Page 1 of 12
MA-123: Calculus
1st
Semester
Lecture -8
Dr. Muhammad Shabbir
Assistant Professor
University of Engineering and Technology
Lahore Pakistan
Page 2 of 12
Indeterminate Forms
lim
𝑥→0
sin 𝑥
𝑥
=
0
0
lim
𝑥→∞
ln 𝑥
𝑥
=
∞
∞
→ Both are indeterminate forms
L’ Hospital’s Rule:
If lim
𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)
(
0
0
or
∞
∞
form), then lim
𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥)
= lim
𝑥→𝑎
𝑓
́(𝑥)
𝑔́(𝑥)
Types of Indeterminate Forms:
Type1: (
0
0
) or (
∞
∞
) Form
Example 1: lim
𝑥→0
sin 𝑥
𝑥
(
0
0
)
Page 3 of 12
= lim
𝑥→0
cos 𝑥
1
(by L′
Hospital′s rule)
=
cos 0
1
=
1
1
= 1
Example 2: lim
𝑥→
𝜋
2
sec 𝑥
1+tan 𝑥
(
∞
∞
)
= lim
𝑥→
𝜋
2
sec 𝑥 tan 𝑥
sec2𝑥
(by L′Hospital′s rule)
= lim
𝑥→
𝜋
2
tan 𝑥
sec 𝑥
Page 4 of 12
= lim
𝑥→
𝜋
2
sin 𝑥
cos 𝑥
1
cos 𝑥
= lim
𝑥→
𝜋
2
sin 𝑥
= sin
𝜋
2
= 1
Example 3: lim
𝑥→0
1−cos 𝑥
𝑥+𝑥2
(
0
0
)
= lim
𝑥→0
sin 𝑥
1 + 2𝑥
(by L′
Hospital′s Rule)
By applying limit
Page 5 of 12
=
sin 0
1 + 2(0)
=
0
1
= 0
Note: L’ Hospital’s rule is only applicable in (
0
0
) or (
∞
∞
) forms.
Type 2: (∞ × 0) or (0 × ∞) Form
We convert Type 2 into Type 1 and then apply the L’ Hospital’s
rule
Example 4: lim
𝑥→∞
𝑥(𝑎
1
𝑥 − 1) (∞ × 0)
Page 6 of 12
= lim
𝑥→∞
((𝑎
1
𝑥
⁄ )−1)
1
𝑥
(
0
0
)
=
𝑎
1
𝑥
⁄
ln 𝑎 (−
1
𝑥2)
−
1
𝑥2
= 𝑎0
ln 𝑎=ln 𝑎
Type 3: (∞ − ∞) or (∞ + ∞) Form.
We convert Type 3 into Type 1 and then apply the L’ Hospital’s
rule.
Example 5: lim
𝑥→0
[
1
𝑥
− cot 𝑥] (∞ − ∞)
Page 7 of 12
= lim
𝑥→0
[
1
𝑥
−
cos 𝑥
sin 𝑥
]
= lim
𝑥→0
[
sin 𝑥 − 𝑥 cos 𝑥
𝑥 sin 𝑥
] (
0
0
)
= lim
𝑥→0
[
cos 𝑥 − (−𝑥 sin 𝑥 + cos 𝑥)
𝑥 cos 𝑥 + sin 𝑥
] (by L′
Hospital′s rule)
= lim
𝑥→0
[
𝑥 sin 𝑥
𝑥 cos 𝑥 + sin 𝑥
] (
0
0
)
= lim
𝑥→0
[
𝑥 cos 𝑥 + sin 𝑥
2 cos 𝑥 − 𝑥sin 𝑥
] (by L′Hospital rule)
By applying limit
=
0 × cos 0 + sin 0
2 cos 0 − sin 0
Page 8 of 12
=
0
2
= 0
Type 4: (∞0
, ∞∞
, 1∞
, 00) Form.
Example 6: lim
𝑥→0
𝑥𝑥
Let 𝑦 = 𝑥𝑥
Taking natural logarithm on both sides
ln 𝑦 = 𝑥 ln 𝑥
lim
𝑥→0
ln 𝑦 = lim
𝑥→0
𝑥 ∙ ln 𝑥 (0 × ∞)
= lim
𝑥→0
ln 𝑥
1
𝑥
(
∞
∞
)
Page 9 of 12
= lim
𝑥→0
1
𝑥
−
1
𝑥2
(by L′Hospital rule)
= lim
𝑥→0
−𝑥
lim
𝑥→0
ln 𝑦 = 0
ln [lim
𝑥→0
𝑦] = 0
lim
𝑥→0
𝑦 = 𝑒0
lim
𝑥→0
𝑥𝑥
= 1
Example 7: lim
𝑥→0
(1 + 𝑥)
1
𝑥
⁄
(1∞)
Page 10 of 12
Let 𝑦 = (1 + 𝑥)
1
𝑥
⁄
Taking natural logarithm on both sides
ln 𝑦 =
1
𝑥
ln(1 + 𝑥)
lim
𝑥→0
ln 𝑦 = lim
𝑥→0
1
𝑥
∙ ln(1 + 𝑥) (∞ × 0)
= lim
𝑥→0
ln(1 + 𝑥)
𝑥
(
0
0
)
= lim
𝑥→0
1
1 + 𝑥
1
(by L′
Hospital rule)
By applying limit
Page 11 of 12
=
1
1 + 0
1
= 1
lim
𝑥→0
ln 𝑦 = 1 => ln [lim
𝑥→0
𝑦] = 1 => (lim
𝑥→0
𝑦 = 𝑒1
)
lim
𝑥→0
(1 + 𝑥)1/𝑥
= 𝑒
Example 8: lim
𝑥→0
𝑒𝑥−𝑒sin𝑥
𝑥−sin 𝑥
(
0
0
)
= lim
𝑥→0
(1 + 𝑥 +
𝑥2
2!
+
𝑥3
3!
+ ⋯ ) − (1 + 𝑥 +
𝑥2
2!
−
𝑥4
8!
+ ⋯ )
𝑥 − (𝑥 −
𝑥3
3! +
𝑥5
5!
+ ⋯ )
Page 12 of 12
= lim
𝑥→0
(1 +
𝑥2
2!
+
𝑥3
3!
− 1 − 𝑥 −
𝑥2
2!
+
𝑥4
8!
+ ⋯ )
𝑥 − 𝑥 +
𝑥3
3!
−
𝑥5
5!
+ ⋯
‘x’ is very small so neglect 4th
and higher power of ‘x’.
= lim
𝑥→0
𝑥3
3!
⁄
𝑥3
3!
⁄
= 1
Exercise 7.5
Q (7-66) (Odd)

Multi variable calculus important steps to solveMA-123-8.pdf

  • 1.
    Page 1 of12 MA-123: Calculus 1st Semester Lecture -8 Dr. Muhammad Shabbir Assistant Professor University of Engineering and Technology Lahore Pakistan
  • 2.
    Page 2 of12 Indeterminate Forms lim 𝑥→0 sin 𝑥 𝑥 = 0 0 lim 𝑥→∞ ln 𝑥 𝑥 = ∞ ∞ → Both are indeterminate forms L’ Hospital’s Rule: If lim 𝑥→𝑎 𝑓(𝑥) 𝑔(𝑥) ( 0 0 or ∞ ∞ form), then lim 𝑥→𝑎 𝑓(𝑥) 𝑔(𝑥) = lim 𝑥→𝑎 𝑓 ́(𝑥) 𝑔́(𝑥) Types of Indeterminate Forms: Type1: ( 0 0 ) or ( ∞ ∞ ) Form Example 1: lim 𝑥→0 sin 𝑥 𝑥 ( 0 0 )
  • 3.
    Page 3 of12 = lim 𝑥→0 cos 𝑥 1 (by L′ Hospital′s rule) = cos 0 1 = 1 1 = 1 Example 2: lim 𝑥→ 𝜋 2 sec 𝑥 1+tan 𝑥 ( ∞ ∞ ) = lim 𝑥→ 𝜋 2 sec 𝑥 tan 𝑥 sec2𝑥 (by L′Hospital′s rule) = lim 𝑥→ 𝜋 2 tan 𝑥 sec 𝑥
  • 4.
    Page 4 of12 = lim 𝑥→ 𝜋 2 sin 𝑥 cos 𝑥 1 cos 𝑥 = lim 𝑥→ 𝜋 2 sin 𝑥 = sin 𝜋 2 = 1 Example 3: lim 𝑥→0 1−cos 𝑥 𝑥+𝑥2 ( 0 0 ) = lim 𝑥→0 sin 𝑥 1 + 2𝑥 (by L′ Hospital′s Rule) By applying limit
  • 5.
    Page 5 of12 = sin 0 1 + 2(0) = 0 1 = 0 Note: L’ Hospital’s rule is only applicable in ( 0 0 ) or ( ∞ ∞ ) forms. Type 2: (∞ × 0) or (0 × ∞) Form We convert Type 2 into Type 1 and then apply the L’ Hospital’s rule Example 4: lim 𝑥→∞ 𝑥(𝑎 1 𝑥 − 1) (∞ × 0)
  • 6.
    Page 6 of12 = lim 𝑥→∞ ((𝑎 1 𝑥 ⁄ )−1) 1 𝑥 ( 0 0 ) = 𝑎 1 𝑥 ⁄ ln 𝑎 (− 1 𝑥2) − 1 𝑥2 = 𝑎0 ln 𝑎=ln 𝑎 Type 3: (∞ − ∞) or (∞ + ∞) Form. We convert Type 3 into Type 1 and then apply the L’ Hospital’s rule. Example 5: lim 𝑥→0 [ 1 𝑥 − cot 𝑥] (∞ − ∞)
  • 7.
    Page 7 of12 = lim 𝑥→0 [ 1 𝑥 − cos 𝑥 sin 𝑥 ] = lim 𝑥→0 [ sin 𝑥 − 𝑥 cos 𝑥 𝑥 sin 𝑥 ] ( 0 0 ) = lim 𝑥→0 [ cos 𝑥 − (−𝑥 sin 𝑥 + cos 𝑥) 𝑥 cos 𝑥 + sin 𝑥 ] (by L′ Hospital′s rule) = lim 𝑥→0 [ 𝑥 sin 𝑥 𝑥 cos 𝑥 + sin 𝑥 ] ( 0 0 ) = lim 𝑥→0 [ 𝑥 cos 𝑥 + sin 𝑥 2 cos 𝑥 − 𝑥sin 𝑥 ] (by L′Hospital rule) By applying limit = 0 × cos 0 + sin 0 2 cos 0 − sin 0
  • 8.
    Page 8 of12 = 0 2 = 0 Type 4: (∞0 , ∞∞ , 1∞ , 00) Form. Example 6: lim 𝑥→0 𝑥𝑥 Let 𝑦 = 𝑥𝑥 Taking natural logarithm on both sides ln 𝑦 = 𝑥 ln 𝑥 lim 𝑥→0 ln 𝑦 = lim 𝑥→0 𝑥 ∙ ln 𝑥 (0 × ∞) = lim 𝑥→0 ln 𝑥 1 𝑥 ( ∞ ∞ )
  • 9.
    Page 9 of12 = lim 𝑥→0 1 𝑥 − 1 𝑥2 (by L′Hospital rule) = lim 𝑥→0 −𝑥 lim 𝑥→0 ln 𝑦 = 0 ln [lim 𝑥→0 𝑦] = 0 lim 𝑥→0 𝑦 = 𝑒0 lim 𝑥→0 𝑥𝑥 = 1 Example 7: lim 𝑥→0 (1 + 𝑥) 1 𝑥 ⁄ (1∞)
  • 10.
    Page 10 of12 Let 𝑦 = (1 + 𝑥) 1 𝑥 ⁄ Taking natural logarithm on both sides ln 𝑦 = 1 𝑥 ln(1 + 𝑥) lim 𝑥→0 ln 𝑦 = lim 𝑥→0 1 𝑥 ∙ ln(1 + 𝑥) (∞ × 0) = lim 𝑥→0 ln(1 + 𝑥) 𝑥 ( 0 0 ) = lim 𝑥→0 1 1 + 𝑥 1 (by L′ Hospital rule) By applying limit
  • 11.
    Page 11 of12 = 1 1 + 0 1 = 1 lim 𝑥→0 ln 𝑦 = 1 => ln [lim 𝑥→0 𝑦] = 1 => (lim 𝑥→0 𝑦 = 𝑒1 ) lim 𝑥→0 (1 + 𝑥)1/𝑥 = 𝑒 Example 8: lim 𝑥→0 𝑒𝑥−𝑒sin𝑥 𝑥−sin 𝑥 ( 0 0 ) = lim 𝑥→0 (1 + 𝑥 + 𝑥2 2! + 𝑥3 3! + ⋯ ) − (1 + 𝑥 + 𝑥2 2! − 𝑥4 8! + ⋯ ) 𝑥 − (𝑥 − 𝑥3 3! + 𝑥5 5! + ⋯ )
  • 12.
    Page 12 of12 = lim 𝑥→0 (1 + 𝑥2 2! + 𝑥3 3! − 1 − 𝑥 − 𝑥2 2! + 𝑥4 8! + ⋯ ) 𝑥 − 𝑥 + 𝑥3 3! − 𝑥5 5! + ⋯ ‘x’ is very small so neglect 4th and higher power of ‘x’. = lim 𝑥→0 𝑥3 3! ⁄ 𝑥3 3! ⁄ = 1 Exercise 7.5 Q (7-66) (Odd)