SlideShare a Scribd company logo
1 of 99
Download to read offline
Section 3.7
Indeterminate Forms and L’Hôpital’s
Rule
V63.0121.041, Calculus I
New York University
November 3, 2010
Announcements
Quiz 3 in recitation this week on Sections 2.6, 2.8, 3.1, and 3.2
. . . . . .
. . . . . .
Announcements
Quiz 3 in recitation this
week on Sections 2.6, 2.8,
3.1, and 3.2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 2 / 34
. . . . . .
Objectives
Know when a limit is of
indeterminate form:
indeterminate quotients:
0/0, ∞/∞
indeterminate products:
0 × ∞
indeterminate
differences: ∞ − ∞
indeterminate powers:
00
, ∞0
, and 1∞
Resolve limits in
indeterminate form
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 3 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
does not exist
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
does not exist
lim
x→0
sin2
x
sin(x2)
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
does not exist
lim
x→0
sin2
x
sin(x2)
= 1
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
does not exist
lim
x→0
sin2
x
sin(x2)
= 1
lim
x→0
sin 3x
sin x
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
does not exist
lim
x→0
sin2
x
sin(x2)
= 1
lim
x→0
sin 3x
sin x
= 3
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Experiments with funny limits
lim
x→0
sin2
x
x
= 0
lim
x→0
x
sin2
x
does not exist
lim
x→0
sin2
x
sin(x2)
= 1
lim
x→0
sin 3x
sin x
= 3
.
All of these are of the form
0
0
, and since we can get different answers
in different cases, we say this form is indeterminate.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
. . . . . .
Recall
Recall the limit laws from Chapter 2.
Limit of a sum is the sum of the limits
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
. . . . . .
Recall
Recall the limit laws from Chapter 2.
Limit of a sum is the sum of the limits
Limit of a difference is the difference of the limits
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
. . . . . .
Recall
Recall the limit laws from Chapter 2.
Limit of a sum is the sum of the limits
Limit of a difference is the difference of the limits
Limit of a product is the product of the limits
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
. . . . . .
Recall
Recall the limit laws from Chapter 2.
Limit of a sum is the sum of the limits
Limit of a difference is the difference of the limits
Limit of a product is the product of the limits
Limit of a quotient is the quotient of the limits ... whoops! This is
true as long as you don’t try to divide by zero.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
. . . . . .
More about dividing limits
We know dividing by zero is bad.
Most of the time, if an expression’s numerator approaches a finite
number and denominator approaches zero, the quotient
approaches some kind of infinity. For example:
lim
x→0+
1
x
= +∞ lim
x→0−
cos x
x3
= −∞
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
. . . . . .
More about dividing limits
We know dividing by zero is bad.
Most of the time, if an expression’s numerator approaches a finite
number and denominator approaches zero, the quotient
approaches some kind of infinity. For example:
lim
x→0+
1
x
= +∞ lim
x→0−
cos x
x3
= −∞
An exception would be something like
lim
x→∞
1
1
x sin x
= lim
x→∞
x csc x.
which does not exist and is not infinite.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
. . . . . .
More about dividing limits
We know dividing by zero is bad.
Most of the time, if an expression’s numerator approaches a finite
number and denominator approaches zero, the quotient
approaches some kind of infinity. For example:
lim
x→0+
1
x
= +∞ lim
x→0−
cos x
x3
= −∞
An exception would be something like
lim
x→∞
1
1
x sin x
= lim
x→∞
x csc x.
which does not exist and is not infinite.
Even less predictable: numerator and denominator both go to
zero.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
. . . . . .
Language Note
It depends on what the meaning of the word “is" is
Be careful with the
language here. We are not
saying that the limit in each
case “is”
0
0
, and therefore
nonexistent because this
expression is undefined.
The limit is of the form
0
0
,
which means we cannot
evaluate it with our limit
laws.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 7 / 34
. . . . . .
Indeterminate forms are like Tug Of War
Which side wins depends on which side is stronger.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 8 / 34
. . . . . .
Outline
L’Hôpital’s Rule
Relative Rates of Growth
Other Indeterminate Limits
Indeterminate Products
Indeterminate Differences
Indeterminate Powers
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 9 / 34
. . . . . .
The Linear Case
Question
If f and g are lines and f(a) = g(a) = 0, what is
lim
x→a
f(x)
g(x)
?
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 10 / 34
. . . . . .
The Linear Case
Question
If f and g are lines and f(a) = g(a) = 0, what is
lim
x→a
f(x)
g(x)
?
Solution
The functions f and g can be written in the form
f(x) = m1(x − a)
g(x) = m2(x − a)
So
f(x)
g(x)
=
m1
m2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 10 / 34
. . . . . .
The Linear Case, Illustrated
. .x
.y
.y = f(x)
.y = g(x)
.
.a
.
.x
.f(x)
.g(x)
f(x)
g(x)
=
f(x) − f(a)
g(x) − g(a)
=
(f(x) − f(a))/(x − a)
(g(x) − g(a))/(x − a)
=
m1
m2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 11 / 34
. . . . . .
What then?
But what if the functions aren’t linear?
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
. . . . . .
What then?
But what if the functions aren’t linear?
Can we approximate a function near a point with a linear function?
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
. . . . . .
What then?
But what if the functions aren’t linear?
Can we approximate a function near a point with a linear function?
What would be the slope of that linear function?
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
. . . . . .
What then?
But what if the functions aren’t linear?
Can we approximate a function near a point with a linear function?
What would be the slope of that linear function? The derivative!
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
. . . . . .
Theorem of the Day
Theorem (L’Hopital’s Rule)
Suppose f and g are differentiable functions and g′
(x) ̸= 0 near a
(except possibly at a). Suppose that
lim
x→a
f(x) = 0 and lim
x→a
g(x) = 0
or
lim
x→a
f(x) = ±∞ and lim
x→a
g(x) = ±∞
Then
lim
x→a
f(x)
g(x)
= lim
x→a
f′
(x)
g′(x)
,
if the limit on the right-hand side is finite, ∞, or −∞.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 13 / 34
. . . . . .
Meet the Mathematician: L'H_pital
wanted to be a military
man, but poor eyesight
forced him into math
did some math on his own
(solved the “brachistocrone
problem”)
paid a stipend to Johann
Bernoulli, who proved this
theorem and named it after
him! Guillaume François Antoine,
Marquis de L’Hôpital
(French, 1661–1704)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 14 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x
.
.sin x → 0
cos x
1
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x
.
.sin x → 0
cos x
1
= 0
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x
.
.sin x → 0
cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
.
.numerator → 0
sin x2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
.
.numerator → 0
sin x2.
.denominator → 0
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
.
.numerator → 0
sin x2.
.denominator → 0
H
= lim
x→0
2 sin x cos x
(
cos x2
)
(2x)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
.
.numerator → 0
(
cos x2
)
(2x)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
.
.numerator → 0
(
cos x2
)
(2x
.
.denominator → 0
)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
.
.numerator → 0
(
cos x2
)
(2x
.
.denominator → 0
)
H
= lim
x→0
cos2 x − sin2
x
cos x2 − 2x2 sin(x2)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
(
cos x2
)
(2x)
H
= lim
x→0
cos2 x − sin2
x
.
.numerator → 1
cos x2 − 2x2 sin(x2)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
(
cos x2
)
(2x)
H
= lim
x→0
cos2 x − sin2
x
.
.numerator → 1
cos x2 − 2x2 sin(x2)
.
.denominator → 1
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
(
cos x2
)
(2x)
H
= lim
x→0
cos2 x − sin2
x
cos x2 − 2x2 sin(x2)
= 1
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
(
cos x2
)
(2x)
H
= lim
x→0
cos2 x − sin2
x
cos x2 − 2x2 sin(x2)
= 1
Example
lim
x→0
sin 3x
sin x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Revisiting the previous examples
Example
lim
x→0
sin2
x
x
H
= lim
x→0
2 sin x cos x
1
= 0
Example
lim
x→0
sin2
x
sin x2
H
= lim
x→0
2 sin x cos x
(
cos x2
)
(2x)
H
= lim
x→0
cos2 x − sin2
x
cos x2 − 2x2 sin(x2)
= 1
Example
lim
x→0
sin 3x
sin x
H
= lim
x→0
3 cos 3x
cos x
= 3.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
. . . . . .
Another Example
Example
Find
lim
x→0
x
cos x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 16 / 34
. . . . . .
Beware of Red Herrings
Example
Find
lim
x→0
x
cos x
Solution
The limit of the denominator is 1, not 0, so L’Hôpital’s rule does not
apply. The limit is 0.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 16 / 34
. . . . . .
Outline
L’Hôpital’s Rule
Relative Rates of Growth
Other Indeterminate Limits
Indeterminate Products
Indeterminate Differences
Indeterminate Powers
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 17 / 34
. . . . . .
Limits of Rational Functions revisited
Example
Find lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
if it exists.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
. . . . . .
Limits of Rational Functions revisited
Example
Find lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
. . . . . .
Limits of Rational Functions revisited
Example
Find lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
H
= lim
x→∞
10x + 3
6x + 7
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
. . . . . .
Limits of Rational Functions revisited
Example
Find lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
H
= lim
x→∞
10x + 3
6x + 7
H
= lim
x→∞
10
6
=
5
3
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
. . . . . .
Limits of Rational Functions revisited
Example
Find lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
3x2 + 7x + 27
H
= lim
x→∞
10x + 3
6x + 7
H
= lim
x→∞
10
6
=
5
3
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
. . . . . .
Limits of Rational Functions revisited II
Example
Find lim
x→∞
5x2 + 3x − 1
7x + 27
if it exists.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
. . . . . .
Limits of Rational Functions revisited II
Example
Find lim
x→∞
5x2 + 3x − 1
7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
7x + 27
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
. . . . . .
Limits of Rational Functions revisited II
Example
Find lim
x→∞
5x2 + 3x − 1
7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
7x + 27
H
= lim
x→∞
10x + 3
7
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
. . . . . .
Limits of Rational Functions revisited II
Example
Find lim
x→∞
5x2 + 3x − 1
7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
5x2 + 3x − 1
7x + 27
H
= lim
x→∞
10x + 3
7
= ∞
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
. . . . . .
Limits of Rational Functions revisited III
Example
Find lim
x→∞
4x + 7
3x2 + 7x + 27
if it exists.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
. . . . . .
Limits of Rational Functions revisited III
Example
Find lim
x→∞
4x + 7
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
4x + 7
3x2 + 7x + 27
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
. . . . . .
Limits of Rational Functions revisited III
Example
Find lim
x→∞
4x + 7
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
4x + 7
3x2 + 7x + 27
H
= lim
x→∞
4
6x + 7
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
. . . . . .
Limits of Rational Functions revisited III
Example
Find lim
x→∞
4x + 7
3x2 + 7x + 27
if it exists.
Solution
Using L’Hôpital:
lim
x→∞
4x + 7
3x2 + 7x + 27
H
= lim
x→∞
4
6x + 7
= 0
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
. . . . . .
Limits of Rational Functions
Fact
Let f(x) and g(x) be polynomials of degree p and q.
If p  q, then lim
x→∞
f(x)
g(x)
= ∞
If p  q, then lim
x→∞
f(x)
g(x)
= 0
If p = q, then lim
x→∞
f(x)
g(x)
is the ratio of the leading coefficients of f
and g.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 21 / 34
. . . . . .
Exponential versus geometric growth
Example
Find lim
x→∞
ex
x2
, if it exists.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
. . . . . .
Exponential versus geometric growth
Example
Find lim
x→∞
ex
x2
, if it exists.
Solution
We have
lim
x→∞
ex
x2
H
= lim
x→∞
ex
2x
H
= lim
x→∞
ex
2
= ∞.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
. . . . . .
Exponential versus geometric growth
Example
Find lim
x→∞
ex
x2
, if it exists.
Solution
We have
lim
x→∞
ex
x2
H
= lim
x→∞
ex
2x
H
= lim
x→∞
ex
2
= ∞.
Example
What about lim
x→∞
ex
x3
?
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
. . . . . .
Exponential versus geometric growth
Example
Find lim
x→∞
ex
x2
, if it exists.
Solution
We have
lim
x→∞
ex
x2
H
= lim
x→∞
ex
2x
H
= lim
x→∞
ex
2
= ∞.
Example
What about lim
x→∞
ex
x3
?
Answer
Still ∞. (Why?)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
. . . . . .
Exponential versus fractional powers
Example
Find lim
x→∞
ex
√
x
, if it exists.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
. . . . . .
Exponential versus fractional powers
Example
Find lim
x→∞
ex
√
x
, if it exists.
Solution (without L’Hôpital)
We have for all x  1, x1/2
 x1
, so
ex
x1/2

ex
x
The right hand side tends to ∞, so the left-hand side must, too.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
. . . . . .
Exponential versus fractional powers
Example
Find lim
x→∞
ex
√
x
, if it exists.
Solution (without L’Hôpital)
We have for all x  1, x1/2
 x1
, so
ex
x1/2

ex
x
The right hand side tends to ∞, so the left-hand side must, too.
Solution (with L’Hôpital)
lim
x→∞
ex
√
x
= lim
x→∞
ex
1
2 x−1/2
= lim
x→∞
2
√
xex
= ∞
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
. . . . . .
Exponential versus any power
Theorem
Let r be any positive number. Then
lim
x→∞
ex
xr
= ∞.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 24 / 34
. . . . . .
Exponential versus any power
Theorem
Let r be any positive number. Then
lim
x→∞
ex
xr
= ∞.
Proof.
If r is a positive integer, then apply L’Hôpital’s rule r times to the
fraction. You get
lim
x→∞
ex
xr
H
= . . .
H
= lim
x→∞
ex
r!
= ∞.
If r is not an integer, let m be the smallest integer greater than r. Then
if x  1, xr
 xm
, so
ex
xr

ex
xm
. The right-hand side tends to ∞ by the
previous step.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 24 / 34
. . . . . .
Any exponential versus any power
Theorem
Let a  1 and r  0. Then
lim
x→∞
ax
xr
= ∞.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
. . . . . .
Any exponential versus any power
Theorem
Let a  1 and r  0. Then
lim
x→∞
ax
xr
= ∞.
Proof.
If r is a positive integer, we have
lim
x→∞
ax
xr
H
= . . .
H
= lim
x→∞
(ln a)rax
r!
= ∞.
If r isn’t an integer, we can compare it as before.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
. . . . . .
Any exponential versus any power
Theorem
Let a  1 and r  0. Then
lim
x→∞
ax
xr
= ∞.
Proof.
If r is a positive integer, we have
lim
x→∞
ax
xr
H
= . . .
H
= lim
x→∞
(ln a)rax
r!
= ∞.
If r isn’t an integer, we can compare it as before.
So even lim
x→∞
(1.00000001)x
x100000000
= ∞!
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
. . . . . .
Logarithmic versus power growth
Theorem
Let r be any positive number. Then
lim
x→∞
ln x
xr
= 0.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 26 / 34
. . . . . .
Logarithmic versus power growth
Theorem
Let r be any positive number. Then
lim
x→∞
ln x
xr
= 0.
Proof.
One application of L’Hôpital’s Rule here suffices:
lim
x→∞
ln x
xr
H
= lim
x→∞
1/x
rxr−1
= lim
x→∞
1
rxr
= 0.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 26 / 34
. . . . . .
Outline
L’Hôpital’s Rule
Relative Rates of Growth
Other Indeterminate Limits
Indeterminate Products
Indeterminate Differences
Indeterminate Powers
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 27 / 34
. . . . . .
Indeterminate products
Example
Find
lim
x→0+
√
x ln x
This limit is of the form 0 · (−∞).
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
. . . . . .
Indeterminate products
Example
Find
lim
x→0+
√
x ln x
This limit is of the form 0 · (−∞).
Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:
lim
x→0+
√
x ln x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
. . . . . .
Indeterminate products
Example
Find
lim
x→0+
√
x ln x
This limit is of the form 0 · (−∞).
Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:
lim
x→0+
√
x ln x = lim
x→0+
ln x
1/
√
x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
. . . . . .
Indeterminate products
Example
Find
lim
x→0+
√
x ln x
This limit is of the form 0 · (−∞).
Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:
lim
x→0+
√
x ln x = lim
x→0+
ln x
1/
√
x
H
= lim
x→0+
x−1
−1
2 x−3/2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
. . . . . .
Indeterminate products
Example
Find
lim
x→0+
√
x ln x
This limit is of the form 0 · (−∞).
Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:
lim
x→0+
√
x ln x = lim
x→0+
ln x
1/
√
x
H
= lim
x→0+
x−1
−1
2 x−3/2
= lim
x→0+
−2
√
x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
. . . . . .
Indeterminate products
Example
Find
lim
x→0+
√
x ln x
This limit is of the form 0 · (−∞).
Solution
Jury-rig the expression to make an indeterminate quotient. Then apply
L’Hôpital’s Rule:
lim
x→0+
√
x ln x = lim
x→0+
ln x
1/
√
x
H
= lim
x→0+
x−1
−1
2 x−3/2
= lim
x→0+
−2
√
x = 0
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
. . . . . .
Indeterminate differences
Example
lim
x→0+
(
1
x
− cot 2x
)
This limit is of the form ∞ − ∞.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
. . . . . .
Indeterminate differences
Example
lim
x→0+
(
1
x
− cot 2x
)
This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.
lim
x→0+
sin(2x) − x cos(2x)
x sin(2x)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
. . . . . .
Indeterminate differences
Example
lim
x→0+
(
1
x
− cot 2x
)
This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.
lim
x→0+
sin(2x) − x cos(2x)
x sin(2x)
H
= lim
x→0+
cos(2x) + 2x sin(2x)
2x cos(2x) + sin(2x)
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
. . . . . .
Indeterminate differences
Example
lim
x→0+
(
1
x
− cot 2x
)
This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.
lim
x→0+
sin(2x) − x cos(2x)
x sin(2x)
H
= lim
x→0+
cos(2x) + 2x sin(2x)
2x cos(2x) + sin(2x)
= ∞
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
. . . . . .
Indeterminate differences
Example
lim
x→0+
(
1
x
− cot 2x
)
This limit is of the form ∞ − ∞.
Solution
Again, rig it to make an indeterminate quotient.
lim
x→0+
sin(2x) − x cos(2x)
x sin(2x)
H
= lim
x→0+
cos(2x) + 2x sin(2x)
2x cos(2x) + sin(2x)
= ∞
The limit is +∞ becuase the numerator tends to 1 while the
denominator tends to zero but remains positive.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
. . . . . .
Checking your work
.
.
lim
x→0
tan 2x
2x
= 1, so for small x,
tan 2x ≈ 2x. So cot 2x ≈
1
2x
and
1
x
− cot 2x ≈
1
x
−
1
2x
=
1
2x
→ ∞
as x → 0+
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 30 / 34
. . . . . .
Indeterminate powers
Example
Find lim
x→0+
(1 − 2x)1/x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
. . . . . .
Indeterminate powers
Example
Find lim
x→0+
(1 − 2x)1/x
Take the logarithm:
ln
(
lim
x→0+
(1 − 2x)1/x
)
= lim
x→0+
ln
(
(1 − 2x)1/x
)
= lim
x→0+
ln(1 − 2x)
x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
. . . . . .
Indeterminate powers
Example
Find lim
x→0+
(1 − 2x)1/x
Take the logarithm:
ln
(
lim
x→0+
(1 − 2x)1/x
)
= lim
x→0+
ln
(
(1 − 2x)1/x
)
= lim
x→0+
ln(1 − 2x)
x
This limit is of the form
0
0
, so we can use L’Hôpital:
lim
x→0+
ln(1 − 2x)
x
H
= lim
x→0+
−2
1−2x
1
= −2
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
. . . . . .
Indeterminate powers
Example
Find lim
x→0+
(1 − 2x)1/x
Take the logarithm:
ln
(
lim
x→0+
(1 − 2x)1/x
)
= lim
x→0+
ln
(
(1 − 2x)1/x
)
= lim
x→0+
ln(1 − 2x)
x
This limit is of the form
0
0
, so we can use L’Hôpital:
lim
x→0+
ln(1 − 2x)
x
H
= lim
x→0+
−2
1−2x
1
= −2
This is not the answer, it’s the log of the answer! So the answer we
want is e−2
.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
. . . . . .
Another indeterminate power limit
Example
lim
x→0
(3x)4x
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 32 / 34
. . . . . .
Another indeterminate power limit
Example
lim
x→0
(3x)4x
Solution
ln lim
x→0+
(3x)4x
= lim
x→0+
ln(3x)4x
= lim
x→0+
4x ln(3x)
= lim
x→0+
ln(3x)
1/4x
H
= lim
x→0+
3/3x
−1/4x2
= lim
x→0+
(−4x) = 0
So the answer is e0
= 1.
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 32 / 34
. . . . . .
Summary
Form Method
0
0 L’Hôpital’s rule directly
∞
∞ L’Hôpital’s rule directly
0 · ∞ jiggle to make 0
0 or ∞
∞.
∞ − ∞ combine to make an indeterminate product or quotient
00
take ln to make an indeterminate product
∞0 ditto
1∞
ditto
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 33 / 34
. . . . . .
Final Thoughts
L’Hôpital’s Rule only works on indeterminate quotients
Luckily, most indeterminate limits can be transformed into
indeterminate quotients
L’Hôpital’s Rule gives wrong answers for non-indeterminate limits!
V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 34 / 34

More Related Content

Similar to Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)

Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)Matthew Leingang
 
Lesson17 -indeterminate_forms_and_l_hopitals_rule_021_handout
Lesson17  -indeterminate_forms_and_l_hopitals_rule_021_handoutLesson17  -indeterminate_forms_and_l_hopitals_rule_021_handout
Lesson17 -indeterminate_forms_and_l_hopitals_rule_021_handoutMatthew Leingang
 
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)Mel Anthony Pepito
 
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)Mel Anthony Pepito
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleMel Anthony Pepito
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slidesMatthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Matthew Leingang
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Matthew Leingang
 
Lesson 2: The Concept of Limit
Lesson 2: The Concept of LimitLesson 2: The Concept of Limit
Lesson 2: The Concept of LimitMatthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Matthew Leingang
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15  -exponential_growth_and_decay_021_slidesLesson15  -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMatthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Matthew Leingang
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Mel Anthony Pepito
 
Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (Section 041 slides)
Lesson 18: Maximum and Minimum Values (Section 041 slides)Lesson 18: Maximum and Minimum Values (Section 041 slides)
Lesson 18: Maximum and Minimum Values (Section 041 slides)Matthew Leingang
 
Lesson 9: The Product and Quotient Rules (Section 21 slides)
Lesson 9: The Product and Quotient Rules (Section 21 slides)Lesson 9: The Product and Quotient Rules (Section 21 slides)
Lesson 9: The Product and Quotient Rules (Section 21 slides)Matthew Leingang
 

Similar to Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides) (20)

Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 handout)
 
Lesson17 -indeterminate_forms_and_l_hopitals_rule_021_handout
Lesson17  -indeterminate_forms_and_l_hopitals_rule_021_handoutLesson17  -indeterminate_forms_and_l_hopitals_rule_021_handout
Lesson17 -indeterminate_forms_and_l_hopitals_rule_021_handout
 
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 021 slides)
 
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)
Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 3: Limits
Lesson 3: LimitsLesson 3: Limits
Lesson 3: Limits
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 
Lesson 2: The Concept of Limit
Lesson 2: The Concept of LimitLesson 2: The Concept of Limit
Lesson 2: The Concept of Limit
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15  -exponential_growth_and_decay_021_slidesLesson15  -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 021 ...
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 
Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)Lesson 19: The Mean Value Theorem (Section 021 handout)
Lesson 19: The Mean Value Theorem (Section 021 handout)
 
Lesson 18: Maximum and Minimum Values (Section 041 slides)
Lesson 18: Maximum and Minimum Values (Section 041 slides)Lesson 18: Maximum and Minimum Values (Section 041 slides)
Lesson 18: Maximum and Minimum Values (Section 041 slides)
 
Lesson 9: The Product and Quotient Rules (Section 21 slides)
Lesson 9: The Product and Quotient Rules (Section 21 slides)Lesson 9: The Product and Quotient Rules (Section 21 slides)
Lesson 9: The Product and Quotient Rules (Section 21 slides)
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Lesson 17: Indeterminate Forms and L'Hopital's Rule (Section 041 slides)

  • 1. Section 3.7 Indeterminate Forms and L’Hôpital’s Rule V63.0121.041, Calculus I New York University November 3, 2010 Announcements Quiz 3 in recitation this week on Sections 2.6, 2.8, 3.1, and 3.2 . . . . . .
  • 2. . . . . . . Announcements Quiz 3 in recitation this week on Sections 2.6, 2.8, 3.1, and 3.2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 2 / 34
  • 3. . . . . . . Objectives Know when a limit is of indeterminate form: indeterminate quotients: 0/0, ∞/∞ indeterminate products: 0 × ∞ indeterminate differences: ∞ − ∞ indeterminate powers: 00 , ∞0 , and 1∞ Resolve limits in indeterminate form V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 3 / 34
  • 4. . . . . . . Experiments with funny limits lim x→0 sin2 x x . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 5. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 6. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 7. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x does not exist . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 8. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x does not exist lim x→0 sin2 x sin(x2) . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 9. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x does not exist lim x→0 sin2 x sin(x2) = 1 . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 10. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x does not exist lim x→0 sin2 x sin(x2) = 1 lim x→0 sin 3x sin x . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 11. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x does not exist lim x→0 sin2 x sin(x2) = 1 lim x→0 sin 3x sin x = 3 . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 12. . . . . . . Experiments with funny limits lim x→0 sin2 x x = 0 lim x→0 x sin2 x does not exist lim x→0 sin2 x sin(x2) = 1 lim x→0 sin 3x sin x = 3 . All of these are of the form 0 0 , and since we can get different answers in different cases, we say this form is indeterminate. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 4 / 34
  • 13. . . . . . . Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 14. . . . . . . Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a difference is the difference of the limits V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 15. . . . . . . Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a difference is the difference of the limits Limit of a product is the product of the limits V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 16. . . . . . . Recall Recall the limit laws from Chapter 2. Limit of a sum is the sum of the limits Limit of a difference is the difference of the limits Limit of a product is the product of the limits Limit of a quotient is the quotient of the limits ... whoops! This is true as long as you don’t try to divide by zero. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 5 / 34
  • 17. . . . . . . More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a finite number and denominator approaches zero, the quotient approaches some kind of infinity. For example: lim x→0+ 1 x = +∞ lim x→0− cos x x3 = −∞ V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
  • 18. . . . . . . More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a finite number and denominator approaches zero, the quotient approaches some kind of infinity. For example: lim x→0+ 1 x = +∞ lim x→0− cos x x3 = −∞ An exception would be something like lim x→∞ 1 1 x sin x = lim x→∞ x csc x. which does not exist and is not infinite. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
  • 19. . . . . . . More about dividing limits We know dividing by zero is bad. Most of the time, if an expression’s numerator approaches a finite number and denominator approaches zero, the quotient approaches some kind of infinity. For example: lim x→0+ 1 x = +∞ lim x→0− cos x x3 = −∞ An exception would be something like lim x→∞ 1 1 x sin x = lim x→∞ x csc x. which does not exist and is not infinite. Even less predictable: numerator and denominator both go to zero. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 6 / 34
  • 20. . . . . . . Language Note It depends on what the meaning of the word “is" is Be careful with the language here. We are not saying that the limit in each case “is” 0 0 , and therefore nonexistent because this expression is undefined. The limit is of the form 0 0 , which means we cannot evaluate it with our limit laws. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 7 / 34
  • 21. . . . . . . Indeterminate forms are like Tug Of War Which side wins depends on which side is stronger. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 8 / 34
  • 22. . . . . . . Outline L’Hôpital’s Rule Relative Rates of Growth Other Indeterminate Limits Indeterminate Products Indeterminate Differences Indeterminate Powers V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 9 / 34
  • 23. . . . . . . The Linear Case Question If f and g are lines and f(a) = g(a) = 0, what is lim x→a f(x) g(x) ? V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 10 / 34
  • 24. . . . . . . The Linear Case Question If f and g are lines and f(a) = g(a) = 0, what is lim x→a f(x) g(x) ? Solution The functions f and g can be written in the form f(x) = m1(x − a) g(x) = m2(x − a) So f(x) g(x) = m1 m2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 10 / 34
  • 25. . . . . . . The Linear Case, Illustrated . .x .y .y = f(x) .y = g(x) . .a . .x .f(x) .g(x) f(x) g(x) = f(x) − f(a) g(x) − g(a) = (f(x) − f(a))/(x − a) (g(x) − g(a))/(x − a) = m1 m2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 11 / 34
  • 26. . . . . . . What then? But what if the functions aren’t linear? V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 27. . . . . . . What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 28. . . . . . . What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? What would be the slope of that linear function? V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 29. . . . . . . What then? But what if the functions aren’t linear? Can we approximate a function near a point with a linear function? What would be the slope of that linear function? The derivative! V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 12 / 34
  • 30. . . . . . . Theorem of the Day Theorem (L’Hopital’s Rule) Suppose f and g are differentiable functions and g′ (x) ̸= 0 near a (except possibly at a). Suppose that lim x→a f(x) = 0 and lim x→a g(x) = 0 or lim x→a f(x) = ±∞ and lim x→a g(x) = ±∞ Then lim x→a f(x) g(x) = lim x→a f′ (x) g′(x) , if the limit on the right-hand side is finite, ∞, or −∞. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 13 / 34
  • 31. . . . . . . Meet the Mathematician: L'H_pital wanted to be a military man, but poor eyesight forced him into math did some math on his own (solved the “brachistocrone problem”) paid a stipend to Johann Bernoulli, who proved this theorem and named it after him! Guillaume François Antoine, Marquis de L’Hôpital (French, 1661–1704) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 14 / 34
  • 32. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 33. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 34. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x . .sin x → 0 cos x 1 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 35. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x . .sin x → 0 cos x 1 = 0 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 36. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x . .sin x → 0 cos x 1 = 0 Example lim x→0 sin2 x sin x2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 37. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x . .numerator → 0 sin x2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 38. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x . .numerator → 0 sin x2. .denominator → 0 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 39. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x . .numerator → 0 sin x2. .denominator → 0 H = lim x→0 2 sin x cos x ( cos x2 ) (2x) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 40. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x . .numerator → 0 ( cos x2 ) (2x) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 41. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x . .numerator → 0 ( cos x2 ) (2x . .denominator → 0 ) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 42. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x . .numerator → 0 ( cos x2 ) (2x . .denominator → 0 ) H = lim x→0 cos2 x − sin2 x cos x2 − 2x2 sin(x2) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 43. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x ( cos x2 ) (2x) H = lim x→0 cos2 x − sin2 x . .numerator → 1 cos x2 − 2x2 sin(x2) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 44. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x ( cos x2 ) (2x) H = lim x→0 cos2 x − sin2 x . .numerator → 1 cos x2 − 2x2 sin(x2) . .denominator → 1 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 45. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x ( cos x2 ) (2x) H = lim x→0 cos2 x − sin2 x cos x2 − 2x2 sin(x2) = 1 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 46. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x ( cos x2 ) (2x) H = lim x→0 cos2 x − sin2 x cos x2 − 2x2 sin(x2) = 1 Example lim x→0 sin 3x sin x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 47. . . . . . . Revisiting the previous examples Example lim x→0 sin2 x x H = lim x→0 2 sin x cos x 1 = 0 Example lim x→0 sin2 x sin x2 H = lim x→0 2 sin x cos x ( cos x2 ) (2x) H = lim x→0 cos2 x − sin2 x cos x2 − 2x2 sin(x2) = 1 Example lim x→0 sin 3x sin x H = lim x→0 3 cos 3x cos x = 3. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 15 / 34
  • 48. . . . . . . Another Example Example Find lim x→0 x cos x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 16 / 34
  • 49. . . . . . . Beware of Red Herrings Example Find lim x→0 x cos x Solution The limit of the denominator is 1, not 0, so L’Hôpital’s rule does not apply. The limit is 0. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 16 / 34
  • 50. . . . . . . Outline L’Hôpital’s Rule Relative Rates of Growth Other Indeterminate Limits Indeterminate Products Indeterminate Differences Indeterminate Powers V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 17 / 34
  • 51. . . . . . . Limits of Rational Functions revisited Example Find lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 if it exists. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 52. . . . . . . Limits of Rational Functions revisited Example Find lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 53. . . . . . . Limits of Rational Functions revisited Example Find lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 H = lim x→∞ 10x + 3 6x + 7 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 54. . . . . . . Limits of Rational Functions revisited Example Find lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 H = lim x→∞ 10x + 3 6x + 7 H = lim x→∞ 10 6 = 5 3 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 55. . . . . . . Limits of Rational Functions revisited Example Find lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 3x2 + 7x + 27 H = lim x→∞ 10x + 3 6x + 7 H = lim x→∞ 10 6 = 5 3 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 18 / 34
  • 56. . . . . . . Limits of Rational Functions revisited II Example Find lim x→∞ 5x2 + 3x − 1 7x + 27 if it exists. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 57. . . . . . . Limits of Rational Functions revisited II Example Find lim x→∞ 5x2 + 3x − 1 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 7x + 27 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 58. . . . . . . Limits of Rational Functions revisited II Example Find lim x→∞ 5x2 + 3x − 1 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 7x + 27 H = lim x→∞ 10x + 3 7 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 59. . . . . . . Limits of Rational Functions revisited II Example Find lim x→∞ 5x2 + 3x − 1 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 5x2 + 3x − 1 7x + 27 H = lim x→∞ 10x + 3 7 = ∞ V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 19 / 34
  • 60. . . . . . . Limits of Rational Functions revisited III Example Find lim x→∞ 4x + 7 3x2 + 7x + 27 if it exists. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 61. . . . . . . Limits of Rational Functions revisited III Example Find lim x→∞ 4x + 7 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 4x + 7 3x2 + 7x + 27 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 62. . . . . . . Limits of Rational Functions revisited III Example Find lim x→∞ 4x + 7 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 4x + 7 3x2 + 7x + 27 H = lim x→∞ 4 6x + 7 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 63. . . . . . . Limits of Rational Functions revisited III Example Find lim x→∞ 4x + 7 3x2 + 7x + 27 if it exists. Solution Using L’Hôpital: lim x→∞ 4x + 7 3x2 + 7x + 27 H = lim x→∞ 4 6x + 7 = 0 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 20 / 34
  • 64. . . . . . . Limits of Rational Functions Fact Let f(x) and g(x) be polynomials of degree p and q. If p q, then lim x→∞ f(x) g(x) = ∞ If p q, then lim x→∞ f(x) g(x) = 0 If p = q, then lim x→∞ f(x) g(x) is the ratio of the leading coefficients of f and g. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 21 / 34
  • 65. . . . . . . Exponential versus geometric growth Example Find lim x→∞ ex x2 , if it exists. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 66. . . . . . . Exponential versus geometric growth Example Find lim x→∞ ex x2 , if it exists. Solution We have lim x→∞ ex x2 H = lim x→∞ ex 2x H = lim x→∞ ex 2 = ∞. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 67. . . . . . . Exponential versus geometric growth Example Find lim x→∞ ex x2 , if it exists. Solution We have lim x→∞ ex x2 H = lim x→∞ ex 2x H = lim x→∞ ex 2 = ∞. Example What about lim x→∞ ex x3 ? V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 68. . . . . . . Exponential versus geometric growth Example Find lim x→∞ ex x2 , if it exists. Solution We have lim x→∞ ex x2 H = lim x→∞ ex 2x H = lim x→∞ ex 2 = ∞. Example What about lim x→∞ ex x3 ? Answer Still ∞. (Why?) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 22 / 34
  • 69. . . . . . . Exponential versus fractional powers Example Find lim x→∞ ex √ x , if it exists. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
  • 70. . . . . . . Exponential versus fractional powers Example Find lim x→∞ ex √ x , if it exists. Solution (without L’Hôpital) We have for all x 1, x1/2 x1 , so ex x1/2 ex x The right hand side tends to ∞, so the left-hand side must, too. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
  • 71. . . . . . . Exponential versus fractional powers Example Find lim x→∞ ex √ x , if it exists. Solution (without L’Hôpital) We have for all x 1, x1/2 x1 , so ex x1/2 ex x The right hand side tends to ∞, so the left-hand side must, too. Solution (with L’Hôpital) lim x→∞ ex √ x = lim x→∞ ex 1 2 x−1/2 = lim x→∞ 2 √ xex = ∞ V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 23 / 34
  • 72. . . . . . . Exponential versus any power Theorem Let r be any positive number. Then lim x→∞ ex xr = ∞. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 24 / 34
  • 73. . . . . . . Exponential versus any power Theorem Let r be any positive number. Then lim x→∞ ex xr = ∞. Proof. If r is a positive integer, then apply L’Hôpital’s rule r times to the fraction. You get lim x→∞ ex xr H = . . . H = lim x→∞ ex r! = ∞. If r is not an integer, let m be the smallest integer greater than r. Then if x 1, xr xm , so ex xr ex xm . The right-hand side tends to ∞ by the previous step. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 24 / 34
  • 74. . . . . . . Any exponential versus any power Theorem Let a 1 and r 0. Then lim x→∞ ax xr = ∞. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
  • 75. . . . . . . Any exponential versus any power Theorem Let a 1 and r 0. Then lim x→∞ ax xr = ∞. Proof. If r is a positive integer, we have lim x→∞ ax xr H = . . . H = lim x→∞ (ln a)rax r! = ∞. If r isn’t an integer, we can compare it as before. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
  • 76. . . . . . . Any exponential versus any power Theorem Let a 1 and r 0. Then lim x→∞ ax xr = ∞. Proof. If r is a positive integer, we have lim x→∞ ax xr H = . . . H = lim x→∞ (ln a)rax r! = ∞. If r isn’t an integer, we can compare it as before. So even lim x→∞ (1.00000001)x x100000000 = ∞! V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 25 / 34
  • 77. . . . . . . Logarithmic versus power growth Theorem Let r be any positive number. Then lim x→∞ ln x xr = 0. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 26 / 34
  • 78. . . . . . . Logarithmic versus power growth Theorem Let r be any positive number. Then lim x→∞ ln x xr = 0. Proof. One application of L’Hôpital’s Rule here suffices: lim x→∞ ln x xr H = lim x→∞ 1/x rxr−1 = lim x→∞ 1 rxr = 0. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 26 / 34
  • 79. . . . . . . Outline L’Hôpital’s Rule Relative Rates of Growth Other Indeterminate Limits Indeterminate Products Indeterminate Differences Indeterminate Powers V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 27 / 34
  • 80. . . . . . . Indeterminate products Example Find lim x→0+ √ x ln x This limit is of the form 0 · (−∞). V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 81. . . . . . . Indeterminate products Example Find lim x→0+ √ x ln x This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: lim x→0+ √ x ln x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 82. . . . . . . Indeterminate products Example Find lim x→0+ √ x ln x This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: lim x→0+ √ x ln x = lim x→0+ ln x 1/ √ x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 83. . . . . . . Indeterminate products Example Find lim x→0+ √ x ln x This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: lim x→0+ √ x ln x = lim x→0+ ln x 1/ √ x H = lim x→0+ x−1 −1 2 x−3/2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 84. . . . . . . Indeterminate products Example Find lim x→0+ √ x ln x This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: lim x→0+ √ x ln x = lim x→0+ ln x 1/ √ x H = lim x→0+ x−1 −1 2 x−3/2 = lim x→0+ −2 √ x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 85. . . . . . . Indeterminate products Example Find lim x→0+ √ x ln x This limit is of the form 0 · (−∞). Solution Jury-rig the expression to make an indeterminate quotient. Then apply L’Hôpital’s Rule: lim x→0+ √ x ln x = lim x→0+ ln x 1/ √ x H = lim x→0+ x−1 −1 2 x−3/2 = lim x→0+ −2 √ x = 0 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 28 / 34
  • 86. . . . . . . Indeterminate differences Example lim x→0+ ( 1 x − cot 2x ) This limit is of the form ∞ − ∞. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 87. . . . . . . Indeterminate differences Example lim x→0+ ( 1 x − cot 2x ) This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. lim x→0+ sin(2x) − x cos(2x) x sin(2x) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 88. . . . . . . Indeterminate differences Example lim x→0+ ( 1 x − cot 2x ) This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. lim x→0+ sin(2x) − x cos(2x) x sin(2x) H = lim x→0+ cos(2x) + 2x sin(2x) 2x cos(2x) + sin(2x) V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 89. . . . . . . Indeterminate differences Example lim x→0+ ( 1 x − cot 2x ) This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. lim x→0+ sin(2x) − x cos(2x) x sin(2x) H = lim x→0+ cos(2x) + 2x sin(2x) 2x cos(2x) + sin(2x) = ∞ V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 90. . . . . . . Indeterminate differences Example lim x→0+ ( 1 x − cot 2x ) This limit is of the form ∞ − ∞. Solution Again, rig it to make an indeterminate quotient. lim x→0+ sin(2x) − x cos(2x) x sin(2x) H = lim x→0+ cos(2x) + 2x sin(2x) 2x cos(2x) + sin(2x) = ∞ The limit is +∞ becuase the numerator tends to 1 while the denominator tends to zero but remains positive. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 29 / 34
  • 91. . . . . . . Checking your work . . lim x→0 tan 2x 2x = 1, so for small x, tan 2x ≈ 2x. So cot 2x ≈ 1 2x and 1 x − cot 2x ≈ 1 x − 1 2x = 1 2x → ∞ as x → 0+ . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 30 / 34
  • 92. . . . . . . Indeterminate powers Example Find lim x→0+ (1 − 2x)1/x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 93. . . . . . . Indeterminate powers Example Find lim x→0+ (1 − 2x)1/x Take the logarithm: ln ( lim x→0+ (1 − 2x)1/x ) = lim x→0+ ln ( (1 − 2x)1/x ) = lim x→0+ ln(1 − 2x) x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 94. . . . . . . Indeterminate powers Example Find lim x→0+ (1 − 2x)1/x Take the logarithm: ln ( lim x→0+ (1 − 2x)1/x ) = lim x→0+ ln ( (1 − 2x)1/x ) = lim x→0+ ln(1 − 2x) x This limit is of the form 0 0 , so we can use L’Hôpital: lim x→0+ ln(1 − 2x) x H = lim x→0+ −2 1−2x 1 = −2 V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 95. . . . . . . Indeterminate powers Example Find lim x→0+ (1 − 2x)1/x Take the logarithm: ln ( lim x→0+ (1 − 2x)1/x ) = lim x→0+ ln ( (1 − 2x)1/x ) = lim x→0+ ln(1 − 2x) x This limit is of the form 0 0 , so we can use L’Hôpital: lim x→0+ ln(1 − 2x) x H = lim x→0+ −2 1−2x 1 = −2 This is not the answer, it’s the log of the answer! So the answer we want is e−2 . V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 31 / 34
  • 96. . . . . . . Another indeterminate power limit Example lim x→0 (3x)4x V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 32 / 34
  • 97. . . . . . . Another indeterminate power limit Example lim x→0 (3x)4x Solution ln lim x→0+ (3x)4x = lim x→0+ ln(3x)4x = lim x→0+ 4x ln(3x) = lim x→0+ ln(3x) 1/4x H = lim x→0+ 3/3x −1/4x2 = lim x→0+ (−4x) = 0 So the answer is e0 = 1. V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 32 / 34
  • 98. . . . . . . Summary Form Method 0 0 L’Hôpital’s rule directly ∞ ∞ L’Hôpital’s rule directly 0 · ∞ jiggle to make 0 0 or ∞ ∞. ∞ − ∞ combine to make an indeterminate product or quotient 00 take ln to make an indeterminate product ∞0 ditto 1∞ ditto V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 33 / 34
  • 99. . . . . . . Final Thoughts L’Hôpital’s Rule only works on indeterminate quotients Luckily, most indeterminate limits can be transformed into indeterminate quotients L’Hôpital’s Rule gives wrong answers for non-indeterminate limits! V63.0121.041, Calculus I (NYU) Section 3.7 L’Hôpital’s Rule November 3, 2010 34 / 34