This document discusses multiple linear regression analysis performed using SAS. It begins by outlining the assumptions of linear regression, including a linear relationship between variables, normality, no multicollinearity, and homoscedasticity. It then explains that multiple linear regression attempts to model the relationship between multiple explanatory variables and a response variable by fitting a linear equation to observed data. The document goes on to describe the regression analysis process, model selection, interpretation of outputs like R-squared and p-values, and evaluation of diagnostics like autocorrelation. It concludes by listing the predictor variables selected by the stepwise regression model and interpreting their parameter estimates.