
40 60 80 100 120
40
60
80
mmModeling
Uncertainty
For
Middleware-
based
Streaming
Power Grid
Applications
Ilge Akkaya,
Yan Liu,
Edward A.
Lee, Ian
Gorton
Introduction
Modeling
Uncertainty
DE Modeling
Regression
Analysis
Conclusion
Thank You
Questions ?
UC Berkeley Conclusion Ilge Akkaya 24 / 24

Modeling Uncertainty For Middleware-based Streaming Power Grid Applications

  • 1.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Modeling Uncertainty For Middleware-based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton 8thMiddleware For Next Generation Internet Computing Workshop Beijing, China December 9, 2013 UC Berkeley Ilge Akkaya 1 / 24
  • 2.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion 1 Introduction 2 Uncertainty Models and Parameter-Space Exploration 3 Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis 4 Regression Analysis 5 Conclusion UC Berkeley Introduction Ilge Akkaya 2 / 24
  • 3.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Introduction • Cyber-Physical systems rely on the interaction of cyber and physical system components • Contemporary "Cyber" systems are about behavioral correctness and do not have temporal guarantees (e.g.: C code running on an embedded system, middleware) • Cyber systems used to regulate physical plants that may have tight latency requirements ( e.g.: smart grid) • Uncertainty is inevitable in complex system design: network latency, execution time, queuing delays, black-box middleware queues, etc. • Model-based characterization of uncertainty is useful for capturing possible worst-case scenarios UC Berkeley Introduction Ilge Akkaya 3 / 24
  • 4.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Introduction • Increasing number of high-throughput sensors (i.e. Phasor Measurement Units (PMUs)) being integrated into the power grid • Wide-area management and control applications need to satisfy • Accuracy • Responsiveness • Scalability requirements • Middleware provides coordination and alignment, at the expense of becoming the bottleneck Data Concentrator Data Concentrator ......... Data Concentrator MIDDLEWARE HPC Cluster UC Berkeley Introduction Ilge Akkaya 4 / 24
  • 5.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Heterogeneous Modeling in Ptolemy II [Edward A. Lee et al., 2010] UC Berkeley Introduction Ilge Akkaya 5 / 24
  • 6.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Overview: Application Model • An executable discrete-event Ptolemy model for a three-area distributed smart-grid application given above • PMU: Phasor Measurement Unit • PDC: Phasor Data Concentrator • Area: Balancing Authority running on a High Performance Computing (HPC) Cluster UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 6 / 24
  • 7.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Sources of Uncertainty in Communication Architectures • Middleware • Architecture generally does not scale well with increasing number of sensor nodes • Variable data aggregation latency • Distributed applications • Distributed State Estimation example: Computationally expensive, iterative algorithm • Number of iterations is a function of data quality • Network • Link capacity, length, queuing behavior UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 7 / 24
  • 8.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Capturing Uncertainty • Complexity and cost of real testbeds promote model-based performance evaluation of middleware • We perform uncertainty modeling and analysis of end-to-end distributed smart grid applications • Monte Carlo sampling over the parameter space to encapsulate uncertainties in • number of sensor streams • middleware capacity • application run time UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 8 / 24
  • 9.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Case Study: Distributed State Estimation • Distributed State Estimation (DSE) is an algorithm used for estimating power system state • Weighted Least-Squares based algorithm • Distributed version developed to meet tight timing deadlines • Typically run every minute ( deadline=60s), likely to run more frequently on the future power grid UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 9 / 24
  • 10.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Design Workflow for Uncertainty Analysis • Parametrization of uncertainty sources in the model • Monte Carlo sampling of the parameter space • Execution of the parameterized model • Regression analysis • Design refinement of influential parameters UC Berkeley Uncertainty Models and Parameter-Space Exploration Ilge Akkaya 10 / 24
  • 11.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Modeling Middleware Architecture • Middleware modeled as a thread pool • Thread pool size is an uncertainty parameter • Stochastic delay per thread processing [Rician] • Model trained using Apache ActiveMQ TM benchmark results UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 11 / 24
  • 12.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Distribution Fitting Ti ∼ Rice(ν(NPMUi ), σ(NPMUi )) ν(NPMUi ) = 0.0302 log(NPMUi ) + 0.055 σ(NPMUi ) = 0.0007 ∗ NPMUi + 0.0414 where NPMUi is the number of PMU streams at i’th Area real estimate 0 2 4 6 8 10 12 14 16 18 20 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Middleware Per File Delay Rician Distribution Fitting time(s) frequency UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 12 / 24
  • 13.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Monte Carlo Simulation in Ptolemy II Top-level data flow model generates random parameter values Inner Discrete-Event model is exe- cuted with these parameters for 100 complete iterations ( 6000 s) UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 13 / 24
  • 14.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Sample Simulation Traces: Time PMU-PDC PDC-MW MW-HPC p2p_in END 0.0 0.5 1.0 1.5 2.0 2.5 x102 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Area I time(s) events PMU-PDC PDC-MW MW-HPC p2p_in END 0.0 0.5 1.0 1.5 2.0 2.5 x102 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Area II time(s) events PMU-PDC PDC-MW MW-HPC p2p_in END 0.0 0.5 1.0 1.5 2.0 2.5 x10 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Area III time(s) events UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 14 / 24
  • 15.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Sample Simulation Traces: Distribution sensor-to-concentrator concentrator-to-MW iteration runtime 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0.0 10.0 20.0 122.5 Sample Latency Distribution time(ms) EventID per packet MW delay 0 2 4 6 8 10 12 14 16 18 20 22 24 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Middleware Processing Delay time(ms) EventID Partial Latency Distri- butions for one sam- ple run of the DE model. Captures the un- certainty in HPC com- putation [green], sen- sor network [red], mid- dleware network [blue] and middleware process- ing [black] UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 15 / 24
  • 16.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Monte Carlo Parameter Space Table : Monte Carlo Variables and Respective Probability Mass Functions (range format:initial:increment:final ) Variable Parameter Name PMF Range PMU_Count_1 Uniform 10:10:500 PMU_Count_2 Uniform 10:10:500 PMU_Count_3 Uniform 10:10:500 x1 concurrencyLevel Uniform 2:2:20 x3 numberOfIterations Uniform 1:1:20 x2 max{PMU_Count_1,PMU_Count_2,PMU_Count_3} y maximum end-to-end run time per parameter sample UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 16 / 24
  • 17.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Exploratory Data Analysis: Middleware Concurrency End-to-end deadline: 60s For maximum number of sensor streams > 280, deadline misses observed at some runs with lower middleware concurrency UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 17 / 24
  • 18.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Exploratory Data Analysis: Number of DSE Iterations 100 150 200 250 300 350 400 450 Maximum Number of PMUs per area Monte−Carlo Simulation Results For Mean DSE Runtime NumIterations= 1 NumIterations= 2 NumIterations= 3 NumIterations= 4 NumIterations= 5 NumIterations= 6 NumIterations= 7 NumIterations= 8 NumIterations= 9 NumIterations= 10 NumIterations= 11 NumIterations= 12 NumIterations= 13 NumIterations= 14 NumIterations= 15 NumIterations= 16 NumIterations= 17 NumIterations= 18 NumIterations= 19 NumIterations= 20 No observable correlation between number of iterations and run time UC Berkeley Discrete-Event Modeling in Ptolemy II for Uncertainty Analysis Ilge Akkaya 18 / 24
  • 19.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Relation Between PMU Count / Concurrency and Maximum Run Time UC Berkeley Regression Analysis Ilge Akkaya 19 / 24
  • 20.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Regression Analysis • Goal: to discover the impact of the number of algorithm iterations, middleware capacity and number of sensor streams on the aggregate end-to-end run time • Polynomial regression with independent variables x1, x2, x3 and dependent variable y Max PMU Count Concurrency Level MaxRuntime(s) Figure : Polynomial regression fit with 5% confidence intervals UC Berkeley Regression Analysis Ilge Akkaya 20 / 24
  • 21.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Regression Analysis: Results • Number of iterations (x3) was found to have little effect on the dependent variable • Coefficient estimates for x3 in regression tests were found to be unreliable, confidence intervals centered around zero • Data visualization supports regression results: iteration run time quite insignificant; middleware processing time dominates 0 100 200 300 400 500 0 5 10 15 20 0 10 20 30 40 50 60 Number of PMUs Number of Iterations vs Total #PMUs vs Runtime Number of Iterations MaxEnd−to−endRuntime(s) UC Berkeley Regression Analysis Ilge Akkaya 21 / 24
  • 22.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Findings • Concurrency level or the deployment architecture of the middleware should be improved to scale • Number of DSE iterations is a minor concern ( some bad data is tolerable at the expense of more iterations) • Model-based Parameter Space Exploration provides pre-deployment results for typical middleware requirements. Future directions include • Replacing network fabric/ middleware and re-simulation for architectural comparisons • Considering more sources of uncertainty • Correct-by-construction uncertainty in systems - no surprises in the end product UC Berkeley Conclusion Ilge Akkaya 22 / 24
  • 23.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Conclusion • Distributed power applications are data intensive and algorithm run times/network latency variance is high among different deployments • Pre-deployment analysis on architecture requirements for a variable number of sensor streams need to be tested under varying middleware capacity and latency conditions • Presented a model-based approach for quantifying uncertainty in middleware based applications • Monte Carlo sampled parameter space used in populating an executable heterogeneous model • Discrete-Event simulation carried out to collect end-to-end run time measurements • Regression analysis carried out to account for significant parameters that have the largest influence on limiting behavior UC Berkeley Conclusion Ilge Akkaya 23 / 24
  • 24.
    40 60 80100 120 40 60 80 mmModeling Uncertainty For Middleware- based Streaming Power Grid Applications Ilge Akkaya, Yan Liu, Edward A. Lee, Ian Gorton Introduction Modeling Uncertainty DE Modeling Regression Analysis Conclusion Thank You Questions ? UC Berkeley Conclusion Ilge Akkaya 24 / 24