SlideShare a Scribd company logo
Fisioterapia Manual Avanzada
Movilización / Manipulación
MITOS Y REALIDADES
PARADIGMA BIOMECÁNICO
Gustavo	
  Plaza	
  Manzano	
  	
  
Fisioterapeuta	
  
Facultad	
  de	
  Medicina	
  
Universidad	
  Complutense	
  de	
  Madrid
La forma manual de aplicar un movimiento lento, rítmico y/o sostenido,
con la finalidad de reproducir movimientos accesorios y/o fisiológicos a lo
largo del rango de movilidad pasiva disponible de una articulación.
La forma manual de aplicar un impulso, repentino y preciso, de gran
velocidad y corta amplitud, cerca del final del rango de movilidad
disponible mediante la ejecución de un movimiento fisiológico, un
movimiento accesorio o una combinación de ambos.
Alcanza un espacio libre, “parafisiológico”, que se encuentra más allá del
ROM pasivo disponible.
Se distingue por la reproducción de un sonido, a modo de chasquido,
característico de articulaciones sinoviales con fuerte cohesión entre sus
superficies.
Vernon 2005
MOVILIZACIÓN - MANIPULACIÓN
TENSIÓN
AMPLITUD ARTICULARPN MP LAMA
80% 90%
2%
100%
ZONA NEUTRA ZONA ELÁSTICA
IV
IIIII
I
V
MOVILIZACIÓN - MANIPULACIÓN
Los mecanismos de acción de las técnicas de terapia manual no se
conocen por completo, pero se cree que los efectos mecánicos y
neurofisiológicos desempeñan un papel importante en los mismos.
POSIBLES EFECTOS MOVILIZACIÓN - MANIPULACIÓN
Sistemas del Dolor
Sistema Nervioso Simpático
Sistema Motor
Estructurales-Posturales-Biomecánicos
Mecanismo Placebo
Estimulación de los procesos de reparación tisular.
Modificación del entorno químico de los nociceptores
periféricos.
Activación de los mecanismos inhibitorios segmentarios.
Activación de los mecanismos inhibitorios descendentes.
Mecanismo Placebo.
Disminución de la Percepción de Dolor
Wright 2002
¿Qué ocurre en el tejido con el movimiento?
Normalización de la homeostasis del tejido conectivo.
El movimiento favorece el depósito de colágeno en la dirección
adecuada, mantiene el equilibrio entre los constituyentes del
tejido conectivo, refuerza la regeneración vascular normal, y
reduce la formación excesiva de puentes y adherencias.
Existe fuerte evidencia de que la tensión periódica y moderada
es esencial para la nutrición y viabilidad del tejido durante la
curación.
Sistema Modulador Descendente
Representado a nivel del tronco cerebral
(SGP, RVM, DLTP), y se encuentran bajo la
influencia del cerebro anterior (corteza y
límbico).
Puede atenuar o aumentar la transmisión
nociceptiva, produciendo analgesia o
hiperalgesia, respectivamente.
Efectos sobre el dolor
Numerosos trabajos estudian su efecto sobre el umbral de
sensibilidad mecánica y térmica al dolor y sobre las respuestas del
sistema nervioso simpático.
Se puede concluir que;
Parecen existir respuestas hipoalgésicas inmediatas, medidas por
el aumento de sensibilidad mecánica al dolor y por la disminución
de los campos de referencia cutánea del mismo.
Estas respuestas no parecen haber influido sobre el umbral de
sensibilidad térmica.
Vicenzino 1998, Vernon 2000, Sterling 2001
No presenta características opioides:
- No afecta a niveles de β-endorfinas.
- No revierte con Naloxona.
- No muestra tolerancia tras aplicaciones repetidas.
- Se atenúa con antagonistas de receptores noradrenérgicos y se
bloquea con antagonistas de receptores serotonérgicos (Skyba
2003).
Considerable evidencia respalda que la movilización articular es un
estímulo suficiente para inducir respuestas excitatorias simpáticas. Parece
existir una correlación entre la rapidez y magnitud de la respuesta
excitatoria simpática con el aumento del umbral de sensibilidad mecánica
al dolor.
Efectos sobre el Dolor y el SNS
Christian 1998, Vicenzino 2000, Souvlis 1999, Paungmali 2003
Se ha investigado el efecto de la movilización cervical en la
percepción de dolor, en la función motora y en la función
autonómica.
Este estudio mostró un aumento del 22% en el UDP medido a nivel
de las articulaciones interapofisarias C5-C6 sintomáticas, una
mejora en la función de los músculos cervicales en el test de FCC y
un aumento significativo en la conductancia cutánea y una
disminución de la temperatura de la piel.
Sterling 2001
Efectos sobre el Dolor, Función Motora y SNS
La movilización articular produce analgesia no opioide, mediada por
serotonina y noradrenalina liberadas desde las regiones rostral
ventromedial del bulbo y dorsolateral ponto-mesencefálica de las vías
descendentes de modulación del dolor.
Skyba DA 2003
Efectos sobre el dolor
journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 231
[ RESEARCH REPORT ]
S
pinal manipulation (SM) is a common treatment approach
for pain reduction in low back and neck disorders.37,38,41
The
effectiveness of SM to treat musculoskeletal pain, such as spinal
pain, has been summarized in recent Cochrane reviews.32,56
Overall, the evidence suggests that
SM provides improvements in pain re-
lief, though similar results have been de-
scribed in other competing treatments,
such as general practitioner manage-
ment, medication, and exercise, in pa-
tients with musculoskeletal pain.6,7
It has
been shown that the presence of pain in-
duces changes in the anatomy and func-
tion of the central and peripheral nervous
systems.20,46,53
Therefore, research on an
asymptomatic population may be impor-
tant to accurately determine the antinoci-
ceptive mechanism of SM. Several studies
in asymptomatic subjects have shown
that SM techniques induce changes in
physiological reflexes,28
increase neu-
romuscular excitability,22
and modify
sensitivity.30
The mechanisms through which
SM alters musculoskeletal pain are still
unknown. However, current evidence
suggests an interaction between the
mechanical stimulus and the associated
neurophysiological responses,6,51
includ-
ing rapid hypoalgesia with concurrent
sympathetic nervous system and mo-
tor system excitation, similar to those
generated by direct stimulation of the
periaqueductal gray matter.61,68
Recent
animal studies show that the analgesia
produced by joint mobilization involves
serotonin and noradrenaline receptors
in the spinal cord, thereby performing a
supporting role for central mechanisms
of pain modulation.60
Several neuropep-
tides, such as neurotensin,23
oxytocin,29
or orexin A,3
have been associated with
hypoalgesia and pain modulation, and it
is well known that cortisol plays an anal-
gesic role related to stress responses.4,44
Recent theories have also suggested that
chronic pain could be partly maintained
by maladaptive physiological responses of
the organism facing a recurrent stressor,
a situation related to high cortisol lev-
els.45,66
To our knowledge, there is a lack
of studies analyzing changes in these no-
ciception-related biochemical markers in
response to manual therapy.
STUDY DESIGN: Controlled, repeated-mea-
sures, single-blind randomized study.
OBJECTIVES: To determine the effect of
cervical or thoracic manipulation on neurotensin,
oxytocin, orexin A, and cortisol levels.
BACKGROUND: Previous studies have re-
searched the effect of spinal manipulation on pain
modulation and/or range of movement. However,
there is little knowledge of the biochemical process
that supports the antinociceptive effect of spinal
manipulation.
METHODS: Thirty asymptomatic subjects
were randomly divided into 3 groups: cervical
manipulation (n = 10), thoracic manipulation (n =
10), and nonmanipulation (control) (n = 10). Blood
samples were extracted before, immediately after,
and 2 hours after each intervention. Neurotensin,
oxytocin, and orexin A were determined in plasma
using enzyme-linked immuno assay. Cortisol was
measured by microparticulate enzyme immuno
assay in serum samples.
RESULTS: Immediately after the intervention,
significantly higher values of neurotensin (P<.05)
and oxytocin (P<.001) levels were observed with
both cervical and thoracic manipulation, whereas
cortisol concentration was increased only in the
cervical manipulation group (P<.05). No changes
were detected for orexin A levels. Two hours after
the intervention, no significant differences were
observed in between-group analysis.
CONCLUSION: The mechanical stimulus pro-
vided by spinal manipulation triggers an increase
in neurotensin, oxytocin, and cortisol blood levels.
Data suggest that the initial capability of the
tissues to tolerate mechanical deformation affects
the capacity of these tissues to produce an induc-
tion of neuropeptide expression. J Orthop Sports
Phys Ther 2014;44(4):231-239. Epub 22 January
2014. doi:10.2519/jospt.2014.4996
KEY WORDS: cortisol, neurotensin, orexin A,
oxytocin, spinal manipulation
1
Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 2
Department of Health Sciences, Universidad de
Jaén, Jaén, Spain. The protocol for this study was approved by the Ethical Committee in Clinical Research of the Universidad de Jaén, Jaén, Spain. The authors certify that they
have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address
correspondence to Dr Fidel Hita-Contreras, Department of Health Sciences (B-3/272). Universidad de Jaén. Campus Las Lagunillas s/n, 23071 Jaén, Spain. E-mail: fhita@ujaen.
es Copyright ©2014 Journal of Orthopaedic & Sports Physical Therapy®
GUSTAVO PLAZA-MANZANO, PT1
• FRANCISCO MOLINA, PT, PhD2
• RAFAEL LOMAS-VEGA, PT, PhD2
ANTONIO MARTÍNEZ-AMAT, PhD2
• ALEXANDER ACHALANDABASO, PT1
• FIDEL HITA-CONTRERAS, MD, PhD2
Changes in Biochemical Markers
of Pain Perception and Stress Response
After Spinal Manipulation
JournalofOrthopaedic&SportsPhysicalTherapy®
Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission.
Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved.
journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 231
[ RESEARCH REPORT ]
S
pinal manipulation (SM) is a common treatment approach
for pain reduction in low back and neck disorders.37,38,41
The
effectiveness of SM to treat musculoskeletal pain, such as spinal
pain, has been summarized in recent Cochrane reviews.32,56
Overall, the evidence suggests that
SM provides improvements in pain re-
lief, though similar results have been de-
scribed in other competing treatments,
such as general practitioner manage-
ment, medication, and exercise, in pa-
tients with musculoskeletal pain.6,7
It has
been shown that the presence of pain in-
duces changes in the anatomy and func-
tion of the central and peripheral nervous
systems.20,46,53
Therefore, research on an
asymptomatic population may be impor-
tant to accurately determine the antinoci-
ceptive mechanism of SM. Several studies
in asymptomatic subjects have shown
that SM techniques induce changes in
physiological reflexes,28
increase neu-
romuscular excitability,22
and modify
sensitivity.30
The mechanisms through which
SM alters musculoskeletal pain are still
unknown. However, current evidence
suggests an interaction between the
mechanical stimulus and the associated
neurophysiological responses,6,51
includ-
ing rapid hypoalgesia with concurrent
sympathetic nervous system and mo-
tor system excitation, similar to those
generated by direct stimulation of the
periaqueductal gray matter.61,68
Recent
animal studies show that the analgesia
produced by joint mobilization involves
serotonin and noradrenaline receptors
in the spinal cord, thereby performing a
supporting role for central mechanisms
of pain modulation.60
Several neuropep-
tides, such as neurotensin,23
oxytocin,29
or orexin A,3
have been associated with
hypoalgesia and pain modulation, and it
is well known that cortisol plays an anal-
gesic role related to stress responses.4,44
Recent theories have also suggested that
chronic pain could be partly maintained
by maladaptive physiological responses of
the organism facing a recurrent stressor,
a situation related to high cortisol lev-
els.45,66
To our knowledge, there is a lack
of studies analyzing changes in these no-
ciception-related biochemical markers in
response to manual therapy.
STUDY DESIGN: Controlled, repeated-mea-
sures, single-blind randomized study.
OBJECTIVES: To determine the effect of
cervical or thoracic manipulation on neurotensin,
oxytocin, orexin A, and cortisol levels.
BACKGROUND: Previous studies have re-
searched the effect of spinal manipulation on pain
modulation and/or range of movement. However,
there is little knowledge of the biochemical process
that supports the antinociceptive effect of spinal
manipulation.
METHODS: Thirty asymptomatic subjects
were randomly divided into 3 groups: cervical
manipulation (n = 10), thoracic manipulation (n =
10), and nonmanipulation (control) (n = 10). Blood
samples were extracted before, immediately after,
and 2 hours after each intervention. Neurotensin,
oxytocin, and orexin A were determined in plasma
using enzyme-linked immuno assay. Cortisol was
measured by microparticulate enzyme immuno
assay in serum samples.
RESULTS: Immediately after the intervention,
significantly higher values of neurotensin (P<.05)
and oxytocin (P<.001) levels were observed with
both cervical and thoracic manipulation, whereas
cortisol concentration was increased only in the
cervical manipulation group (P<.05). No changes
were detected for orexin A levels. Two hours after
the intervention, no significant differences were
observed in between-group analysis.
CONCLUSION: The mechanical stimulus pro-
vided by spinal manipulation triggers an increase
in neurotensin, oxytocin, and cortisol blood levels.
Data suggest that the initial capability of the
tissues to tolerate mechanical deformation affects
the capacity of these tissues to produce an induc-
tion of neuropeptide expression. J Orthop Sports
Phys Ther 2014;44(4):231-239. Epub 22 January
2014. doi:10.2519/jospt.2014.4996
KEY WORDS: cortisol, neurotensin, orexin A,
oxytocin, spinal manipulation
1
Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 2
Department of Health Sciences, Universidad de
Jaén, Jaén, Spain. The protocol for this study was approved by the Ethical Committee in Clinical Research of the Universidad de Jaén, Jaén, Spain. The authors certify that they
have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address
correspondence to Dr Fidel Hita-Contreras, Department of Health Sciences (B-3/272). Universidad de Jaén. Campus Las Lagunillas s/n, 23071 Jaén, Spain. E-mail: fhita@ujaen.
es Copyright ©2014 Journal of Orthopaedic & Sports Physical Therapy®
GUSTAVO PLAZA-MANZANO, PT1
• FRANCISCO MOLINA, PT, PhD2
• RAFAEL LOMAS-VEGA, PT, PhD2
ANTONIO MARTÍNEZ-AMAT, PhD2
• ALEXANDER ACHALANDABASO, PT1
• FIDEL HITA-CONTRERAS, MD, PhD2
Changes in Biochemical Markers
of Pain Perception and Stress Response
After Spinal Manipulation
he same way, the cervical SM group
howed increased oxytocin values when
ompared with the thoracic SM group
mmediately postintervention (mean
ifference, –104.16; 95% CI: –174.62,
33.71; P<.002) (FIGURE 4C).
Likewise, in the within-group analy-
s, an increase in oxytocin plasma con-
entration levels was detected in both
he cervical manipulation and thoracic
manipulation groups immediately post-
ntervention (P<.001) compared to pre-
ntervention levels (TABLE 3). At 2 hours
ter the intervention, an increase was
ound only in the cervical SM group
P<.05) when compared with preinter-
ention levels (TABLE 4).
ortisol Concentration in Blood Samples
sing a mixed-model ANOVA, the
roup-by-time interaction for cortisol
s a dependent variable was significant
P<.001). Eta-square analysis yielded a
2% effect size (TABLE 2).
Blood samples extracted from the
ervical SM group showed a significant
ncrease in cortisol plasma concentration
mmediately postintervention compared
ith baseline values (P<.001) (TABLE 3).
n the other hand, a significant decrease
as detected at 2 hours postintervention
n the thoracic SM group when compared
ith the preintervention values (P<.05)
ABLE 4).
A significant increase in the between-
roup analysis was found immediately
osttreatment in the cervical manipula-
on group compared with the control
roup (mean difference, 4.60; 95% CI:
.65, 8.55; P = .018) and the thoracic ma-
ipulation group (mean difference, 4.10;
oxytocin, orexin A, and cortisol levels af-
ter a cervical or a thoracic manipulation
in asymptomatic subjects.
Neurotensin is a 13-amino acid pro-
duced in several regions of the central
nervous system, such as the substan-
tia nigra, amygdala, hypothalamus,
prefrontal cortex, periaqueductal gray
matter, and the spinal cord,62
and it has
several actions, including analgesia.14,23
Our data indicate an increase in neu-
rotensin plasmatic concentration after
part of the peripheral and central mecha-
nisms of pain modulation,23
because the
antinociceptive effect of neurotensin has
been reported after the injection of the
peptide in many brain areas.62
There
are anatomical data suggesting an in-
teraction between neurotensin and se-
rotonergic neurons. As a matter of fact,
neurons of the rostral part of the raphe
synthesize neurotensin, whereas neuro-
tensin receptors are widely expressed in
most of the raphe.18,40,57
The functional
2
0
Preintervention O h
postintervention
2 h
postintervention
4
6
8
10
12
14
A
Neurotensin
0
100
50
150
200
250
300
NeuropeptideConcentration,
pg/mg
B
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Orexin A
*
*
50
0
Preintervention O h
postintervention
2 h
postintervention
100
150
200
250
300
350
C
Oxytocin
Control
0
4
2
6
8
10
12
14
16
18
NeuropeptideConcentration,
pg/mg
D
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Cortisol
*
*
*
*
*
Thoracic Cervical
FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin,
(B) orexin A, (C) oxytocin, (D) cortisol. *P<.05.
journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 231
[ RESEARCH REPORT ]
S
pinal manipulation (SM) is a common treatment approach
for pain reduction in low back and neck disorders.37,38,41
The
effectiveness of SM to treat musculoskeletal pain, such as spinal
pain, has been summarized in recent Cochrane reviews.32,56
Overall, the evidence suggests that
SM provides improvements in pain re-
lief, though similar results have been de-
scribed in other competing treatments,
such as general practitioner manage-
ment, medication, and exercise, in pa-
tients with musculoskeletal pain.6,7
It has
been shown that the presence of pain in-
duces changes in the anatomy and func-
tion of the central and peripheral nervous
systems.20,46,53
Therefore, research on an
asymptomatic population may be impor-
tant to accurately determine the antinoci-
ceptive mechanism of SM. Several studies
in asymptomatic subjects have shown
that SM techniques induce changes in
physiological reflexes,28
increase neu-
romuscular excitability,22
and modify
sensitivity.30
The mechanisms through which
SM alters musculoskeletal pain are still
unknown. However, current evidence
suggests an interaction between the
mechanical stimulus and the associated
neurophysiological responses,6,51
includ-
ing rapid hypoalgesia with concurrent
sympathetic nervous system and mo-
tor system excitation, similar to those
generated by direct stimulation of the
periaqueductal gray matter.61,68
Recent
animal studies show that the analgesia
produced by joint mobilization involves
serotonin and noradrenaline receptors
in the spinal cord, thereby performing a
supporting role for central mechanisms
of pain modulation.60
Several neuropep-
tides, such as neurotensin,23
oxytocin,29
or orexin A,3
have been associated with
hypoalgesia and pain modulation, and it
is well known that cortisol plays an anal-
gesic role related to stress responses.4,44
Recent theories have also suggested that
chronic pain could be partly maintained
by maladaptive physiological responses of
the organism facing a recurrent stressor,
a situation related to high cortisol lev-
els.45,66
To our knowledge, there is a lack
of studies analyzing changes in these no-
ciception-related biochemical markers in
response to manual therapy.
STUDY DESIGN: Controlled, repeated-mea-
sures, single-blind randomized study.
OBJECTIVES: To determine the effect of
cervical or thoracic manipulation on neurotensin,
oxytocin, orexin A, and cortisol levels.
BACKGROUND: Previous studies have re-
searched the effect of spinal manipulation on pain
modulation and/or range of movement. However,
there is little knowledge of the biochemical process
that supports the antinociceptive effect of spinal
manipulation.
METHODS: Thirty asymptomatic subjects
were randomly divided into 3 groups: cervical
manipulation (n = 10), thoracic manipulation (n =
10), and nonmanipulation (control) (n = 10). Blood
samples were extracted before, immediately after,
and 2 hours after each intervention. Neurotensin,
oxytocin, and orexin A were determined in plasma
using enzyme-linked immuno assay. Cortisol was
measured by microparticulate enzyme immuno
assay in serum samples.
RESULTS: Immediately after the intervention,
significantly higher values of neurotensin (P<.05)
and oxytocin (P<.001) levels were observed with
both cervical and thoracic manipulation, whereas
cortisol concentration was increased only in the
cervical manipulation group (P<.05). No changes
were detected for orexin A levels. Two hours after
the intervention, no significant differences were
observed in between-group analysis.
CONCLUSION: The mechanical stimulus pro-
vided by spinal manipulation triggers an increase
in neurotensin, oxytocin, and cortisol blood levels.
Data suggest that the initial capability of the
tissues to tolerate mechanical deformation affects
the capacity of these tissues to produce an induc-
tion of neuropeptide expression. J Orthop Sports
Phys Ther 2014;44(4):231-239. Epub 22 January
2014. doi:10.2519/jospt.2014.4996
KEY WORDS: cortisol, neurotensin, orexin A,
oxytocin, spinal manipulation
1
Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 2
Department of Health Sciences, Universidad de
Jaén, Jaén, Spain. The protocol for this study was approved by the Ethical Committee in Clinical Research of the Universidad de Jaén, Jaén, Spain. The authors certify that they
have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address
correspondence to Dr Fidel Hita-Contreras, Department of Health Sciences (B-3/272). Universidad de Jaén. Campus Las Lagunillas s/n, 23071 Jaén, Spain. E-mail: fhita@ujaen.
es Copyright ©2014 Journal of Orthopaedic & Sports Physical Therapy®
GUSTAVO PLAZA-MANZANO, PT1
• FRANCISCO MOLINA, PT, PhD2
• RAFAEL LOMAS-VEGA, PT, PhD2
ANTONIO MARTÍNEZ-AMAT, PhD2
• ALEXANDER ACHALANDABASO, PT1
• FIDEL HITA-CONTRERAS, MD, PhD2
Changes in Biochemical Markers
of Pain Perception and Stress Response
After Spinal Manipulation
JournalofOrthopaedic&SportsPhysicalTherapy®
Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission.
Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved.
journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 235
the same way, the cervical SM group
showed increased oxytocin values when
compared with the thoracic SM group
immediately postintervention (mean
difference, –104.16; 95% CI: –174.62,
–33.71; P<.002) (FIGURE 4C).
Likewise, in the within-group analy-
sis, an increase in oxytocin plasma con-
centration levels was detected in both
the cervical manipulation and thoracic
manipulation groups immediately post-
intervention (P<.001) compared to pre-
intervention levels (TABLE 3). At 2 hours
after the intervention, an increase was
found only in the cervical SM group
(P<.05) when compared with preinter-
vention levels (TABLE 4).
Cortisol Concentration in Blood Samples
Using a mixed-model ANOVA, the
group-by-time interaction for cortisol
as a dependent variable was significant
(P<.001). Eta-square analysis yielded a
32% effect size (TABLE 2).
Blood samples extracted from the
cervical SM group showed a significant
increase in cortisol plasma concentration
immediately postintervention compared
with baseline values (P<.001) (TABLE 3).
On the other hand, a significant decrease
was detected at 2 hours postintervention
in the thoracic SM group when compared
with the preintervention values (P<.05)
(TABLE 4).
A significant increase in the between-
group analysis was found immediately
posttreatment in the cervical manipula-
tion group compared with the control
group (mean difference, 4.60; 95% CI:
0.65, 8.55; P = .018) and the thoracic ma-
nipulation group (mean difference, 4.10;
95% CI: 0.15, 8.05; P<.040) (FIGURE 4D).
DISCUSSION
S
everal studies currently sup-
port the idea that the analgesic effect
of manual therapy is mediated by
central mechanisms of pain modulation
through the modulation of neuropeptide
production.5,27,60
To our knowledge, this
is the first work to analyze neurotensin,
oxytocin, orexin A, and cortisol levels af-
ter a cervical or a thoracic manipulation
in asymptomatic subjects.
Neurotensin is a 13-amino acid pro-
duced in several regions of the central
nervous system, such as the substan-
tia nigra, amygdala, hypothalamus,
prefrontal cortex, periaqueductal gray
matter, and the spinal cord,62
and it has
several actions, including analgesia.14,23
Our data indicate an increase in neu-
rotensin plasmatic concentration after
an SM, suggesting that the mechanical
stimulus provided by SM is enough to
modulate the liberation of this neuro-
peptide. In this sense, neurotensin has
long been known to include analgesia
among its actions.9,16,23
The analgesic ac-
tions of neurotensin are readily distinct
from those of the opioids, based on their
insensitivity to the highly opioid-selective
antagonist naloxone, thus ruling out an
opioid mechanism.55
Neurotensin acts as
part of the peripheral and central mecha-
nisms of pain modulation,23
because the
antinociceptive effect of neurotensin has
been reported after the injection of the
peptide in many brain areas.62
There
are anatomical data suggesting an in-
teraction between neurotensin and se-
rotonergic neurons. As a matter of fact,
neurons of the rostral part of the raphe
synthesize neurotensin, whereas neuro-
tensin receptors are widely expressed in
most of the raphe.18,40,57
The functional
role of neurotensin in the raphe remains
to be determined, but it may participate
in the modulation of some of the known
functions of the serotonergic system, in-
cluding nociception13
and stress-related
responses.19
It may also play a role in
mediating stress-induced analgesia, as
neurotensin knockout mice and rats
pretreated with neurotensin antagonists
show no increase in pain tolerance after
stress.34
Recent studies with neurotensin
2
0
Preintervention O h
postintervention
2 h
postintervention
4
6
8
10
12
14
A
Neurotensin
0
100
50
150
200
250
300
NeuropeptideConcentration,
pg/mg
B
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Orexin A
*
*
50
0
Preintervention O h
postintervention
2 h
postintervention
100
150
200
250
300
350
C
Oxytocin
Control
0
4
2
6
8
10
12
14
16
18
NeuropeptideConcentration,
pg/mg
D
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Cortisol
*
*
*
*
*
Thoracic Cervical
FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin,
(B) orexin A, (C) oxytocin, (D) cortisol. *P<.05.
JournalofOrthopaedic&SportsPhysicalTherapy®
Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission.
Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved.
journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 235
the same way, the cervical SM group
showed increased oxytocin values when
compared with the thoracic SM group
immediately postintervention (mean
difference, –104.16; 95% CI: –174.62,
–33.71; P<.002) (FIGURE 4C).
Likewise, in the within-group analy-
sis, an increase in oxytocin plasma con-
centration levels was detected in both
the cervical manipulation and thoracic
manipulation groups immediately post-
intervention (P<.001) compared to pre-
intervention levels (TABLE 3). At 2 hours
after the intervention, an increase was
found only in the cervical SM group
(P<.05) when compared with preinter-
vention levels (TABLE 4).
Cortisol Concentration in Blood Samples
Using a mixed-model ANOVA, the
group-by-time interaction for cortisol
as a dependent variable was significant
(P<.001). Eta-square analysis yielded a
32% effect size (TABLE 2).
Blood samples extracted from the
cervical SM group showed a significant
increase in cortisol plasma concentration
immediately postintervention compared
with baseline values (P<.001) (TABLE 3).
On the other hand, a significant decrease
was detected at 2 hours postintervention
in the thoracic SM group when compared
with the preintervention values (P<.05)
(TABLE 4).
A significant increase in the between-
group analysis was found immediately
posttreatment in the cervical manipula-
tion group compared with the control
group (mean difference, 4.60; 95% CI:
0.65, 8.55; P = .018) and the thoracic ma-
nipulation group (mean difference, 4.10;
95% CI: 0.15, 8.05; P<.040) (FIGURE 4D).
DISCUSSION
S
everal studies currently sup-
port the idea that the analgesic effect
of manual therapy is mediated by
central mechanisms of pain modulation
through the modulation of neuropeptide
production.5,27,60
To our knowledge, this
is the first work to analyze neurotensin,
oxytocin, orexin A, and cortisol levels af-
ter a cervical or a thoracic manipulation
in asymptomatic subjects.
Neurotensin is a 13-amino acid pro-
duced in several regions of the central
nervous system, such as the substan-
tia nigra, amygdala, hypothalamus,
prefrontal cortex, periaqueductal gray
matter, and the spinal cord,62
and it has
several actions, including analgesia.14,23
Our data indicate an increase in neu-
rotensin plasmatic concentration after
an SM, suggesting that the mechanical
stimulus provided by SM is enough to
modulate the liberation of this neuro-
peptide. In this sense, neurotensin has
long been known to include analgesia
among its actions.9,16,23
The analgesic ac-
tions of neurotensin are readily distinct
from those of the opioids, based on their
insensitivity to the highly opioid-selective
antagonist naloxone, thus ruling out an
opioid mechanism.55
Neurotensin acts as
part of the peripheral and central mecha-
nisms of pain modulation,23
because the
antinociceptive effect of neurotensin has
been reported after the injection of the
peptide in many brain areas.62
There
are anatomical data suggesting an in-
teraction between neurotensin and se-
rotonergic neurons. As a matter of fact,
neurons of the rostral part of the raphe
synthesize neurotensin, whereas neuro-
tensin receptors are widely expressed in
most of the raphe.18,40,57
The functional
role of neurotensin in the raphe remains
to be determined, but it may participate
in the modulation of some of the known
functions of the serotonergic system, in-
cluding nociception13
and stress-related
responses.19
It may also play a role in
mediating stress-induced analgesia, as
neurotensin knockout mice and rats
pretreated with neurotensin antagonists
show no increase in pain tolerance after
stress.34
Recent studies with neurotensin
2
0
Preintervention O h
postintervention
2 h
postintervention
4
6
8
10
12
14
A
Neurotensin
0
100
50
150
200
250
300
NeuropeptideConcentration,
pg/mg
B
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Orexin A
*
*
50
0
Preintervention O h
postintervention
2 h
postintervention
100
150
200
250
300
350
C
Oxytocin
Control
0
4
2
6
8
10
12
14
16
18
NeuropeptideConcentration,
pg/mg
D
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Cortisol
*
*
*
*
*
Thoracic Cervical
FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin,
(B) orexin A, (C) oxytocin, (D) cortisol. *P<.05.
JournalofOrthopaedic&SportsPhysicalTherapy®
Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission.
Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved.
the same way, the cervical SM group
showed increased oxytocin values when
compared with the thoracic SM group
immediately postintervention (mean
difference, –104.16; 95% CI: –174.62,
–33.71; P<.002) (FIGURE 4C).
Likewise, in the within-group analy-
sis, an increase in oxytocin plasma con-
centration levels was detected in both
the cervical manipulation and thoracic
manipulation groups immediately post-
intervention (P<.001) compared to pre-
intervention levels (TABLE 3). At 2 hours
after the intervention, an increase was
found only in the cervical SM group
(P<.05) when compared with preinter-
vention levels (TABLE 4).
Cortisol Concentration in Blood Samples
Using a mixed-model ANOVA, the
group-by-time interaction for cortisol
as a dependent variable was significant
(P<.001). Eta-square analysis yielded a
32% effect size (TABLE 2).
Blood samples extracted from the
cervical SM group showed a significant
increase in cortisol plasma concentration
immediately postintervention compared
with baseline values (P<.001) (TABLE 3).
On the other hand, a significant decrease
was detected at 2 hours postintervention
in the thoracic SM group when compared
with the preintervention values (P<.05)
(TABLE 4).
A significant increase in the between-
group analysis was found immediately
posttreatment in the cervical manipula-
tion group compared with the control
group (mean difference, 4.60; 95% CI:
0.65, 8.55; P = .018) and the thoracic ma-
nipulation group (mean difference, 4.10;
95% CI: 0.15, 8.05; P<.040) (FIGURE 4D).
DISCUSSION
S
everal studies currently sup-
port the idea that the analgesic effect
of manual therapy is mediated by
central mechanisms of pain modulation
through the modulation of neuropeptide
production.5,27,60
To our knowledge, this
is the first work to analyze neurotensin,
oxytocin, orexin A, and cortisol levels af-
ter a cervical or a thoracic manipulation
in asymptomatic subjects.
Neurotensin is a 13-amino acid pro-
duced in several regions of the central
nervous system, such as the substan-
tia nigra, amygdala, hypothalamus,
prefrontal cortex, periaqueductal gray
matter, and the spinal cord,62
and it has
several actions, including analgesia.14,23
Our data indicate an increase in neu-
rotensin plasmatic concentration after
an SM, suggesting that the mechanical
stimulus provided by SM is enough to
modulate the liberation of this neuro-
peptide. In this sense, neurotensin has
long been known to include analgesia
among its actions.9,16,23
The analgesic ac-
tions of neurotensin are readily distinct
from those of the opioids, based on their
insensitivity to the highly opioid-selective
antagonist naloxone, thus ruling out an
opioid mechanism.55
Neurotensin acts as
part of the peripheral and central mecha-
nisms of pain modulation,23
because the
antinociceptive effect of neurotensin has
been reported after the injection of the
peptide in many brain areas.62
There
are anatomical data suggesting an in-
teraction between neurotensin and se-
rotonergic neurons. As a matter of fact,
neurons of the rostral part of the raphe
synthesize neurotensin, whereas neuro-
tensin receptors are widely expressed in
most of the raphe.18,40,57
The functional
role of neurotensin in the raphe remains
to be determined, but it may participate
in the modulation of some of the known
functions of the serotonergic system, in-
cluding nociception13
and stress-related
responses.19
It may also play a role in
mediating stress-induced analgesia, as
neurotensin knockout mice and rats
pretreated with neurotensin antagonists
show no increase in pain tolerance after
stress.34
Recent studies with neurotensin
2
0
Preintervention O h
postintervention
2 h
postintervention
4
6
8
10
12
14
A
Neurotensin
0
100
50
150
200
250
300
NeuropeptideConcentration,
pg/mg
B
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Orexin A
*
*
50
0
Preintervention O h
postintervention
2 h
postintervention
100
150
200
250
300
350
C
Oxytocin
Control
0
4
2
6
8
10
12
14
16
18
NeuropeptideConcentration,
pg/mg
D
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Cortisol
*
*
*
*
*
Thoracic Cervical
FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin,
(B) orexin A, (C) oxytocin, (D) cortisol. *P<.05.
JournalofOrthopaedic&SportsPhysicalTherapy®
Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission.
Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved.
he same way, the cervical SM group
howed increased oxytocin values when
ompared with the thoracic SM group
mmediately postintervention (mean
ifference, –104.16; 95% CI: –174.62,
33.71; P<.002) (FIGURE 4C).
Likewise, in the within-group analy-
s, an increase in oxytocin plasma con-
entration levels was detected in both
he cervical manipulation and thoracic
manipulation groups immediately post-
ntervention (P<.001) compared to pre-
ntervention levels (TABLE 3). At 2 hours
ter the intervention, an increase was
ound only in the cervical SM group
P<.05) when compared with preinter-
ention levels (TABLE 4).
ortisol Concentration in Blood Samples
sing a mixed-model ANOVA, the
roup-by-time interaction for cortisol
s a dependent variable was significant
P<.001). Eta-square analysis yielded a
2% effect size (TABLE 2).
Blood samples extracted from the
ervical SM group showed a significant
ncrease in cortisol plasma concentration
mmediately postintervention compared
ith baseline values (P<.001) (TABLE 3).
n the other hand, a significant decrease
as detected at 2 hours postintervention
n the thoracic SM group when compared
ith the preintervention values (P<.05)
ABLE 4).
A significant increase in the between-
roup analysis was found immediately
osttreatment in the cervical manipula-
on group compared with the control
roup (mean difference, 4.60; 95% CI:
.65, 8.55; P = .018) and the thoracic ma-
oxytocin, orexin A, and cortisol levels af-
ter a cervical or a thoracic manipulation
in asymptomatic subjects.
Neurotensin is a 13-amino acid pro-
duced in several regions of the central
nervous system, such as the substan-
tia nigra, amygdala, hypothalamus,
prefrontal cortex, periaqueductal gray
matter, and the spinal cord,62
and it has
several actions, including analgesia.14,23
Our data indicate an increase in neu-
part of the peripheral and central mecha-
nisms of pain modulation,23
because the
antinociceptive effect of neurotensin has
been reported after the injection of the
peptide in many brain areas.62
There
are anatomical data suggesting an in-
teraction between neurotensin and se-
rotonergic neurons. As a matter of fact,
neurons of the rostral part of the raphe
synthesize neurotensin, whereas neuro-
tensin receptors are widely expressed in
2
0
Preintervention O h
postintervention
2 h
postintervention
4
6
8
10
12
14
A
Neurotensin
0
100
50
150
200
250
300
NeuropeptideConcentration,
pg/mg
B
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Orexin A
*
*
50
0
Preintervention O h
postintervention
2 h
postintervention
100
150
200
250
300
350
C
Oxytocin
Control
0
4
2
6
8
10
12
14
16
18
NeuropeptideConcentration,
pg/mg
D
NeuropeptideConcentration,
pg/mg
Preintervention O h
postintervention
2 h
postintervention
Cortisol
*
*
*
*
*
Thoracic Cervical
FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin,
(B) orexin A, (C) oxytocin, (D) cortisol. *P<.05.
Original article
Immediate effects of spinal manipulation on nitric oxide, substance P
and pain perception
Francisco Molina-Ortega a
, Rafael Lomas-Vega a
, Fidel Hita-Contreras a,*,
Gustavo Plaza Manzano b
, Alexander Achalandabaso a
, Antonio J. Ramos-Morcillo a
,
Antonio Martínez-Amat a
a
Department of Health Sciences, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
b
Department of Physical Medicine and Rehabilitation, Complutense University School of Medicine, Avda. de Séneca, 2. Ciudad Universitaria, 28040 Madrid,
Spain
a r t i c l e i n f o
Article history:
Received 6 September 2013
Received in revised form
15 February 2014
Accepted 23 February 2014
Keywords:
Spinal manipulation
Substance P
Nitric oxide
Pressure pain threshold
a b s t r a c t
Previous studies have analyzed the effects of spinal manipulation on pain sensitivity by using several
sensory modalities, but to our knowledge, no studies have focused on serum biomarkers involved in the
nociceptive pathway after spinal manipulation. Our objectives were to determine the immediate effect of
cervical and dorsal manipulation over the production of nitric oxide and substance P, and establishing
their relationship with changes in pressure pain thresholds in asymptomatic subjects. In this single-blind
randomized controlled trial, 30 asymptomatic subjects (16 men) were randomly distributed into 3
groups (n ¼ 10 per group): control, cervical and dorsal manipulation groups. Blood samples were
extracted to obtain serum. ELISA assay for substance P and chemiluminescence analysis for nitric oxide
determination were performed. Pressure pain thresholds were measured with a pressure algometer at
the C5eC6 joint, the lateral epicondyle and the tibialis anterior muscle. Outcome measures were ob-
tained before intervention, just after intervention and 2 h after intervention. Our results indicated an
increase in substance P plasma level in the cervical manipulation group (70.55%) when compared with
other groups (p < 0.05). This group also showed an elevation in the pressure pain threshold at C5eC6
(26.75%) and lateral epicondyle level (21.63%) immediately after the intervention (p < 0.05). No changes
in nitric oxide production were observed. In conclusion, mechanical stimulus provided by cervical
manipulation increases substance P levels and pressure pain threshold but does not change nitric oxide
concentrations. Part of the hypoalgesic effect of spinal manipulation may be due to the action of sub-
stance P.
Ó 2014 Elsevier Ltd. All rights reserved.
1. Introduction
Manipulation of the spine is a manual therapy technique per-
formed to increase range of motion in a joint with decreased joint
play, with the intention of relieving the pain of patients. Spinal
manipulation (SM) involves a high velocity “impulse” or “thrust” of
short amplitude which is applied to interapophyseal joints. The
effectiveness of SM to treat musculoskeletal pain has been sum-
marized in recent systematic reviews. Overall, evidence suggests
that SM provides greater relief for pain and function than a placebo
or no treatment (Gross et al., 2010; van Middelkoop et al., 2011).
Although SM is widely used in the management of pain, the
physiological basis of its effectiveness remains unknown. It has
been proposed that the mechanical stimuli generated by SM could
activate the liberation of many biochemical mediators from neural
tissue (Skyba et al., 2003).
The perception of pain is clearly a complex process due to the
high number of biochemical mediators involved. Nitric oxide (Ne
O), considered as the major local vasodilator (Takuwa et al., 2010), is
a small molecule with a dual role in cell survival (Cauwels et al.,
2005) and nociception (Millan, 2002). Nitric oxide is a diffusible
gas that rapidly reacts with oxygen to form nitric oxide derivates
such as nitrite and nitrate (Lundberg et al., 2008). Although evi-
dence exists regarding the beneficial effects of the release of small
amounts of NeO during the inhibition of nociceptive pathways
* Corresponding author. Department of Health Sciences (B-3/272), University of
Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain. Tel.: þ34 953 212921; fax: þ34
953 211875.
E-mail address: fhita@ujaen.es (F. Hita-Contreras).
Contents lists available at ScienceDirect
Manual Therapy
journal homepage: www.elsevier.com/math
http://dx.doi.org/10.1016/j.math.2014.02.007
1356-689X/Ó 2014 Elsevier Ltd. All rights reserved.
Manual Therapy xxx (2014) 1e7
Please cite this article in press as: Molina-Ortega F, et al., Immediate effects of spinal manipulation on nitric oxide, substance P and pain
perception, Manual Therapy (2014), http://dx.doi.org/10.1016/j.math.2014.02.007
hrust was applied following the
on.
ded to the intervention of the
ures and blood samples were ob-
intervention), immediately just
ention) and 2 h after intervention
acted by venipuncture of the ce-
stem (BectoneDickinson, United
tubes for serum separation (BD
367953). After blood extraction,
mperature for 1 h until the blood
entrifuged for 10 min at 2000 g
USA). Supernatant was collected,
l used.
awed serum aliquots were mixed
buffer (0.5 N NaOH, 10% ZnSO4),
om temperature for 15 min. After
or 5 min at 13,500 rpm and su-
aintained at 4 C until analyzed.
de and NeO derivates was deter-
ocedure described by Braman and
the purge system of Sievers In-
Analytical Instruments, USA). Ni-
ncentrations were calculated by
ns of sodium nitrate. Nitric oxide
rmalized with total protein con-
mined using the Bradford assay
s determined by using LuminexÒ
kit (Milliplex Ref: HNP-35K, Mil-
re normalized with total protein
concentration of each sample calculated by the Bradford method
(Bradford, 1976).
2.3.4. Pressure pain threshold
A pressure algometer (Pain TestÔ FPN 100, Wagner Instruments,
USA) was used to measure PPT. In this study several PPT points
were used to determine the local or regional (C5eC6 zygapophyseal
joint, lateral epicondyle) and global effects (tibialis anterior) of the
spinal manipulation to verify the presence of segmental and/or
central modulation of pain (Urban and Gebhart, 1999; Schaible,
2007). All measurements were carried out by a well-trained expert.
2.4. Statistical analysis
Demographic and experimental data were treated with the
SPSSÒ
19.0 (IBM, USA) and MedCalc 12.3 (MedCalc, Belgium)
cic (n ¼ 10) Cervical (n ¼ 10)
Æ SD Mean Æ SD p-value
Æ 4.52 27.80 Æ 3.99 0.095
Æ 14.33 71.20 Æ 14.19 0.196
Æ 0.06 1.75 Æ 0.12 0.528
Æ 15.83 38.23 Æ 18.34 0.930
Æ 0.03 0.25 Æ 0.17 0.021*
Æ 1.54 3.29 Æ 0.98 0.622
Æ 1.61 4.30 Æ 1.65 0.462
Æ 2.23 7.85 Æ 2.25 0.721
9 Æ 29.44 123.53 Æ 27.07 0.892
hreshold at C5eC6 zygapophyseal joint);
ateral epicondyle); PPT Tib (pressure pain
al protein.
total protein.
Table 2
Test-retest reliability for outcomes variables.
Variable CCI SEM MDC
Substance P 0.679 5.303 10.39
Nitric oxide 0.620 0.012 0.02
PPT C5eC6 0.781 0.239 0.47
PPT Epi 0.736 1.768 3.46
PPT Tib 0.913 0.546 1.07
Abbreviations: CCI (Intraclass Correlation Coefficient); SEM (Standard Error of
Measurement); MDC (Minimal Detectable Change); PPT C5eC6 (pressure pain
threshold at C5eC6 zygapophyseal joint); PPT Epi (pressure pain threshold at right
lateral epicondyle); PPT Tib (pressure pain threshold at tibialis anterior muscle).
Fig. 2. Mean plots for primary measures in each group and each time point.
: Molina-Ortega F, et al., Immediate effects of spinal manipulation on nitric oxide, substance P and pain
4), http://dx.doi.org/10.1016/j.math.2014.02.007
Kingdom). Blood was collected in tubes for serum separation (BD
Vacutainer SST II Advance, ref. 367953). After blood extraction,
tubes were let stand at room temperature for 1 h until the blood
clotted. Afterward, tubes were centrifuged for 10 min at 2000 g
(Avanti J-30I, Beckman Coulter, USA). Supernatant was collected,
aliquoted and kept at À80 C until used.
2.3.2. Nitric oxide determination
To carry out the analysis, the thawed serum aliquots were mixed
in 1/2/2 (w/v/v) deproteinization buffer (0.5 N NaOH, 10% ZnSO4),
briefly shaken and let stand at room temperature for 15 min. After
that, samples were centrifuged for 5 min at 13,500 rpm and su-
pernatants were collected and maintained at 4 C until analyzed.
The total amount of nitric oxide and NeO derivates was deter-
mined by a modification of the procedure described by Braman and
Hendrix (1989) using NOA 280i the purge system of Sievers In-
struments, model NOA 280i (GE Analytical Instruments, USA). Ni-
tric oxide and NeO derivates concentrations were calculated by
comparison with standard solutions of sodium nitrate. Nitric oxide
and NeO derivates data were normalized with total protein con-
centration of each sample determined using the Bradford assay
(Bradford, 1976).
2.3.3. Substance P determination
Plasma determination of SP was determined by using LuminexÒ
technology with a specific ELISA kit (Milliplex Ref: HNP-35K, Mil-
lipore, USA). Substance P data were normalized with total protein
2.3.4. Pressure pain threshold
A pressure algometer (Pain TestÔ FPN 100, Wagner Instruments,
USA) was used to measure PPT. In this study several PPT points
were used to determine the local or regional (C5eC6 zygapophyseal
joint, lateral epicondyle) and global effects (tibialis anterior) of the
spinal manipulation to verify the presence of segmental and/or
central modulation of pain (Urban and Gebhart, 1999; Schaible,
2007). All measurements were carried out by a well-trained expert.
2.4. Statistical analysis
Demographic and experimental data were treated with the
SPSSÒ
19.0 (IBM, USA) and MedCalc 12.3 (MedCalc, Belgium)
Table 1
Baseline characteristics of participants.
Characteristics Control (n ¼ 10) Thoracic (n ¼ 10) Cervical (n ¼ 10)
Mean Æ SD Mean Æ SD Mean Æ SD p-value
Age 25.80 Æ 3.22 29.80 Æ 4.52 27.80 Æ 3.99 0.095
Weight 63.60 Æ 8.47 73.70 Æ 14.33 71.20 Æ 14.19 0.196
Height 1.71 Æ 0.07 1.75 Æ 0.06 1.75 Æ 0.12 0.528
Substance Pa
35.84 Æ 9.36 36.23 Æ 15.83 38.23 Æ 18.34 0.930
Nitric oxideb
0.19 Æ 0.02 0.12 Æ 0.03 0.25 Æ 0.17 0.021*
PPT C5eC6c
3.76 Æ 0.51 3.44 Æ 1.54 3.29 Æ 0.98 0.622
PPT Epic
5.60 Æ 3.44 4.63 Æ 1.61 4.30 Æ 1.65 0.462
PPT Tibc
8.54 Æ 1.85 7.89 Æ 2.23 7.85 Æ 2.25 0.721
Protein
contentd
129.68 Æ 35.84 128.79 Æ 29.44 123.53 Æ 27.07 0.892
*p  0.05.
Abbreviations: PPT C5-C6 (pressure pain threshold at C5eC6 zygapophyseal joint);
PPT Epi (pressure pain threshold at right lateral epicondyle); PPT Tib (pressure pain
threshold at tibialis anterior muscle).
a
Substance P is expressed as pg/mg total protein.
b
Nitric oxide is expressed as mmol/mg total protein.
c
PPTs are expressed as kg/cm2
.
d
Protein content is expressed as mg/ml. Fig. 2. Mean plots for primary measures in each group and each time point.
Please cite this article in press as: Molina-Ortega F, et al., Immediate effects of spinal manipulation on nitric oxide, substance P and pain
perception, Manual Therapy (2014), http://dx.doi.org/10.1016/j.math.2014.02.007
Considerable evidencia muestra que
la Movilización / Manipulación es un
estímulo suficiente para inducir
respuestas analgésicas inmediatas.
Movilización / Manipulación
Es muy probable que áreas específicas del cerebro y del
SNC coordinen estas respuestas.
Schmid 2008, Bialosky 2009, Wright 1995
Efectos sobre la actividad motora
Existe suficiente apoyo documental para afirmar que la
movilización/manipulación genera respuestas neuromusculares
reflejas asociadas, con efectos inhibidores y facilitadores.
Existe cierta evidencia para pensar que dichas respuestas están
mediadas por la estimulación mecánica de receptores musculares
y articulares, tanto de bajo como alto umbral. Sin embargo, los
mecanismos neurofisiológicos exactos aún son desconocidos.
Se desconoce la relevancia clínica de dichas respuestas.
Gila 2007, Herzog 1999, Lehman 2001, Murphy 1995
El concepto de que la manipulación reposiciona, coloca o mejora la
alineación de las articulaciones es una de las teorías más antiguas
acerca de la misma. Y constituye el principal mito de la Terapia
Manual.
Estudios biomecánicos recientes que examinan el movimiento
vertebral tras una manipulación muestran que esta teoría
“posicional” es falsa.
Simplemente demuestran un movimiento vertebral transitorio y
asociado a la separación de las superficies articulares.
La radiografía, el TAC o la RMN han mostrado ser métodos poco fiables
para el diagnóstico de dolor de espalda. En relación a fuentes de
dolor de espalda, la mal-posición vertebral parece ser un
epifenómeno.
Evans 2002
Paradigma Biomecánico Movilización / Manipulación
Una de la razones para la concepción de esta teoría se relaciona
con la reproducción del ruido articular asociado a la manipulación
y causado por la cavitación, el cuál a menudo convenientemente
coincide con la mejoría inmediata del dolor.
Antes de que el fenómeno de la cavitación fuera aceptado como
el responsable del sonido, los practicantes de la manipulación
asociaban el sonido a la sensación de haber “reposicionado el
hueso en su lugar”.
Muchos pacientes sostienen todavía este concepto de reposición,
y la educación de los mismos para disipar estas creencias es
necesaria.
Evans 2002
Paradigma Biomecánico Movilización / Manipulación
Cramer 2002
Paradigma Biomecánico Movilización / Manipulación
Cramer 2002
Paradigma Biomecánico Movilización / Manipulación
Se ha investigado en sujetos con dolor si la manipulación puede
modificar la posición entre el sacro y el ilíaco y si los test
posicionales son válidos para determinar las relaciones espaciales
entre el sacro y el ilíaco.
Los test posicionales se interpretaron como positivos antes de la
manipulación y como negativos tras la misma.
Sin embargo, en los sujetos a estudio la manipulación no modificó
la posición del sacro en relación al ilíaco.
Tullberg 1998
Paradigma Biomecánico Movilización / Manipulación
El concepto de Subluxación Quiropráctica es la base esencial
de la Quiropraxia.
“No se encuentra evidencia que apoye que la subluxación
quiropráctica esté asociada a ningún proceso de enfermedad,
o a crear condiciones subóptimas de salud que requieran
intervención”.
Al demostrarse por imagen que no existían mal-posiciones
vertebrales, se redefinió el término de subluxación quiropráctica:
Mirtz 2009
“Conjunto de cambios patológicos y/o estructurales y/o
funcionales articulares que comprometen la integridad
neural, y que pueden influir en la función de los sistemas,
órganos y en la salud general”.
Paradigma Biomecánico Movilización / Manipulación
En los 114 años desde el comienzo de la Quiropraxia nunca se
ha podido demostrar objetivamente la existencia de las
subluxaciones quiroprácticas.
Nunca se ha mostrado que causen interferencia con el
sistema nervioso.
Nunca se ha demostrado que provoquen enfermedades.
Los críticos de la quiropraxia llevan señalando esto desde
hace décadas, pero ahora los mismos quiropractores llegan a
ésta misma conclusión.
Mirtz 2009
Paradigma Biomecánico Movilización / Manipulación
Datos de 367 encuestas a fisioterapeutas especializados en terapia
manual
En relación al examen del movimiento pasivo intervertebral:
El hallazgo clínico más importante a la hora de tomar una
decisión diagnóstica es el cambio en la resistencia percibida al
final del ROM “end feel”.
En menos medida, la provocación o alivio del dolor del paciente
o la resistencia percibida a lo largo del ROM.
Trijffel 2009
Paradigma Biomecánico Movilización / Manipulación
Además,
Consideran que este examen es importante a la hora de tomar
decisiones terapéuticas.
Confían en que las conclusiones del mismo son válidas.
(la investigación de la validez y precisión no permite conclusiones definitivas)
La mayoría confía en poder llegar a la misma conclusión clínica
que otro compañero.
(la evidencia es clara, la fiabilidad inter-examinador es inaceptablemente baja)
Trijffel 2009
Paradigma Biomecánico Movilización / Manipulación
Datos de 466 encuestas a fisioterapeutas especializados en terapia
manual Estados Unidos y Nueva Zelanda.
En relación al examen del movimiento pasivo intervertebral:
La mayoría consideraron que es un procedimiento preciso para
estimar la cantidad de movimiento presente en la columna
lumbar.
(restricción de movimiento, movimiento normal o exceso de
movimiento)
Abbott 2009
Paradigma Biomecánico Movilización / Manipulación
Además, la mayoría admite:
Seleccionar diferentes opciones de tratamiento en base, al
menos en parte, a los hallazgos del examen del movimiento
pasivo intervertebral.
Que para determinar la expectativa de movimiento que se
espera en cada segmento compara la respuesta con los
segmentos situados inmediatamente por encima y por
debajo.
Abbott 2009
Paradigma Biomecánico Movilización / Manipulación
¿Qué consideras que estás intentando evaluar cuando realizas un
movimiento intervertebral pasivo fisiológico en la columna lumbar?
Abbott 2009
Datos de 118 encuestas a fisioterapeutas especializados en terapia
manual Canadá.
En relación a la indicación o no de la manipulación vertebral:
La mayoría consideró que los hallazgos relacionados con
hipomovilidad eran los más importantes para indicar o no una
manipulación.
- Fijación o bloqueo articular segmentario. 90%.
- Rigidez o limitación de movimiento. 81%
Hurley 2002
Paradigma Biomecánico Movilización / Manipulación
Diferentes disciplinas o líneas de pensamiento en Terapia
Manual hacen uso de sistemas de clasificación del movimiento
intervertebral basados en percepciones subjetivas relacionadas
con la amplitud, calidad o sensación final del movimiento para
la toma de decisiones clínicas.
Una parte de estas disciplinas atribuyen el hallazgo de rigidez o
hipomovilidad segmentaria como el principal criterio a la hora
de seleccionar la manipulación como una opción de
tratamiento.
Paradigma Biomecánico Movilización / Manipulación
Mediante RMN se compara la movilidad pasiva intervertebral lumbar
entre 45 pacientes con dolor lumbar y 20 sujetos asintomáticos.
Como procedimiento de evaluación se utiliza la movilización PA
lumbar.
El número de sujetos que presentó hipomovilidad fue muy bajo:
4.4% de los pacientes.
10% de los sujetos asintomáticos.
Es más, el 40% de los pacientes presentó hipermovilidad en uno o
más segmentos de la columna.
Kulig 2007
Paradigma Biomecánico Movilización / Manipulación
Un experimentado osteópata es capaz de identificar, con buena
fiabilidad, la articulación lumbar con signos de disfunción
segmentaria que se pueda beneficiar de una manipulación
vertebral. Lesión Manipulable.
Sin embargo, en la columna dorsal y sin estar entrenado, el mismo
osteópata tiene moderada a baja fiabilidad en identificar signos de
disfunción segmentaria.
Esto en una muestra de SUJETOS ASINTOMÁTICOS.
Potter 2006
Paradigma Biomecánico Movilización / Manipulación
En relación al examen del movimiento pasivo intervertebral.
Clasificar los hallazgos en base a percepciones subjetivas
relacionadas con la amplitud, calidad, resistencia o sensación
final del movimiento ha demostrado tener poca o ninguna
fiabilidad cuando se compara la concordancia de los resultados
entre diferentes examinadores.
La evidencia es clara en este sentido.
Paradigma Biomecánico Movilización / Manipulación
La evidencia recopilada de los estudios incluidos en esta
revisión sistemática indica que la fiabilidad inter-
examinador, por parte de los terapeutas manuales, del
examen del movimiento pasivo intervertebral de la
columna cervical y lumbar es baja.
Trijffel 2005
Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral
Más importante que medir el acuerdo de los hallazgos
subjetivos del movimiento entre diferentes evaluadores es:
Medir hasta que punto concuerdan las percepciones
subjetivas del movimiento intervertebral con la evaluación
objetiva del mismo.
Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral
A través de una movilización PA lumbar, 2 examinadores
muestran concordancia buena para el nivel vertebral menos
móvil y concordancia mala para el nivel más móvil.
En ningún momento hubo concordancia de estos hallazgos con
la medición del desplazamiento vertebral en RMN dinámica.
Estos resultados ponen en seria duda la validez de estos
procedimientos como método de evaluación del movimiento
intervertebral.
Landel 2008
Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral
Los resultados de la investigación ponen en seria duda la validez
de estos procedimientos como método de evaluación del
movimiento intervertebral.
Ninguna de las pruebas de posición y movilidad articular son
útiles si carecen de fiabilidad interexaminador. El mismo paciente
puede ser diagnosticado por un fisioterapeuta en tener
problemas de hipermovilidad y por otro en tener problemas de
hipomovilidad, lo que puede resultar en diferentes estrategias de
tratamiento.
Para que una prueba pueda ser considerada útil como apoyo a
un conjunto o agrupación de pruebas, primero debe mostrar su
validez y fiabilidad.
Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral
Johanson 2006
La investigación acerca de la aplicación de movilización y
manipulación ha mostrado lo poco específicos que son estos
procedimientos.
La cavitación producida durante la manipulación de la columna
lumbar no se da en el segmento deseado en +50% de los casos y
sólo es específica (cavitación única del nivel deseado) en el 36%
de los casos.
No existe correlación entre la manipulación vertebral específica y
la localización de la cavitación en la columna lumbar y ASI.
Parece que ni siquiera es necesario la reproducción del sonido
para que la misma sea efectiva.
Paradigma Biomecánico Movilización / Manipulación
Ross 2004, Beffa 2004, Flynn 2003
La investigación acerca de la aplicación de movilización y
manipulación ha mostrado lo poco específicos que son estos
procedimientos.
Mediante RMN se ha demostrado que aplicar movilizaciones PA
en la región cervical o lumbar produce movimientos en todos los
segmentos vertebrales de cada región.
Por tanto, no pueden ser consideradas como simples
deslizamientos de una vértebra sobre otra.
Paradigma Biomecánico Movilización / Manipulación
Lee 2005, Powers 2003
En relación al tratamiento por movilización y manipulación
Diferentes formas de movilización y manipulación parecen
tener efectos similares en cuanto a dolor y función
percibida.
Estos efectos no parecen depender de la selección de la
técnica más “apropiada”.
Paradigma Biomecánico Movilización / Manipulación
En sujetos con dolor lumbar, se compara el efecto de un tratamiento
específico basado en el examen del paciente (nivel vertebral, tipo
de técnica y forma de aplicarla) con el efecto de un tratamiento
elegido al azar.
Ambos grupos mostraron reducción significativa del dolor y una
mejor función.
Elegir la técnica que parece ser la más apropiada no superó
ningún resultado medido en este estudio.
Chiradejnant 2003
Paradigma Biomecánico Movilización / Manipulación
En pacientes con dolor lumbar crónico se compara el efecto inmediato, en
la intensidad del dolor y en el umbral de dolor a la presión, de una
manipulación lumbar específica (basada en el examen físico) con el
efecto de una manipulación torácica superior.
Ambos grupos mostraron una mejora clara en el dolor y en el UDP.
En pacientes con dolor lumbar crónico, elegir una manipulación lumbar
específica no produce un mejor efecto inmediato sobre el dolor y el
Fernando de Oliveira 2013
Paradigma Biomecánico Movilización / Manipulación
En pacientes con radiculopatía cervical se compara el efecto en dolor,
ROM y función de un set de movilizaciones y ejercicios de estabilización
con el efecto de añadir, al mismo programa, técnicas dirigidos a aumentar
el tamaño del foramen intervertebral.
Ambos grupos mostraron una mejoría clínica y estadísticamente
significativa en el seguimiento a 4 y 8 semanas.
Añadir técnicas dirigidas a aumentar el FIV no produce un mejor efecto
Langevin P 2015
Paradigma Biomecánico Movilización / Manipulación
En sujetos con dolor de cuello se compara el efecto de una
manipulación cervical en rotación con el efecto de una
manipulación cervical lateral que fueron asignadas al azar.
No se encontraron diferencias mostrando ambos grupos mejoras
significativas en cuanto a dolor y rango de movimiento después
de 10 sesiones de tratamiento y en el seguimiento a un mes.
En sujetos con dolor cuello, se ha comparado el efecto de una
manipulación específica dirigida al segmento “hipomóvil” con el
efecto de la misma manipulación en un segmento elegido al
azar.
Los resultados no encuentran diferencias entre los grupos
mostrando ambos reducción en el dolor cervical.
Paradigma Biomecánico Movilización / Manipulación
Schalkwyk 2000, Haas 2003
Un metaanálisis compara los resultados de diferentes ensayos
clínicos en los que se elige o no un procedimiento de movilización
y/o manipulación específico para sujetos con dolor lumbar.
En aproximadamente 2/3 de los ensayos, se había elegido un
procedimiento específico.
Sin embargo, no existían diferencias a favor de estos ensayos.
La elección o no de una técnica específica de movilización /
manipulación no parece influir en un mayor efecto de la
Terapia Manual en el dolor lumbar.
Kent 2005
Paradigma Biomecánico Movilización / Manipulación
No se han identificado cambios biomecánicos duraderos.
Los clínicos son incapaces de identificar de forma fiable qué
alteraciones biomecánicas requieren TM.
Las fuerzas asociadas con la TM no son específicas para una
localización determinada y son variables entre los clínicos.
La elección de la técnica que parece ser la más apropiada, en un
análisis biomecánico, no parece que influya en los resultados.
Las respuestas de signos y síntomas se producen en áreas alejadas de la
región de aplicación.
A pesar de estas inconsistencias con el modelo biomecánico, otros
mecanismos adicionales pueden ser pertinentes para entender los
efectos de la TM.
Se sugiere que la fuerza mecánica es necesaria para iniciar una cadena
de respuestas neurofisiológicas que producen los resultados asociados
con la TM.
Bialosky 2009
Mecanismos de la Terapia Manual
En relación a las manipulaciones vertebrales en los modelos biomecánicos
tradicionales.
Las manipulaciones vertebrales NO colocan los huesos en su lugar.
Las manipulaciones vertebrales NO producen cambios duraderos en la
posición de las articulaciones.
La investigación ha demostrado que un diagnóstico de mal-posición NO
debe ser un criterio para seleccionar una técnica de manipulación.
En más de la mitad de las veces, la manipulación NO se produce en la
articulación seleccionada y, rara vez, es específica de esa articulación.
Con un análisis de posición o de movilidad vertebral, la elección de un
nivel vertebral hipomóvil o en “bloqueo” NO influye en un mayor efecto
clínico de la manipulación. Además, esta elección, NO supera el efecto
de técnicas elegidas al azar.
Paradigma Biomecánico Movilización / Manipulación
En relación a las pruebas pasivas de posición y movilidad intervertebral:
Carecen de un estándar de comparación válido.
NO permiten medir de forma precisa el movimiento pasivo
intervertebral.
Otro compañero entrenado NO obtiene los mismos resultados, lo que
conduce a categorías diagnósticas y tratamientos diferentes. Incluso el
mismo terapeuta NO concuerda con sus propios resultados en
momentos diferentes.
Las alteraciones de posición y movilidad son tan comunes en la gente
con dolor que sin dolor de espalda. Por tanto, NO se correlacionan con
el dolor y no pueden ser consideradas causas del mismo.
La elección de la técnica que parece ser más apropiada, con este
examen biomecánico, NO produce mayor efecto clínico que las
Paradigma Biomecánico Movilización / Manipulación
Paradigma Biomecánico Movilización / Manipulación
Parece evidente que evaluar el movimiento mediante percepciones
subjetivas no es válido para tomar decisiones terapéuticas. Existe una alta
probabilidad de elegir y aplicar un tratamiento erróneo.
En relación al examen del movimiento intervertebral, ¿existe alguna utilidad
que sea respaldada por la investigación?
Las movilizaciones PA en columna cervical y lumbar han mostrado alto
grado de sensibilidad y especificidad al ser comparadas con bloqueos
anestésicos.
Tienen concordancia alta, inter e intra examinador, para detectar
niveles vertebrales sintomáticos.
Dependen en cierto grado de la comunicación verbal con el paciente
para lograr la concordancia perfecta.
Jull 1988, 1997, Phillips 1996
¿Qué consideras que estás intentando evaluar cuando realizas un
movimiento pasivo accesorio PA central en la columna lumbar?
Abbott 2009
Existe evidencia parcial acerca del efecto de una intervención
por movilización / manipulación seleccionada en base a la
localización de niveles vertebrales sintomáticos.
(Niveles vertebrales en donde el procedimiento manual reproduce
parcial o totalmente el dolor del paciente).
Se ha demostrado que la movilización produce mayor
reducción de dolor cuando ésta se aplica en el nivel vertebral
que el fisioterapeuta identifica como más sintomático y con
mayor capacidad de reproducir el síntoma del paciente.
Chiradejnant 2002
Paradigma Biomecánico Movilización / Manipulación
“La incapacidad de demostrar la superioridad sobre el placebo no
implica falta de eficacia; puede reflejar únicamente similitud de
mecanismos. La comparación de un tratamiento con el placebo no
es, en consecuencia, una comparación de dos mecanismos, sino tan
sólo la comparación de su capacidad de activar el mismo
mecanismo….”. Lawes 2002
Mecanismos cerebrales específicos
parecen mediar la respuesta al placebo.
El grado en que una persona responde a
un placebo está vinculado íntimamente a
la actividad que registre el área del
cerebro destinada a obtener un beneficio
o una recompensa.
Mecanismo Placebo
Lawes 2002, Scott 2007
Se ha estudiado el efecto en la percepción de dolor de crear
expectativas positivas, negativas o neutras en cuanto al resultado
de la manipulación.
Expectativa positiva: “la manipulación es un procedimiento muy
efectivo que se utiliza para tratar el dolor lumbar bajo, y
esperamos que reduzca su percepción de dolor”.
Expectativa negativa: “la manipulación es un procedimiento
ineficaz que se utiliza para tratar el dolor lumbar bajo, y
esperamos un empeoramiento temporal de su percepción de
dolor”.
Expectativa neutra: “la manipulación es un procedimiento que
se utiliza para tratar el dolor lumbar bajo y desconocemos sus
efectos en la percepción de dolor”.
Bialosky 2008
Mecanismo Placebo
Los sujetos que reciben la expectativa negativa muestran un aumento
importante en la percepción de dolor en el área corporal donde se
crea la expectativa del resultado, y que parece condicionar el
efecto de hipoalgesia que se atribuye a la manipulación.
La mayor parte de los estudios de investigación en Terapia
Manual concluyen que ésta puede ser efectiva en el alivio
del dolor y en la mejoría de la función en pacientes con
dolor musculoesquelético.
No está claro cómo deben ser aplicadas las diferentes
maniobras en relación al orden de las mismas, intensidad,
frecuencia, tiempo de duración, etc...
Movilización / Manipulación

More Related Content

What's hot

Spinal Osteopathic Manipulative Therapy (OMTh) Revisited by Manual Therapist...
Spinal Osteopathic Manipulative Therapy (OMTh) Revisited  by Manual Therapist...Spinal Osteopathic Manipulative Therapy (OMTh) Revisited  by Manual Therapist...
Spinal Osteopathic Manipulative Therapy (OMTh) Revisited by Manual Therapist...
www.dolordeespalda.cl www.icup.cl
 
Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...
Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...
Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...
IOSR Journals
 
Comparison between mulligan bend leg raise technique and butler neural mobil...
Comparison  between mulligan bend leg raise technique and butler neural mobil...Comparison  between mulligan bend leg raise technique and butler neural mobil...
Comparison between mulligan bend leg raise technique and butler neural mobil...
Dr.Debanjan Mondal(PT)
 
In Service - OMPT for SIS
In Service - OMPT for SISIn Service - OMPT for SIS
In Service - OMPT for SIStylers56
 
Thoracic manipulation for neck pain
Thoracic manipulation for neck painThoracic manipulation for neck pain
Thoracic manipulation for neck pain
Nicolas Olson-Studler, DPT
 
Mechanical diagnosis & therapy mckenzie method
Mechanical diagnosis & therapy  mckenzie methodMechanical diagnosis & therapy  mckenzie method
Mechanical diagnosis & therapy mckenzie method
sa7ar Neamat
 
Presentatie Drs. Ronald Kan - Even wat rechtzetten
Presentatie Drs. Ronald Kan - Even wat rechtzetten Presentatie Drs. Ronald Kan - Even wat rechtzetten
Presentatie Drs. Ronald Kan - Even wat rechtzetten
NVMT-symposium
 
Soft Tissue Treatment of Musculoskeletal Disorders - Thomas E. Hyde
Soft Tissue Treatment of Musculoskeletal Disorders - Thomas E. HydeSoft Tissue Treatment of Musculoskeletal Disorders - Thomas E. Hyde
Soft Tissue Treatment of Musculoskeletal Disorders - Thomas E. Hyde
National University of Health Sciences
 
IM PNS vs UC for Motor Impairment 2014_04_10
IM PNS vs UC for Motor Impairment 2014_04_10IM PNS vs UC for Motor Impairment 2014_04_10
IM PNS vs UC for Motor Impairment 2014_04_10Henry Wu
 
Osteopathic manipulation treatment
Osteopathic manipulation treatmentOsteopathic manipulation treatment
Osteopathic manipulation treatment
thomasbarone
 
Pilates na dor lombar: um estudo randomizado
Pilates na dor lombar: um estudo randomizadoPilates na dor lombar: um estudo randomizado
Pilates na dor lombar: um estudo randomizado
Dra. Welker Fisioterapeuta
 
Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...
Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...
Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...
DrScottCuthbert
 
Steadman Hawkins Sports Medicine Lecture Series: Chiropractic (2006)
Steadman Hawkins Sports Medicine Lecture Series: Chiropractic  (2006)Steadman Hawkins Sports Medicine Lecture Series: Chiropractic  (2006)
Steadman Hawkins Sports Medicine Lecture Series: Chiropractic (2006)
Mark J Pitcher DC, Msc CCSP, EMT
 
gevirtz on myopain
gevirtz on myopaingevirtz on myopain
gevirtz on myopain
wilensk
 
Se reflexology
Se reflexologySe reflexology
Se reflexology
Morris Layton
 
Med X Core Spinal Systems
Med X Core Spinal SystemsMed X Core Spinal Systems
Med X Core Spinal Systems
adamreidcei
 
Paradigm shift in spinal manual therapy
Paradigm shift in spinal manual therapyParadigm shift in spinal manual therapy
Paradigm shift in spinal manual therapy
Dr.Kannabiran Bhojan
 

What's hot (20)

Spinal Osteopathic Manipulative Therapy (OMTh) Revisited by Manual Therapist...
Spinal Osteopathic Manipulative Therapy (OMTh) Revisited  by Manual Therapist...Spinal Osteopathic Manipulative Therapy (OMTh) Revisited  by Manual Therapist...
Spinal Osteopathic Manipulative Therapy (OMTh) Revisited by Manual Therapist...
 
MDIfinal
MDIfinalMDIfinal
MDIfinal
 
Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...
Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...
Effectiveness of Strain Counterstrain Technique on Quadratus Lumborum Trigger...
 
Abstracts
AbstractsAbstracts
Abstracts
 
Comparison between mulligan bend leg raise technique and butler neural mobil...
Comparison  between mulligan bend leg raise technique and butler neural mobil...Comparison  between mulligan bend leg raise technique and butler neural mobil...
Comparison between mulligan bend leg raise technique and butler neural mobil...
 
In Service - OMPT for SIS
In Service - OMPT for SISIn Service - OMPT for SIS
In Service - OMPT for SIS
 
Thoracic manipulation for neck pain
Thoracic manipulation for neck painThoracic manipulation for neck pain
Thoracic manipulation for neck pain
 
Mechanical diagnosis & therapy mckenzie method
Mechanical diagnosis & therapy  mckenzie methodMechanical diagnosis & therapy  mckenzie method
Mechanical diagnosis & therapy mckenzie method
 
Presentatie Drs. Ronald Kan - Even wat rechtzetten
Presentatie Drs. Ronald Kan - Even wat rechtzetten Presentatie Drs. Ronald Kan - Even wat rechtzetten
Presentatie Drs. Ronald Kan - Even wat rechtzetten
 
Soft Tissue Treatment of Musculoskeletal Disorders - Thomas E. Hyde
Soft Tissue Treatment of Musculoskeletal Disorders - Thomas E. HydeSoft Tissue Treatment of Musculoskeletal Disorders - Thomas E. Hyde
Soft Tissue Treatment of Musculoskeletal Disorders - Thomas E. Hyde
 
IM PNS vs UC for Motor Impairment 2014_04_10
IM PNS vs UC for Motor Impairment 2014_04_10IM PNS vs UC for Motor Impairment 2014_04_10
IM PNS vs UC for Motor Impairment 2014_04_10
 
Osteopathic manipulation treatment
Osteopathic manipulation treatmentOsteopathic manipulation treatment
Osteopathic manipulation treatment
 
Pilates na dor lombar: um estudo randomizado
Pilates na dor lombar: um estudo randomizadoPilates na dor lombar: um estudo randomizado
Pilates na dor lombar: um estudo randomizado
 
Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...
Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...
Two New Applied Kinesiology Textbooks (the 2nd Editions) -- Just Published IN...
 
Steadman Hawkins Sports Medicine Lecture Series: Chiropractic (2006)
Steadman Hawkins Sports Medicine Lecture Series: Chiropractic  (2006)Steadman Hawkins Sports Medicine Lecture Series: Chiropractic  (2006)
Steadman Hawkins Sports Medicine Lecture Series: Chiropractic (2006)
 
gevirtz on myopain
gevirtz on myopaingevirtz on myopain
gevirtz on myopain
 
CE 1 in service
CE 1 in serviceCE 1 in service
CE 1 in service
 
Se reflexology
Se reflexologySe reflexology
Se reflexology
 
Med X Core Spinal Systems
Med X Core Spinal SystemsMed X Core Spinal Systems
Med X Core Spinal Systems
 
Paradigm shift in spinal manual therapy
Paradigm shift in spinal manual therapyParadigm shift in spinal manual therapy
Paradigm shift in spinal manual therapy
 

Viewers also liked

M q05-06gral-junio a
M q05-06gral-junio aM q05-06gral-junio a
M q05-06gral-junio a
Fisio2012
 
M q05-06gral-junio b
M q05-06gral-junio bM q05-06gral-junio b
M q05-06gral-junio b
Fisio2012
 
Salud laboral en tiempos de crisis estrategias para mejorar la eficiencia
Salud laboral en tiempos de crisis estrategias para mejorar la eficienciaSalud laboral en tiempos de crisis estrategias para mejorar la eficiencia
Salud laboral en tiempos de crisis estrategias para mejorar la eficienciaFisio2012
 
2.mov manipulacion
2.mov manipulacion2.mov manipulacion
2.mov manipulacion
Fisio2012
 
3 2013-10-08-calendario imprenta
3 2013-10-08-calendario imprenta3 2013-10-08-calendario imprenta
3 2013-10-08-calendario imprentaFisio2012
 
Examen m q05-06gral-junio a
Examen m q05-06gral-junio aExamen m q05-06gral-junio a
Examen m q05-06gral-junio a
Fisio2012
 
Preguntas mdq
Preguntas mdqPreguntas mdq
Preguntas mdq
Fisio2012
 
Exámenes con cambios 19 junio
Exámenes con cambios 19 junioExámenes con cambios 19 junio
Exámenes con cambios 19 junioFisio2012
 
Ejercicio físico
Ejercicio físico Ejercicio físico
Ejercicio físico Fisio2012
 
Curso de verano terapia con animales
Curso de verano terapia con animalesCurso de verano terapia con animales
Curso de verano terapia con animalesFisio2012
 
Páginas anatomía
Páginas anatomíaPáginas anatomía
Páginas anatomíaFisio2012
 
Examenes atin
Examenes atinExamenes atin
Examenes atin
Fisio2012
 
Examenes atin sin repuestas
Examenes atin sin repuestasExamenes atin sin repuestas
Examenes atin sin repuestas
Fisio2012
 
Neurotapping
NeurotappingNeurotapping
NeurotappingFisio2012
 
Aparato respiratorio.
Aparato respiratorio. Aparato respiratorio.
Aparato respiratorio. Fisio2012
 
Procedimientos generales: Balneoterapia 1
Procedimientos generales: Balneoterapia 1Procedimientos generales: Balneoterapia 1
Procedimientos generales: Balneoterapia 1Fisio2012
 
Enfermedades geneticas
Enfermedades geneticasEnfermedades geneticas
Enfermedades geneticasFisio2012
 

Viewers also liked (20)

M q05-06gral-junio a
M q05-06gral-junio aM q05-06gral-junio a
M q05-06gral-junio a
 
M q05-06gral-junio b
M q05-06gral-junio bM q05-06gral-junio b
M q05-06gral-junio b
 
Salud laboral en tiempos de crisis estrategias para mejorar la eficiencia
Salud laboral en tiempos de crisis estrategias para mejorar la eficienciaSalud laboral en tiempos de crisis estrategias para mejorar la eficiencia
Salud laboral en tiempos de crisis estrategias para mejorar la eficiencia
 
2.mov manipulacion
2.mov manipulacion2.mov manipulacion
2.mov manipulacion
 
Dlm
Dlm Dlm
Dlm
 
3 2013-10-08-calendario imprenta
3 2013-10-08-calendario imprenta3 2013-10-08-calendario imprenta
3 2013-10-08-calendario imprenta
 
AMM
AMMAMM
AMM
 
Examen m q05-06gral-junio a
Examen m q05-06gral-junio aExamen m q05-06gral-junio a
Examen m q05-06gral-junio a
 
Preguntas mdq
Preguntas mdqPreguntas mdq
Preguntas mdq
 
Exámenes con cambios 19 junio
Exámenes con cambios 19 junioExámenes con cambios 19 junio
Exámenes con cambios 19 junio
 
Ejercicio físico
Ejercicio físico Ejercicio físico
Ejercicio físico
 
Curso de verano terapia con animales
Curso de verano terapia con animalesCurso de verano terapia con animales
Curso de verano terapia con animales
 
Páginas anatomía
Páginas anatomíaPáginas anatomía
Páginas anatomía
 
Examenes atin
Examenes atinExamenes atin
Examenes atin
 
Examenes atin sin repuestas
Examenes atin sin repuestasExamenes atin sin repuestas
Examenes atin sin repuestas
 
TNM
TNMTNM
TNM
 
Neurotapping
NeurotappingNeurotapping
Neurotapping
 
Aparato respiratorio.
Aparato respiratorio. Aparato respiratorio.
Aparato respiratorio.
 
Procedimientos generales: Balneoterapia 1
Procedimientos generales: Balneoterapia 1Procedimientos generales: Balneoterapia 1
Procedimientos generales: Balneoterapia 1
 
Enfermedades geneticas
Enfermedades geneticasEnfermedades geneticas
Enfermedades geneticas
 

Similar to Mov manipulacion al completo

2015.01.26 ben kligler integrative pain2015
2015.01.26 ben kligler integrative pain20152015.01.26 ben kligler integrative pain2015
2015.01.26 ben kligler integrative pain2015
Cara Feldman-Hunt
 
EFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptx
EFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptxEFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptx
EFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptx
sammer
 
Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...
Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...
Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...
Antonio Martinez
 
Transcranial Magnetic Stimulation ( TMS) for Chronic Pain
Transcranial Magnetic Stimulation ( TMS) for Chronic PainTranscranial Magnetic Stimulation ( TMS) for Chronic Pain
Transcranial Magnetic Stimulation ( TMS) for Chronic Pain
Dr. Rafael Higashi
 
ZMPCZM016000.11.23 Electrotherapy for pain management
ZMPCZM016000.11.23 Electrotherapy for pain managementZMPCZM016000.11.23 Electrotherapy for pain management
ZMPCZM016000.11.23 Electrotherapy for pain managementpainezeeman
 
low back pain with radiating lower limb
low back pain with radiating lower limblow back pain with radiating lower limb
low back pain with radiating lower limb
DrHeeraMani
 
Neurodynamics
NeurodynamicsNeurodynamics
DPT student poster_2014
DPT student poster_2014DPT student poster_2014
DPT student poster_2014Molly Roepke
 
physiotherapy in MND.pptx
physiotherapy in MND.pptxphysiotherapy in MND.pptx
physiotherapy in MND.pptx
ibtesaam huma
 
Exercise therapy with the PNF concept
Exercise therapy with the PNF conceptExercise therapy with the PNF concept
Exercise therapy with the PNF concept
Master - Science Lab
 
Effect of hamstring stretching and neural mobilization.pptx
Effect of hamstring stretching and neural mobilization.pptxEffect of hamstring stretching and neural mobilization.pptx
Effect of hamstring stretching and neural mobilization.pptx
EnglishSSC
 
Acupuncture &amp; Pain Relief
Acupuncture &amp; Pain ReliefAcupuncture &amp; Pain Relief
Acupuncture &amp; Pain Relief
vinniedelgreco
 
Acupuncture & pain relief
Acupuncture & pain reliefAcupuncture & pain relief
Acupuncture & pain relief
vinniedelgreco
 
effect of tens on hand function in hemiplegic patient
effect of tens on hand function in hemiplegic patienteffect of tens on hand function in hemiplegic patient
effect of tens on hand function in hemiplegic patient
PandurangChavan11
 
better Rehabilitation through vibro-acoustic-therapy.pdf
better Rehabilitation through vibro-acoustic-therapy.pdfbetter Rehabilitation through vibro-acoustic-therapy.pdf
better Rehabilitation through vibro-acoustic-therapy.pdf
michel582642
 
Running head NECK PAIN .docx
Running head NECK PAIN                                           .docxRunning head NECK PAIN                                           .docx
Running head NECK PAIN .docx
toltonkendal
 
ZMPCHW070000.11 Varying frequency and intensity in TENS
ZMPCHW070000.11 Varying frequency and intensity in TENSZMPCHW070000.11 Varying frequency and intensity in TENS
ZMPCHW070000.11 Varying frequency and intensity in TENSPainezee Specialist
 

Similar to Mov manipulacion al completo (20)

2015.01.26 ben kligler integrative pain2015
2015.01.26 ben kligler integrative pain20152015.01.26 ben kligler integrative pain2015
2015.01.26 ben kligler integrative pain2015
 
EFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptx
EFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptxEFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptx
EFFECTS OF ELECTROTHERAPY VS MYOFASCIAL RELEASE ON TRIGGER POINT.pptx
 
Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...
Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...
Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pa...
 
Transcranial Magnetic Stimulation ( TMS) for Chronic Pain
Transcranial Magnetic Stimulation ( TMS) for Chronic PainTranscranial Magnetic Stimulation ( TMS) for Chronic Pain
Transcranial Magnetic Stimulation ( TMS) for Chronic Pain
 
ZMPCZM016000.11.23 Electrotherapy for pain management
ZMPCZM016000.11.23 Electrotherapy for pain managementZMPCZM016000.11.23 Electrotherapy for pain management
ZMPCZM016000.11.23 Electrotherapy for pain management
 
low back pain with radiating lower limb
low back pain with radiating lower limblow back pain with radiating lower limb
low back pain with radiating lower limb
 
Neurodynamics
NeurodynamicsNeurodynamics
Neurodynamics
 
DPT student poster_2014
DPT student poster_2014DPT student poster_2014
DPT student poster_2014
 
physiotherapy in MND.pptx
physiotherapy in MND.pptxphysiotherapy in MND.pptx
physiotherapy in MND.pptx
 
Exercise therapy with the PNF concept
Exercise therapy with the PNF conceptExercise therapy with the PNF concept
Exercise therapy with the PNF concept
 
Widerstrom noga talk 7-12_11
Widerstrom noga talk 7-12_11Widerstrom noga talk 7-12_11
Widerstrom noga talk 7-12_11
 
2006 sin
2006 sin2006 sin
2006 sin
 
Effect of hamstring stretching and neural mobilization.pptx
Effect of hamstring stretching and neural mobilization.pptxEffect of hamstring stretching and neural mobilization.pptx
Effect of hamstring stretching and neural mobilization.pptx
 
Acupuncture &amp; Pain Relief
Acupuncture &amp; Pain ReliefAcupuncture &amp; Pain Relief
Acupuncture &amp; Pain Relief
 
Acupuncture & pain relief
Acupuncture & pain reliefAcupuncture & pain relief
Acupuncture & pain relief
 
effect of tens on hand function in hemiplegic patient
effect of tens on hand function in hemiplegic patienteffect of tens on hand function in hemiplegic patient
effect of tens on hand function in hemiplegic patient
 
IHP Feature Meditation
IHP Feature MeditationIHP Feature Meditation
IHP Feature Meditation
 
better Rehabilitation through vibro-acoustic-therapy.pdf
better Rehabilitation through vibro-acoustic-therapy.pdfbetter Rehabilitation through vibro-acoustic-therapy.pdf
better Rehabilitation through vibro-acoustic-therapy.pdf
 
Running head NECK PAIN .docx
Running head NECK PAIN                                           .docxRunning head NECK PAIN                                           .docx
Running head NECK PAIN .docx
 
ZMPCHW070000.11 Varying frequency and intensity in TENS
ZMPCHW070000.11 Varying frequency and intensity in TENSZMPCHW070000.11 Varying frequency and intensity in TENS
ZMPCHW070000.11 Varying frequency and intensity in TENS
 

More from Fisio2012

Terapias complementarias
Terapias complementariasTerapias complementarias
Terapias complementarias
Fisio2012
 
Fisioterapia musculoesquelética
Fisioterapia musculoesqueléticaFisioterapia musculoesquelética
Fisioterapia musculoesquelética
Fisio2012
 
Triptico jornadas 2015
Triptico jornadas 2015Triptico jornadas 2015
Triptico jornadas 2015
Fisio2012
 
Modificación programa prácticas
Modificación programa prácticasModificación programa prácticas
Modificación programa prácticas
Fisio2012
 
Info Fundación Mes
Info Fundación MesInfo Fundación Mes
Info Fundación MesFisio2012
 
Prótesis MS
Prótesis MSPrótesis MS
Prótesis MSFisio2012
 
Estiramientos
EstiramientosEstiramientos
EstiramientosFisio2012
 
Contraindicaciones 2012 2013
Contraindicaciones 2012 2013Contraindicaciones 2012 2013
Contraindicaciones 2012 2013Fisio2012
 

More from Fisio2012 (9)

Terapias complementarias
Terapias complementariasTerapias complementarias
Terapias complementarias
 
Fisioterapia musculoesquelética
Fisioterapia musculoesqueléticaFisioterapia musculoesquelética
Fisioterapia musculoesquelética
 
Triptico jornadas 2015
Triptico jornadas 2015Triptico jornadas 2015
Triptico jornadas 2015
 
Modificación programa prácticas
Modificación programa prácticasModificación programa prácticas
Modificación programa prácticas
 
Info Fundación Mes
Info Fundación MesInfo Fundación Mes
Info Fundación Mes
 
Prótesis MS
Prótesis MSPrótesis MS
Prótesis MS
 
Estiramientos
EstiramientosEstiramientos
Estiramientos
 
Hidrología
HidrologíaHidrología
Hidrología
 
Contraindicaciones 2012 2013
Contraindicaciones 2012 2013Contraindicaciones 2012 2013
Contraindicaciones 2012 2013
 

Recently uploaded

The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 

Recently uploaded (20)

The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 

Mov manipulacion al completo

  • 1. Fisioterapia Manual Avanzada Movilización / Manipulación MITOS Y REALIDADES PARADIGMA BIOMECÁNICO Gustavo  Plaza  Manzano     Fisioterapeuta   Facultad  de  Medicina   Universidad  Complutense  de  Madrid La forma manual de aplicar un movimiento lento, rítmico y/o sostenido, con la finalidad de reproducir movimientos accesorios y/o fisiológicos a lo largo del rango de movilidad pasiva disponible de una articulación. La forma manual de aplicar un impulso, repentino y preciso, de gran velocidad y corta amplitud, cerca del final del rango de movilidad disponible mediante la ejecución de un movimiento fisiológico, un movimiento accesorio o una combinación de ambos. Alcanza un espacio libre, “parafisiológico”, que se encuentra más allá del ROM pasivo disponible. Se distingue por la reproducción de un sonido, a modo de chasquido, característico de articulaciones sinoviales con fuerte cohesión entre sus superficies. Vernon 2005 MOVILIZACIÓN - MANIPULACIÓN TENSIÓN AMPLITUD ARTICULARPN MP LAMA 80% 90% 2% 100% ZONA NEUTRA ZONA ELÁSTICA IV IIIII I V MOVILIZACIÓN - MANIPULACIÓN
  • 2. Los mecanismos de acción de las técnicas de terapia manual no se conocen por completo, pero se cree que los efectos mecánicos y neurofisiológicos desempeñan un papel importante en los mismos. POSIBLES EFECTOS MOVILIZACIÓN - MANIPULACIÓN Sistemas del Dolor Sistema Nervioso Simpático Sistema Motor Estructurales-Posturales-Biomecánicos Mecanismo Placebo Estimulación de los procesos de reparación tisular. Modificación del entorno químico de los nociceptores periféricos. Activación de los mecanismos inhibitorios segmentarios. Activación de los mecanismos inhibitorios descendentes. Mecanismo Placebo. Disminución de la Percepción de Dolor Wright 2002 ¿Qué ocurre en el tejido con el movimiento? Normalización de la homeostasis del tejido conectivo. El movimiento favorece el depósito de colágeno en la dirección adecuada, mantiene el equilibrio entre los constituyentes del tejido conectivo, refuerza la regeneración vascular normal, y reduce la formación excesiva de puentes y adherencias. Existe fuerte evidencia de que la tensión periódica y moderada es esencial para la nutrición y viabilidad del tejido durante la curación.
  • 3. Sistema Modulador Descendente Representado a nivel del tronco cerebral (SGP, RVM, DLTP), y se encuentran bajo la influencia del cerebro anterior (corteza y límbico). Puede atenuar o aumentar la transmisión nociceptiva, produciendo analgesia o hiperalgesia, respectivamente. Efectos sobre el dolor Numerosos trabajos estudian su efecto sobre el umbral de sensibilidad mecánica y térmica al dolor y sobre las respuestas del sistema nervioso simpático. Se puede concluir que; Parecen existir respuestas hipoalgésicas inmediatas, medidas por el aumento de sensibilidad mecánica al dolor y por la disminución de los campos de referencia cutánea del mismo. Estas respuestas no parecen haber influido sobre el umbral de sensibilidad térmica. Vicenzino 1998, Vernon 2000, Sterling 2001 No presenta características opioides: - No afecta a niveles de β-endorfinas. - No revierte con Naloxona. - No muestra tolerancia tras aplicaciones repetidas. - Se atenúa con antagonistas de receptores noradrenérgicos y se bloquea con antagonistas de receptores serotonérgicos (Skyba 2003). Considerable evidencia respalda que la movilización articular es un estímulo suficiente para inducir respuestas excitatorias simpáticas. Parece existir una correlación entre la rapidez y magnitud de la respuesta excitatoria simpática con el aumento del umbral de sensibilidad mecánica al dolor. Efectos sobre el Dolor y el SNS Christian 1998, Vicenzino 2000, Souvlis 1999, Paungmali 2003
  • 4. Se ha investigado el efecto de la movilización cervical en la percepción de dolor, en la función motora y en la función autonómica. Este estudio mostró un aumento del 22% en el UDP medido a nivel de las articulaciones interapofisarias C5-C6 sintomáticas, una mejora en la función de los músculos cervicales en el test de FCC y un aumento significativo en la conductancia cutánea y una disminución de la temperatura de la piel. Sterling 2001 Efectos sobre el Dolor, Función Motora y SNS La movilización articular produce analgesia no opioide, mediada por serotonina y noradrenalina liberadas desde las regiones rostral ventromedial del bulbo y dorsolateral ponto-mesencefálica de las vías descendentes de modulación del dolor. Skyba DA 2003 Efectos sobre el dolor journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 231 [ RESEARCH REPORT ] S pinal manipulation (SM) is a common treatment approach for pain reduction in low back and neck disorders.37,38,41 The effectiveness of SM to treat musculoskeletal pain, such as spinal pain, has been summarized in recent Cochrane reviews.32,56 Overall, the evidence suggests that SM provides improvements in pain re- lief, though similar results have been de- scribed in other competing treatments, such as general practitioner manage- ment, medication, and exercise, in pa- tients with musculoskeletal pain.6,7 It has been shown that the presence of pain in- duces changes in the anatomy and func- tion of the central and peripheral nervous systems.20,46,53 Therefore, research on an asymptomatic population may be impor- tant to accurately determine the antinoci- ceptive mechanism of SM. Several studies in asymptomatic subjects have shown that SM techniques induce changes in physiological reflexes,28 increase neu- romuscular excitability,22 and modify sensitivity.30 The mechanisms through which SM alters musculoskeletal pain are still unknown. However, current evidence suggests an interaction between the mechanical stimulus and the associated neurophysiological responses,6,51 includ- ing rapid hypoalgesia with concurrent sympathetic nervous system and mo- tor system excitation, similar to those generated by direct stimulation of the periaqueductal gray matter.61,68 Recent animal studies show that the analgesia produced by joint mobilization involves serotonin and noradrenaline receptors in the spinal cord, thereby performing a supporting role for central mechanisms of pain modulation.60 Several neuropep- tides, such as neurotensin,23 oxytocin,29 or orexin A,3 have been associated with hypoalgesia and pain modulation, and it is well known that cortisol plays an anal- gesic role related to stress responses.4,44 Recent theories have also suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor, a situation related to high cortisol lev- els.45,66 To our knowledge, there is a lack of studies analyzing changes in these no- ciception-related biochemical markers in response to manual therapy. STUDY DESIGN: Controlled, repeated-mea- sures, single-blind randomized study. OBJECTIVES: To determine the effect of cervical or thoracic manipulation on neurotensin, oxytocin, orexin A, and cortisol levels. BACKGROUND: Previous studies have re- searched the effect of spinal manipulation on pain modulation and/or range of movement. However, there is little knowledge of the biochemical process that supports the antinociceptive effect of spinal manipulation. METHODS: Thirty asymptomatic subjects were randomly divided into 3 groups: cervical manipulation (n = 10), thoracic manipulation (n = 10), and nonmanipulation (control) (n = 10). Blood samples were extracted before, immediately after, and 2 hours after each intervention. Neurotensin, oxytocin, and orexin A were determined in plasma using enzyme-linked immuno assay. Cortisol was measured by microparticulate enzyme immuno assay in serum samples. RESULTS: Immediately after the intervention, significantly higher values of neurotensin (P<.05) and oxytocin (P<.001) levels were observed with both cervical and thoracic manipulation, whereas cortisol concentration was increased only in the cervical manipulation group (P<.05). No changes were detected for orexin A levels. Two hours after the intervention, no significant differences were observed in between-group analysis. CONCLUSION: The mechanical stimulus pro- vided by spinal manipulation triggers an increase in neurotensin, oxytocin, and cortisol blood levels. Data suggest that the initial capability of the tissues to tolerate mechanical deformation affects the capacity of these tissues to produce an induc- tion of neuropeptide expression. J Orthop Sports Phys Ther 2014;44(4):231-239. Epub 22 January 2014. doi:10.2519/jospt.2014.4996 KEY WORDS: cortisol, neurotensin, orexin A, oxytocin, spinal manipulation 1 Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 2 Department of Health Sciences, Universidad de Jaén, Jaén, Spain. The protocol for this study was approved by the Ethical Committee in Clinical Research of the Universidad de Jaén, Jaén, Spain. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Fidel Hita-Contreras, Department of Health Sciences (B-3/272). Universidad de Jaén. Campus Las Lagunillas s/n, 23071 Jaén, Spain. E-mail: fhita@ujaen. es Copyright ©2014 Journal of Orthopaedic & Sports Physical Therapy® GUSTAVO PLAZA-MANZANO, PT1 • FRANCISCO MOLINA, PT, PhD2 • RAFAEL LOMAS-VEGA, PT, PhD2 ANTONIO MARTÍNEZ-AMAT, PhD2 • ALEXANDER ACHALANDABASO, PT1 • FIDEL HITA-CONTRERAS, MD, PhD2 Changes in Biochemical Markers of Pain Perception and Stress Response After Spinal Manipulation JournalofOrthopaedic&SportsPhysicalTherapy® Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission. Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved. journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 231 [ RESEARCH REPORT ] S pinal manipulation (SM) is a common treatment approach for pain reduction in low back and neck disorders.37,38,41 The effectiveness of SM to treat musculoskeletal pain, such as spinal pain, has been summarized in recent Cochrane reviews.32,56 Overall, the evidence suggests that SM provides improvements in pain re- lief, though similar results have been de- scribed in other competing treatments, such as general practitioner manage- ment, medication, and exercise, in pa- tients with musculoskeletal pain.6,7 It has been shown that the presence of pain in- duces changes in the anatomy and func- tion of the central and peripheral nervous systems.20,46,53 Therefore, research on an asymptomatic population may be impor- tant to accurately determine the antinoci- ceptive mechanism of SM. Several studies in asymptomatic subjects have shown that SM techniques induce changes in physiological reflexes,28 increase neu- romuscular excitability,22 and modify sensitivity.30 The mechanisms through which SM alters musculoskeletal pain are still unknown. However, current evidence suggests an interaction between the mechanical stimulus and the associated neurophysiological responses,6,51 includ- ing rapid hypoalgesia with concurrent sympathetic nervous system and mo- tor system excitation, similar to those generated by direct stimulation of the periaqueductal gray matter.61,68 Recent animal studies show that the analgesia produced by joint mobilization involves serotonin and noradrenaline receptors in the spinal cord, thereby performing a supporting role for central mechanisms of pain modulation.60 Several neuropep- tides, such as neurotensin,23 oxytocin,29 or orexin A,3 have been associated with hypoalgesia and pain modulation, and it is well known that cortisol plays an anal- gesic role related to stress responses.4,44 Recent theories have also suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor, a situation related to high cortisol lev- els.45,66 To our knowledge, there is a lack of studies analyzing changes in these no- ciception-related biochemical markers in response to manual therapy. STUDY DESIGN: Controlled, repeated-mea- sures, single-blind randomized study. OBJECTIVES: To determine the effect of cervical or thoracic manipulation on neurotensin, oxytocin, orexin A, and cortisol levels. BACKGROUND: Previous studies have re- searched the effect of spinal manipulation on pain modulation and/or range of movement. However, there is little knowledge of the biochemical process that supports the antinociceptive effect of spinal manipulation. METHODS: Thirty asymptomatic subjects were randomly divided into 3 groups: cervical manipulation (n = 10), thoracic manipulation (n = 10), and nonmanipulation (control) (n = 10). Blood samples were extracted before, immediately after, and 2 hours after each intervention. Neurotensin, oxytocin, and orexin A were determined in plasma using enzyme-linked immuno assay. Cortisol was measured by microparticulate enzyme immuno assay in serum samples. RESULTS: Immediately after the intervention, significantly higher values of neurotensin (P<.05) and oxytocin (P<.001) levels were observed with both cervical and thoracic manipulation, whereas cortisol concentration was increased only in the cervical manipulation group (P<.05). No changes were detected for orexin A levels. Two hours after the intervention, no significant differences were observed in between-group analysis. CONCLUSION: The mechanical stimulus pro- vided by spinal manipulation triggers an increase in neurotensin, oxytocin, and cortisol blood levels. Data suggest that the initial capability of the tissues to tolerate mechanical deformation affects the capacity of these tissues to produce an induc- tion of neuropeptide expression. J Orthop Sports Phys Ther 2014;44(4):231-239. Epub 22 January 2014. doi:10.2519/jospt.2014.4996 KEY WORDS: cortisol, neurotensin, orexin A, oxytocin, spinal manipulation 1 Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 2 Department of Health Sciences, Universidad de Jaén, Jaén, Spain. The protocol for this study was approved by the Ethical Committee in Clinical Research of the Universidad de Jaén, Jaén, Spain. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Fidel Hita-Contreras, Department of Health Sciences (B-3/272). Universidad de Jaén. Campus Las Lagunillas s/n, 23071 Jaén, Spain. E-mail: fhita@ujaen. es Copyright ©2014 Journal of Orthopaedic & Sports Physical Therapy® GUSTAVO PLAZA-MANZANO, PT1 • FRANCISCO MOLINA, PT, PhD2 • RAFAEL LOMAS-VEGA, PT, PhD2 ANTONIO MARTÍNEZ-AMAT, PhD2 • ALEXANDER ACHALANDABASO, PT1 • FIDEL HITA-CONTRERAS, MD, PhD2 Changes in Biochemical Markers of Pain Perception and Stress Response After Spinal Manipulation he same way, the cervical SM group howed increased oxytocin values when ompared with the thoracic SM group mmediately postintervention (mean ifference, –104.16; 95% CI: –174.62, 33.71; P<.002) (FIGURE 4C). Likewise, in the within-group analy- s, an increase in oxytocin plasma con- entration levels was detected in both he cervical manipulation and thoracic manipulation groups immediately post- ntervention (P<.001) compared to pre- ntervention levels (TABLE 3). At 2 hours ter the intervention, an increase was ound only in the cervical SM group P<.05) when compared with preinter- ention levels (TABLE 4). ortisol Concentration in Blood Samples sing a mixed-model ANOVA, the roup-by-time interaction for cortisol s a dependent variable was significant P<.001). Eta-square analysis yielded a 2% effect size (TABLE 2). Blood samples extracted from the ervical SM group showed a significant ncrease in cortisol plasma concentration mmediately postintervention compared ith baseline values (P<.001) (TABLE 3). n the other hand, a significant decrease as detected at 2 hours postintervention n the thoracic SM group when compared ith the preintervention values (P<.05) ABLE 4). A significant increase in the between- roup analysis was found immediately osttreatment in the cervical manipula- on group compared with the control roup (mean difference, 4.60; 95% CI: .65, 8.55; P = .018) and the thoracic ma- ipulation group (mean difference, 4.10; oxytocin, orexin A, and cortisol levels af- ter a cervical or a thoracic manipulation in asymptomatic subjects. Neurotensin is a 13-amino acid pro- duced in several regions of the central nervous system, such as the substan- tia nigra, amygdala, hypothalamus, prefrontal cortex, periaqueductal gray matter, and the spinal cord,62 and it has several actions, including analgesia.14,23 Our data indicate an increase in neu- rotensin plasmatic concentration after part of the peripheral and central mecha- nisms of pain modulation,23 because the antinociceptive effect of neurotensin has been reported after the injection of the peptide in many brain areas.62 There are anatomical data suggesting an in- teraction between neurotensin and se- rotonergic neurons. As a matter of fact, neurons of the rostral part of the raphe synthesize neurotensin, whereas neuro- tensin receptors are widely expressed in most of the raphe.18,40,57 The functional 2 0 Preintervention O h postintervention 2 h postintervention 4 6 8 10 12 14 A Neurotensin 0 100 50 150 200 250 300 NeuropeptideConcentration, pg/mg B NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Orexin A * * 50 0 Preintervention O h postintervention 2 h postintervention 100 150 200 250 300 350 C Oxytocin Control 0 4 2 6 8 10 12 14 16 18 NeuropeptideConcentration, pg/mg D NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Cortisol * * * * * Thoracic Cervical FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin, (B) orexin A, (C) oxytocin, (D) cortisol. *P<.05. journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 231 [ RESEARCH REPORT ] S pinal manipulation (SM) is a common treatment approach for pain reduction in low back and neck disorders.37,38,41 The effectiveness of SM to treat musculoskeletal pain, such as spinal pain, has been summarized in recent Cochrane reviews.32,56 Overall, the evidence suggests that SM provides improvements in pain re- lief, though similar results have been de- scribed in other competing treatments, such as general practitioner manage- ment, medication, and exercise, in pa- tients with musculoskeletal pain.6,7 It has been shown that the presence of pain in- duces changes in the anatomy and func- tion of the central and peripheral nervous systems.20,46,53 Therefore, research on an asymptomatic population may be impor- tant to accurately determine the antinoci- ceptive mechanism of SM. Several studies in asymptomatic subjects have shown that SM techniques induce changes in physiological reflexes,28 increase neu- romuscular excitability,22 and modify sensitivity.30 The mechanisms through which SM alters musculoskeletal pain are still unknown. However, current evidence suggests an interaction between the mechanical stimulus and the associated neurophysiological responses,6,51 includ- ing rapid hypoalgesia with concurrent sympathetic nervous system and mo- tor system excitation, similar to those generated by direct stimulation of the periaqueductal gray matter.61,68 Recent animal studies show that the analgesia produced by joint mobilization involves serotonin and noradrenaline receptors in the spinal cord, thereby performing a supporting role for central mechanisms of pain modulation.60 Several neuropep- tides, such as neurotensin,23 oxytocin,29 or orexin A,3 have been associated with hypoalgesia and pain modulation, and it is well known that cortisol plays an anal- gesic role related to stress responses.4,44 Recent theories have also suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor, a situation related to high cortisol lev- els.45,66 To our knowledge, there is a lack of studies analyzing changes in these no- ciception-related biochemical markers in response to manual therapy. STUDY DESIGN: Controlled, repeated-mea- sures, single-blind randomized study. OBJECTIVES: To determine the effect of cervical or thoracic manipulation on neurotensin, oxytocin, orexin A, and cortisol levels. BACKGROUND: Previous studies have re- searched the effect of spinal manipulation on pain modulation and/or range of movement. However, there is little knowledge of the biochemical process that supports the antinociceptive effect of spinal manipulation. METHODS: Thirty asymptomatic subjects were randomly divided into 3 groups: cervical manipulation (n = 10), thoracic manipulation (n = 10), and nonmanipulation (control) (n = 10). Blood samples were extracted before, immediately after, and 2 hours after each intervention. Neurotensin, oxytocin, and orexin A were determined in plasma using enzyme-linked immuno assay. Cortisol was measured by microparticulate enzyme immuno assay in serum samples. RESULTS: Immediately after the intervention, significantly higher values of neurotensin (P<.05) and oxytocin (P<.001) levels were observed with both cervical and thoracic manipulation, whereas cortisol concentration was increased only in the cervical manipulation group (P<.05). No changes were detected for orexin A levels. Two hours after the intervention, no significant differences were observed in between-group analysis. CONCLUSION: The mechanical stimulus pro- vided by spinal manipulation triggers an increase in neurotensin, oxytocin, and cortisol blood levels. Data suggest that the initial capability of the tissues to tolerate mechanical deformation affects the capacity of these tissues to produce an induc- tion of neuropeptide expression. J Orthop Sports Phys Ther 2014;44(4):231-239. Epub 22 January 2014. doi:10.2519/jospt.2014.4996 KEY WORDS: cortisol, neurotensin, orexin A, oxytocin, spinal manipulation 1 Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain. 2 Department of Health Sciences, Universidad de Jaén, Jaén, Spain. The protocol for this study was approved by the Ethical Committee in Clinical Research of the Universidad de Jaén, Jaén, Spain. The authors certify that they have no affiliations with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the article. Address correspondence to Dr Fidel Hita-Contreras, Department of Health Sciences (B-3/272). Universidad de Jaén. Campus Las Lagunillas s/n, 23071 Jaén, Spain. E-mail: fhita@ujaen. es Copyright ©2014 Journal of Orthopaedic & Sports Physical Therapy® GUSTAVO PLAZA-MANZANO, PT1 • FRANCISCO MOLINA, PT, PhD2 • RAFAEL LOMAS-VEGA, PT, PhD2 ANTONIO MARTÍNEZ-AMAT, PhD2 • ALEXANDER ACHALANDABASO, PT1 • FIDEL HITA-CONTRERAS, MD, PhD2 Changes in Biochemical Markers of Pain Perception and Stress Response After Spinal Manipulation JournalofOrthopaedic&SportsPhysicalTherapy® Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission. Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved. journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 235 the same way, the cervical SM group showed increased oxytocin values when compared with the thoracic SM group immediately postintervention (mean difference, –104.16; 95% CI: –174.62, –33.71; P<.002) (FIGURE 4C). Likewise, in the within-group analy- sis, an increase in oxytocin plasma con- centration levels was detected in both the cervical manipulation and thoracic manipulation groups immediately post- intervention (P<.001) compared to pre- intervention levels (TABLE 3). At 2 hours after the intervention, an increase was found only in the cervical SM group (P<.05) when compared with preinter- vention levels (TABLE 4). Cortisol Concentration in Blood Samples Using a mixed-model ANOVA, the group-by-time interaction for cortisol as a dependent variable was significant (P<.001). Eta-square analysis yielded a 32% effect size (TABLE 2). Blood samples extracted from the cervical SM group showed a significant increase in cortisol plasma concentration immediately postintervention compared with baseline values (P<.001) (TABLE 3). On the other hand, a significant decrease was detected at 2 hours postintervention in the thoracic SM group when compared with the preintervention values (P<.05) (TABLE 4). A significant increase in the between- group analysis was found immediately posttreatment in the cervical manipula- tion group compared with the control group (mean difference, 4.60; 95% CI: 0.65, 8.55; P = .018) and the thoracic ma- nipulation group (mean difference, 4.10; 95% CI: 0.15, 8.05; P<.040) (FIGURE 4D). DISCUSSION S everal studies currently sup- port the idea that the analgesic effect of manual therapy is mediated by central mechanisms of pain modulation through the modulation of neuropeptide production.5,27,60 To our knowledge, this is the first work to analyze neurotensin, oxytocin, orexin A, and cortisol levels af- ter a cervical or a thoracic manipulation in asymptomatic subjects. Neurotensin is a 13-amino acid pro- duced in several regions of the central nervous system, such as the substan- tia nigra, amygdala, hypothalamus, prefrontal cortex, periaqueductal gray matter, and the spinal cord,62 and it has several actions, including analgesia.14,23 Our data indicate an increase in neu- rotensin plasmatic concentration after an SM, suggesting that the mechanical stimulus provided by SM is enough to modulate the liberation of this neuro- peptide. In this sense, neurotensin has long been known to include analgesia among its actions.9,16,23 The analgesic ac- tions of neurotensin are readily distinct from those of the opioids, based on their insensitivity to the highly opioid-selective antagonist naloxone, thus ruling out an opioid mechanism.55 Neurotensin acts as part of the peripheral and central mecha- nisms of pain modulation,23 because the antinociceptive effect of neurotensin has been reported after the injection of the peptide in many brain areas.62 There are anatomical data suggesting an in- teraction between neurotensin and se- rotonergic neurons. As a matter of fact, neurons of the rostral part of the raphe synthesize neurotensin, whereas neuro- tensin receptors are widely expressed in most of the raphe.18,40,57 The functional role of neurotensin in the raphe remains to be determined, but it may participate in the modulation of some of the known functions of the serotonergic system, in- cluding nociception13 and stress-related responses.19 It may also play a role in mediating stress-induced analgesia, as neurotensin knockout mice and rats pretreated with neurotensin antagonists show no increase in pain tolerance after stress.34 Recent studies with neurotensin 2 0 Preintervention O h postintervention 2 h postintervention 4 6 8 10 12 14 A Neurotensin 0 100 50 150 200 250 300 NeuropeptideConcentration, pg/mg B NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Orexin A * * 50 0 Preintervention O h postintervention 2 h postintervention 100 150 200 250 300 350 C Oxytocin Control 0 4 2 6 8 10 12 14 16 18 NeuropeptideConcentration, pg/mg D NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Cortisol * * * * * Thoracic Cervical FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin, (B) orexin A, (C) oxytocin, (D) cortisol. *P<.05. JournalofOrthopaedic&SportsPhysicalTherapy® Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission. Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved. journal of orthopaedic & sports physical therapy | volume 44 | number 4 | april 2014 | 235 the same way, the cervical SM group showed increased oxytocin values when compared with the thoracic SM group immediately postintervention (mean difference, –104.16; 95% CI: –174.62, –33.71; P<.002) (FIGURE 4C). Likewise, in the within-group analy- sis, an increase in oxytocin plasma con- centration levels was detected in both the cervical manipulation and thoracic manipulation groups immediately post- intervention (P<.001) compared to pre- intervention levels (TABLE 3). At 2 hours after the intervention, an increase was found only in the cervical SM group (P<.05) when compared with preinter- vention levels (TABLE 4). Cortisol Concentration in Blood Samples Using a mixed-model ANOVA, the group-by-time interaction for cortisol as a dependent variable was significant (P<.001). Eta-square analysis yielded a 32% effect size (TABLE 2). Blood samples extracted from the cervical SM group showed a significant increase in cortisol plasma concentration immediately postintervention compared with baseline values (P<.001) (TABLE 3). On the other hand, a significant decrease was detected at 2 hours postintervention in the thoracic SM group when compared with the preintervention values (P<.05) (TABLE 4). A significant increase in the between- group analysis was found immediately posttreatment in the cervical manipula- tion group compared with the control group (mean difference, 4.60; 95% CI: 0.65, 8.55; P = .018) and the thoracic ma- nipulation group (mean difference, 4.10; 95% CI: 0.15, 8.05; P<.040) (FIGURE 4D). DISCUSSION S everal studies currently sup- port the idea that the analgesic effect of manual therapy is mediated by central mechanisms of pain modulation through the modulation of neuropeptide production.5,27,60 To our knowledge, this is the first work to analyze neurotensin, oxytocin, orexin A, and cortisol levels af- ter a cervical or a thoracic manipulation in asymptomatic subjects. Neurotensin is a 13-amino acid pro- duced in several regions of the central nervous system, such as the substan- tia nigra, amygdala, hypothalamus, prefrontal cortex, periaqueductal gray matter, and the spinal cord,62 and it has several actions, including analgesia.14,23 Our data indicate an increase in neu- rotensin plasmatic concentration after an SM, suggesting that the mechanical stimulus provided by SM is enough to modulate the liberation of this neuro- peptide. In this sense, neurotensin has long been known to include analgesia among its actions.9,16,23 The analgesic ac- tions of neurotensin are readily distinct from those of the opioids, based on their insensitivity to the highly opioid-selective antagonist naloxone, thus ruling out an opioid mechanism.55 Neurotensin acts as part of the peripheral and central mecha- nisms of pain modulation,23 because the antinociceptive effect of neurotensin has been reported after the injection of the peptide in many brain areas.62 There are anatomical data suggesting an in- teraction between neurotensin and se- rotonergic neurons. As a matter of fact, neurons of the rostral part of the raphe synthesize neurotensin, whereas neuro- tensin receptors are widely expressed in most of the raphe.18,40,57 The functional role of neurotensin in the raphe remains to be determined, but it may participate in the modulation of some of the known functions of the serotonergic system, in- cluding nociception13 and stress-related responses.19 It may also play a role in mediating stress-induced analgesia, as neurotensin knockout mice and rats pretreated with neurotensin antagonists show no increase in pain tolerance after stress.34 Recent studies with neurotensin 2 0 Preintervention O h postintervention 2 h postintervention 4 6 8 10 12 14 A Neurotensin 0 100 50 150 200 250 300 NeuropeptideConcentration, pg/mg B NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Orexin A * * 50 0 Preintervention O h postintervention 2 h postintervention 100 150 200 250 300 350 C Oxytocin Control 0 4 2 6 8 10 12 14 16 18 NeuropeptideConcentration, pg/mg D NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Cortisol * * * * * Thoracic Cervical FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin, (B) orexin A, (C) oxytocin, (D) cortisol. *P<.05. JournalofOrthopaedic&SportsPhysicalTherapy® Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission. Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved. the same way, the cervical SM group showed increased oxytocin values when compared with the thoracic SM group immediately postintervention (mean difference, –104.16; 95% CI: –174.62, –33.71; P<.002) (FIGURE 4C). Likewise, in the within-group analy- sis, an increase in oxytocin plasma con- centration levels was detected in both the cervical manipulation and thoracic manipulation groups immediately post- intervention (P<.001) compared to pre- intervention levels (TABLE 3). At 2 hours after the intervention, an increase was found only in the cervical SM group (P<.05) when compared with preinter- vention levels (TABLE 4). Cortisol Concentration in Blood Samples Using a mixed-model ANOVA, the group-by-time interaction for cortisol as a dependent variable was significant (P<.001). Eta-square analysis yielded a 32% effect size (TABLE 2). Blood samples extracted from the cervical SM group showed a significant increase in cortisol plasma concentration immediately postintervention compared with baseline values (P<.001) (TABLE 3). On the other hand, a significant decrease was detected at 2 hours postintervention in the thoracic SM group when compared with the preintervention values (P<.05) (TABLE 4). A significant increase in the between- group analysis was found immediately posttreatment in the cervical manipula- tion group compared with the control group (mean difference, 4.60; 95% CI: 0.65, 8.55; P = .018) and the thoracic ma- nipulation group (mean difference, 4.10; 95% CI: 0.15, 8.05; P<.040) (FIGURE 4D). DISCUSSION S everal studies currently sup- port the idea that the analgesic effect of manual therapy is mediated by central mechanisms of pain modulation through the modulation of neuropeptide production.5,27,60 To our knowledge, this is the first work to analyze neurotensin, oxytocin, orexin A, and cortisol levels af- ter a cervical or a thoracic manipulation in asymptomatic subjects. Neurotensin is a 13-amino acid pro- duced in several regions of the central nervous system, such as the substan- tia nigra, amygdala, hypothalamus, prefrontal cortex, periaqueductal gray matter, and the spinal cord,62 and it has several actions, including analgesia.14,23 Our data indicate an increase in neu- rotensin plasmatic concentration after an SM, suggesting that the mechanical stimulus provided by SM is enough to modulate the liberation of this neuro- peptide. In this sense, neurotensin has long been known to include analgesia among its actions.9,16,23 The analgesic ac- tions of neurotensin are readily distinct from those of the opioids, based on their insensitivity to the highly opioid-selective antagonist naloxone, thus ruling out an opioid mechanism.55 Neurotensin acts as part of the peripheral and central mecha- nisms of pain modulation,23 because the antinociceptive effect of neurotensin has been reported after the injection of the peptide in many brain areas.62 There are anatomical data suggesting an in- teraction between neurotensin and se- rotonergic neurons. As a matter of fact, neurons of the rostral part of the raphe synthesize neurotensin, whereas neuro- tensin receptors are widely expressed in most of the raphe.18,40,57 The functional role of neurotensin in the raphe remains to be determined, but it may participate in the modulation of some of the known functions of the serotonergic system, in- cluding nociception13 and stress-related responses.19 It may also play a role in mediating stress-induced analgesia, as neurotensin knockout mice and rats pretreated with neurotensin antagonists show no increase in pain tolerance after stress.34 Recent studies with neurotensin 2 0 Preintervention O h postintervention 2 h postintervention 4 6 8 10 12 14 A Neurotensin 0 100 50 150 200 250 300 NeuropeptideConcentration, pg/mg B NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Orexin A * * 50 0 Preintervention O h postintervention 2 h postintervention 100 150 200 250 300 350 C Oxytocin Control 0 4 2 6 8 10 12 14 16 18 NeuropeptideConcentration, pg/mg D NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Cortisol * * * * * Thoracic Cervical FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin, (B) orexin A, (C) oxytocin, (D) cortisol. *P<.05. JournalofOrthopaedic&SportsPhysicalTherapy® Downloadedfromwww.jospt.orgatonApril4,2014.Forpersonaluseonly.Nootheruseswithoutpermission. Copyright©2014JournalofOrthopaedic&SportsPhysicalTherapy®.Allrightsreserved. he same way, the cervical SM group howed increased oxytocin values when ompared with the thoracic SM group mmediately postintervention (mean ifference, –104.16; 95% CI: –174.62, 33.71; P<.002) (FIGURE 4C). Likewise, in the within-group analy- s, an increase in oxytocin plasma con- entration levels was detected in both he cervical manipulation and thoracic manipulation groups immediately post- ntervention (P<.001) compared to pre- ntervention levels (TABLE 3). At 2 hours ter the intervention, an increase was ound only in the cervical SM group P<.05) when compared with preinter- ention levels (TABLE 4). ortisol Concentration in Blood Samples sing a mixed-model ANOVA, the roup-by-time interaction for cortisol s a dependent variable was significant P<.001). Eta-square analysis yielded a 2% effect size (TABLE 2). Blood samples extracted from the ervical SM group showed a significant ncrease in cortisol plasma concentration mmediately postintervention compared ith baseline values (P<.001) (TABLE 3). n the other hand, a significant decrease as detected at 2 hours postintervention n the thoracic SM group when compared ith the preintervention values (P<.05) ABLE 4). A significant increase in the between- roup analysis was found immediately osttreatment in the cervical manipula- on group compared with the control roup (mean difference, 4.60; 95% CI: .65, 8.55; P = .018) and the thoracic ma- oxytocin, orexin A, and cortisol levels af- ter a cervical or a thoracic manipulation in asymptomatic subjects. Neurotensin is a 13-amino acid pro- duced in several regions of the central nervous system, such as the substan- tia nigra, amygdala, hypothalamus, prefrontal cortex, periaqueductal gray matter, and the spinal cord,62 and it has several actions, including analgesia.14,23 Our data indicate an increase in neu- part of the peripheral and central mecha- nisms of pain modulation,23 because the antinociceptive effect of neurotensin has been reported after the injection of the peptide in many brain areas.62 There are anatomical data suggesting an in- teraction between neurotensin and se- rotonergic neurons. As a matter of fact, neurons of the rostral part of the raphe synthesize neurotensin, whereas neuro- tensin receptors are widely expressed in 2 0 Preintervention O h postintervention 2 h postintervention 4 6 8 10 12 14 A Neurotensin 0 100 50 150 200 250 300 NeuropeptideConcentration, pg/mg B NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Orexin A * * 50 0 Preintervention O h postintervention 2 h postintervention 100 150 200 250 300 350 C Oxytocin Control 0 4 2 6 8 10 12 14 16 18 NeuropeptideConcentration, pg/mg D NeuropeptideConcentration, pg/mg Preintervention O h postintervention 2 h postintervention Cortisol * * * * * Thoracic Cervical FIGURE 4. Mean and 95% confidence interval for neuropeptide concentration in blood samples. (A) neurotensin, (B) orexin A, (C) oxytocin, (D) cortisol. *P<.05.
  • 5. Original article Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception Francisco Molina-Ortega a , Rafael Lomas-Vega a , Fidel Hita-Contreras a,*, Gustavo Plaza Manzano b , Alexander Achalandabaso a , Antonio J. Ramos-Morcillo a , Antonio Martínez-Amat a a Department of Health Sciences, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain b Department of Physical Medicine and Rehabilitation, Complutense University School of Medicine, Avda. de Séneca, 2. Ciudad Universitaria, 28040 Madrid, Spain a r t i c l e i n f o Article history: Received 6 September 2013 Received in revised form 15 February 2014 Accepted 23 February 2014 Keywords: Spinal manipulation Substance P Nitric oxide Pressure pain threshold a b s t r a c t Previous studies have analyzed the effects of spinal manipulation on pain sensitivity by using several sensory modalities, but to our knowledge, no studies have focused on serum biomarkers involved in the nociceptive pathway after spinal manipulation. Our objectives were to determine the immediate effect of cervical and dorsal manipulation over the production of nitric oxide and substance P, and establishing their relationship with changes in pressure pain thresholds in asymptomatic subjects. In this single-blind randomized controlled trial, 30 asymptomatic subjects (16 men) were randomly distributed into 3 groups (n ¼ 10 per group): control, cervical and dorsal manipulation groups. Blood samples were extracted to obtain serum. ELISA assay for substance P and chemiluminescence analysis for nitric oxide determination were performed. Pressure pain thresholds were measured with a pressure algometer at the C5eC6 joint, the lateral epicondyle and the tibialis anterior muscle. Outcome measures were ob- tained before intervention, just after intervention and 2 h after intervention. Our results indicated an increase in substance P plasma level in the cervical manipulation group (70.55%) when compared with other groups (p < 0.05). This group also showed an elevation in the pressure pain threshold at C5eC6 (26.75%) and lateral epicondyle level (21.63%) immediately after the intervention (p < 0.05). No changes in nitric oxide production were observed. In conclusion, mechanical stimulus provided by cervical manipulation increases substance P levels and pressure pain threshold but does not change nitric oxide concentrations. Part of the hypoalgesic effect of spinal manipulation may be due to the action of sub- stance P. Ó 2014 Elsevier Ltd. All rights reserved. 1. Introduction Manipulation of the spine is a manual therapy technique per- formed to increase range of motion in a joint with decreased joint play, with the intention of relieving the pain of patients. Spinal manipulation (SM) involves a high velocity “impulse” or “thrust” of short amplitude which is applied to interapophyseal joints. The effectiveness of SM to treat musculoskeletal pain has been sum- marized in recent systematic reviews. Overall, evidence suggests that SM provides greater relief for pain and function than a placebo or no treatment (Gross et al., 2010; van Middelkoop et al., 2011). Although SM is widely used in the management of pain, the physiological basis of its effectiveness remains unknown. It has been proposed that the mechanical stimuli generated by SM could activate the liberation of many biochemical mediators from neural tissue (Skyba et al., 2003). The perception of pain is clearly a complex process due to the high number of biochemical mediators involved. Nitric oxide (Ne O), considered as the major local vasodilator (Takuwa et al., 2010), is a small molecule with a dual role in cell survival (Cauwels et al., 2005) and nociception (Millan, 2002). Nitric oxide is a diffusible gas that rapidly reacts with oxygen to form nitric oxide derivates such as nitrite and nitrate (Lundberg et al., 2008). Although evi- dence exists regarding the beneficial effects of the release of small amounts of NeO during the inhibition of nociceptive pathways * Corresponding author. Department of Health Sciences (B-3/272), University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain. Tel.: þ34 953 212921; fax: þ34 953 211875. E-mail address: fhita@ujaen.es (F. Hita-Contreras). Contents lists available at ScienceDirect Manual Therapy journal homepage: www.elsevier.com/math http://dx.doi.org/10.1016/j.math.2014.02.007 1356-689X/Ó 2014 Elsevier Ltd. All rights reserved. Manual Therapy xxx (2014) 1e7 Please cite this article in press as: Molina-Ortega F, et al., Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception, Manual Therapy (2014), http://dx.doi.org/10.1016/j.math.2014.02.007 hrust was applied following the on. ded to the intervention of the ures and blood samples were ob- intervention), immediately just ention) and 2 h after intervention acted by venipuncture of the ce- stem (BectoneDickinson, United tubes for serum separation (BD 367953). After blood extraction, mperature for 1 h until the blood entrifuged for 10 min at 2000 g USA). Supernatant was collected, l used. awed serum aliquots were mixed buffer (0.5 N NaOH, 10% ZnSO4), om temperature for 15 min. After or 5 min at 13,500 rpm and su- aintained at 4 C until analyzed. de and NeO derivates was deter- ocedure described by Braman and the purge system of Sievers In- Analytical Instruments, USA). Ni- ncentrations were calculated by ns of sodium nitrate. Nitric oxide rmalized with total protein con- mined using the Bradford assay s determined by using LuminexÒ kit (Milliplex Ref: HNP-35K, Mil- re normalized with total protein concentration of each sample calculated by the Bradford method (Bradford, 1976). 2.3.4. Pressure pain threshold A pressure algometer (Pain TestÔ FPN 100, Wagner Instruments, USA) was used to measure PPT. In this study several PPT points were used to determine the local or regional (C5eC6 zygapophyseal joint, lateral epicondyle) and global effects (tibialis anterior) of the spinal manipulation to verify the presence of segmental and/or central modulation of pain (Urban and Gebhart, 1999; Schaible, 2007). All measurements were carried out by a well-trained expert. 2.4. Statistical analysis Demographic and experimental data were treated with the SPSSÒ 19.0 (IBM, USA) and MedCalc 12.3 (MedCalc, Belgium) cic (n ¼ 10) Cervical (n ¼ 10) Æ SD Mean Æ SD p-value Æ 4.52 27.80 Æ 3.99 0.095 Æ 14.33 71.20 Æ 14.19 0.196 Æ 0.06 1.75 Æ 0.12 0.528 Æ 15.83 38.23 Æ 18.34 0.930 Æ 0.03 0.25 Æ 0.17 0.021* Æ 1.54 3.29 Æ 0.98 0.622 Æ 1.61 4.30 Æ 1.65 0.462 Æ 2.23 7.85 Æ 2.25 0.721 9 Æ 29.44 123.53 Æ 27.07 0.892 hreshold at C5eC6 zygapophyseal joint); ateral epicondyle); PPT Tib (pressure pain al protein. total protein. Table 2 Test-retest reliability for outcomes variables. Variable CCI SEM MDC Substance P 0.679 5.303 10.39 Nitric oxide 0.620 0.012 0.02 PPT C5eC6 0.781 0.239 0.47 PPT Epi 0.736 1.768 3.46 PPT Tib 0.913 0.546 1.07 Abbreviations: CCI (Intraclass Correlation Coefficient); SEM (Standard Error of Measurement); MDC (Minimal Detectable Change); PPT C5eC6 (pressure pain threshold at C5eC6 zygapophyseal joint); PPT Epi (pressure pain threshold at right lateral epicondyle); PPT Tib (pressure pain threshold at tibialis anterior muscle). Fig. 2. Mean plots for primary measures in each group and each time point. : Molina-Ortega F, et al., Immediate effects of spinal manipulation on nitric oxide, substance P and pain 4), http://dx.doi.org/10.1016/j.math.2014.02.007 Kingdom). Blood was collected in tubes for serum separation (BD Vacutainer SST II Advance, ref. 367953). After blood extraction, tubes were let stand at room temperature for 1 h until the blood clotted. Afterward, tubes were centrifuged for 10 min at 2000 g (Avanti J-30I, Beckman Coulter, USA). Supernatant was collected, aliquoted and kept at À80 C until used. 2.3.2. Nitric oxide determination To carry out the analysis, the thawed serum aliquots were mixed in 1/2/2 (w/v/v) deproteinization buffer (0.5 N NaOH, 10% ZnSO4), briefly shaken and let stand at room temperature for 15 min. After that, samples were centrifuged for 5 min at 13,500 rpm and su- pernatants were collected and maintained at 4 C until analyzed. The total amount of nitric oxide and NeO derivates was deter- mined by a modification of the procedure described by Braman and Hendrix (1989) using NOA 280i the purge system of Sievers In- struments, model NOA 280i (GE Analytical Instruments, USA). Ni- tric oxide and NeO derivates concentrations were calculated by comparison with standard solutions of sodium nitrate. Nitric oxide and NeO derivates data were normalized with total protein con- centration of each sample determined using the Bradford assay (Bradford, 1976). 2.3.3. Substance P determination Plasma determination of SP was determined by using LuminexÒ technology with a specific ELISA kit (Milliplex Ref: HNP-35K, Mil- lipore, USA). Substance P data were normalized with total protein 2.3.4. Pressure pain threshold A pressure algometer (Pain TestÔ FPN 100, Wagner Instruments, USA) was used to measure PPT. In this study several PPT points were used to determine the local or regional (C5eC6 zygapophyseal joint, lateral epicondyle) and global effects (tibialis anterior) of the spinal manipulation to verify the presence of segmental and/or central modulation of pain (Urban and Gebhart, 1999; Schaible, 2007). All measurements were carried out by a well-trained expert. 2.4. Statistical analysis Demographic and experimental data were treated with the SPSSÒ 19.0 (IBM, USA) and MedCalc 12.3 (MedCalc, Belgium) Table 1 Baseline characteristics of participants. Characteristics Control (n ¼ 10) Thoracic (n ¼ 10) Cervical (n ¼ 10) Mean Æ SD Mean Æ SD Mean Æ SD p-value Age 25.80 Æ 3.22 29.80 Æ 4.52 27.80 Æ 3.99 0.095 Weight 63.60 Æ 8.47 73.70 Æ 14.33 71.20 Æ 14.19 0.196 Height 1.71 Æ 0.07 1.75 Æ 0.06 1.75 Æ 0.12 0.528 Substance Pa 35.84 Æ 9.36 36.23 Æ 15.83 38.23 Æ 18.34 0.930 Nitric oxideb 0.19 Æ 0.02 0.12 Æ 0.03 0.25 Æ 0.17 0.021* PPT C5eC6c 3.76 Æ 0.51 3.44 Æ 1.54 3.29 Æ 0.98 0.622 PPT Epic 5.60 Æ 3.44 4.63 Æ 1.61 4.30 Æ 1.65 0.462 PPT Tibc 8.54 Æ 1.85 7.89 Æ 2.23 7.85 Æ 2.25 0.721 Protein contentd 129.68 Æ 35.84 128.79 Æ 29.44 123.53 Æ 27.07 0.892 *p 0.05. Abbreviations: PPT C5-C6 (pressure pain threshold at C5eC6 zygapophyseal joint); PPT Epi (pressure pain threshold at right lateral epicondyle); PPT Tib (pressure pain threshold at tibialis anterior muscle). a Substance P is expressed as pg/mg total protein. b Nitric oxide is expressed as mmol/mg total protein. c PPTs are expressed as kg/cm2 . d Protein content is expressed as mg/ml. Fig. 2. Mean plots for primary measures in each group and each time point. Please cite this article in press as: Molina-Ortega F, et al., Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception, Manual Therapy (2014), http://dx.doi.org/10.1016/j.math.2014.02.007 Considerable evidencia muestra que la Movilización / Manipulación es un estímulo suficiente para inducir respuestas analgésicas inmediatas. Movilización / Manipulación Es muy probable que áreas específicas del cerebro y del SNC coordinen estas respuestas. Schmid 2008, Bialosky 2009, Wright 1995 Efectos sobre la actividad motora Existe suficiente apoyo documental para afirmar que la movilización/manipulación genera respuestas neuromusculares reflejas asociadas, con efectos inhibidores y facilitadores. Existe cierta evidencia para pensar que dichas respuestas están mediadas por la estimulación mecánica de receptores musculares y articulares, tanto de bajo como alto umbral. Sin embargo, los mecanismos neurofisiológicos exactos aún son desconocidos. Se desconoce la relevancia clínica de dichas respuestas. Gila 2007, Herzog 1999, Lehman 2001, Murphy 1995
  • 6. El concepto de que la manipulación reposiciona, coloca o mejora la alineación de las articulaciones es una de las teorías más antiguas acerca de la misma. Y constituye el principal mito de la Terapia Manual. Estudios biomecánicos recientes que examinan el movimiento vertebral tras una manipulación muestran que esta teoría “posicional” es falsa. Simplemente demuestran un movimiento vertebral transitorio y asociado a la separación de las superficies articulares. La radiografía, el TAC o la RMN han mostrado ser métodos poco fiables para el diagnóstico de dolor de espalda. En relación a fuentes de dolor de espalda, la mal-posición vertebral parece ser un epifenómeno. Evans 2002 Paradigma Biomecánico Movilización / Manipulación Una de la razones para la concepción de esta teoría se relaciona con la reproducción del ruido articular asociado a la manipulación y causado por la cavitación, el cuál a menudo convenientemente coincide con la mejoría inmediata del dolor. Antes de que el fenómeno de la cavitación fuera aceptado como el responsable del sonido, los practicantes de la manipulación asociaban el sonido a la sensación de haber “reposicionado el hueso en su lugar”. Muchos pacientes sostienen todavía este concepto de reposición, y la educación de los mismos para disipar estas creencias es necesaria. Evans 2002 Paradigma Biomecánico Movilización / Manipulación Cramer 2002 Paradigma Biomecánico Movilización / Manipulación
  • 7. Cramer 2002 Paradigma Biomecánico Movilización / Manipulación Se ha investigado en sujetos con dolor si la manipulación puede modificar la posición entre el sacro y el ilíaco y si los test posicionales son válidos para determinar las relaciones espaciales entre el sacro y el ilíaco. Los test posicionales se interpretaron como positivos antes de la manipulación y como negativos tras la misma. Sin embargo, en los sujetos a estudio la manipulación no modificó la posición del sacro en relación al ilíaco. Tullberg 1998 Paradigma Biomecánico Movilización / Manipulación El concepto de Subluxación Quiropráctica es la base esencial de la Quiropraxia. “No se encuentra evidencia que apoye que la subluxación quiropráctica esté asociada a ningún proceso de enfermedad, o a crear condiciones subóptimas de salud que requieran intervención”. Al demostrarse por imagen que no existían mal-posiciones vertebrales, se redefinió el término de subluxación quiropráctica: Mirtz 2009 “Conjunto de cambios patológicos y/o estructurales y/o funcionales articulares que comprometen la integridad neural, y que pueden influir en la función de los sistemas, órganos y en la salud general”. Paradigma Biomecánico Movilización / Manipulación
  • 8. En los 114 años desde el comienzo de la Quiropraxia nunca se ha podido demostrar objetivamente la existencia de las subluxaciones quiroprácticas. Nunca se ha mostrado que causen interferencia con el sistema nervioso. Nunca se ha demostrado que provoquen enfermedades. Los críticos de la quiropraxia llevan señalando esto desde hace décadas, pero ahora los mismos quiropractores llegan a ésta misma conclusión. Mirtz 2009 Paradigma Biomecánico Movilización / Manipulación Datos de 367 encuestas a fisioterapeutas especializados en terapia manual En relación al examen del movimiento pasivo intervertebral: El hallazgo clínico más importante a la hora de tomar una decisión diagnóstica es el cambio en la resistencia percibida al final del ROM “end feel”. En menos medida, la provocación o alivio del dolor del paciente o la resistencia percibida a lo largo del ROM. Trijffel 2009 Paradigma Biomecánico Movilización / Manipulación Además, Consideran que este examen es importante a la hora de tomar decisiones terapéuticas. Confían en que las conclusiones del mismo son válidas. (la investigación de la validez y precisión no permite conclusiones definitivas) La mayoría confía en poder llegar a la misma conclusión clínica que otro compañero. (la evidencia es clara, la fiabilidad inter-examinador es inaceptablemente baja) Trijffel 2009 Paradigma Biomecánico Movilización / Manipulación
  • 9. Datos de 466 encuestas a fisioterapeutas especializados en terapia manual Estados Unidos y Nueva Zelanda. En relación al examen del movimiento pasivo intervertebral: La mayoría consideraron que es un procedimiento preciso para estimar la cantidad de movimiento presente en la columna lumbar. (restricción de movimiento, movimiento normal o exceso de movimiento) Abbott 2009 Paradigma Biomecánico Movilización / Manipulación Además, la mayoría admite: Seleccionar diferentes opciones de tratamiento en base, al menos en parte, a los hallazgos del examen del movimiento pasivo intervertebral. Que para determinar la expectativa de movimiento que se espera en cada segmento compara la respuesta con los segmentos situados inmediatamente por encima y por debajo. Abbott 2009 Paradigma Biomecánico Movilización / Manipulación ¿Qué consideras que estás intentando evaluar cuando realizas un movimiento intervertebral pasivo fisiológico en la columna lumbar? Abbott 2009
  • 10. Datos de 118 encuestas a fisioterapeutas especializados en terapia manual Canadá. En relación a la indicación o no de la manipulación vertebral: La mayoría consideró que los hallazgos relacionados con hipomovilidad eran los más importantes para indicar o no una manipulación. - Fijación o bloqueo articular segmentario. 90%. - Rigidez o limitación de movimiento. 81% Hurley 2002 Paradigma Biomecánico Movilización / Manipulación Diferentes disciplinas o líneas de pensamiento en Terapia Manual hacen uso de sistemas de clasificación del movimiento intervertebral basados en percepciones subjetivas relacionadas con la amplitud, calidad o sensación final del movimiento para la toma de decisiones clínicas. Una parte de estas disciplinas atribuyen el hallazgo de rigidez o hipomovilidad segmentaria como el principal criterio a la hora de seleccionar la manipulación como una opción de tratamiento. Paradigma Biomecánico Movilización / Manipulación Mediante RMN se compara la movilidad pasiva intervertebral lumbar entre 45 pacientes con dolor lumbar y 20 sujetos asintomáticos. Como procedimiento de evaluación se utiliza la movilización PA lumbar. El número de sujetos que presentó hipomovilidad fue muy bajo: 4.4% de los pacientes. 10% de los sujetos asintomáticos. Es más, el 40% de los pacientes presentó hipermovilidad en uno o más segmentos de la columna. Kulig 2007 Paradigma Biomecánico Movilización / Manipulación
  • 11. Un experimentado osteópata es capaz de identificar, con buena fiabilidad, la articulación lumbar con signos de disfunción segmentaria que se pueda beneficiar de una manipulación vertebral. Lesión Manipulable. Sin embargo, en la columna dorsal y sin estar entrenado, el mismo osteópata tiene moderada a baja fiabilidad en identificar signos de disfunción segmentaria. Esto en una muestra de SUJETOS ASINTOMÁTICOS. Potter 2006 Paradigma Biomecánico Movilización / Manipulación En relación al examen del movimiento pasivo intervertebral. Clasificar los hallazgos en base a percepciones subjetivas relacionadas con la amplitud, calidad, resistencia o sensación final del movimiento ha demostrado tener poca o ninguna fiabilidad cuando se compara la concordancia de los resultados entre diferentes examinadores. La evidencia es clara en este sentido. Paradigma Biomecánico Movilización / Manipulación La evidencia recopilada de los estudios incluidos en esta revisión sistemática indica que la fiabilidad inter- examinador, por parte de los terapeutas manuales, del examen del movimiento pasivo intervertebral de la columna cervical y lumbar es baja. Trijffel 2005 Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral
  • 12. Más importante que medir el acuerdo de los hallazgos subjetivos del movimiento entre diferentes evaluadores es: Medir hasta que punto concuerdan las percepciones subjetivas del movimiento intervertebral con la evaluación objetiva del mismo. Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral A través de una movilización PA lumbar, 2 examinadores muestran concordancia buena para el nivel vertebral menos móvil y concordancia mala para el nivel más móvil. En ningún momento hubo concordancia de estos hallazgos con la medición del desplazamiento vertebral en RMN dinámica. Estos resultados ponen en seria duda la validez de estos procedimientos como método de evaluación del movimiento intervertebral. Landel 2008 Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral Los resultados de la investigación ponen en seria duda la validez de estos procedimientos como método de evaluación del movimiento intervertebral. Ninguna de las pruebas de posición y movilidad articular son útiles si carecen de fiabilidad interexaminador. El mismo paciente puede ser diagnosticado por un fisioterapeuta en tener problemas de hipermovilidad y por otro en tener problemas de hipomovilidad, lo que puede resultar en diferentes estrategias de tratamiento. Para que una prueba pueda ser considerada útil como apoyo a un conjunto o agrupación de pruebas, primero debe mostrar su validez y fiabilidad. Fiabilidad y Validez en la Evaluación del Movimiento Pasivo Intervertebral Johanson 2006
  • 13. La investigación acerca de la aplicación de movilización y manipulación ha mostrado lo poco específicos que son estos procedimientos. La cavitación producida durante la manipulación de la columna lumbar no se da en el segmento deseado en +50% de los casos y sólo es específica (cavitación única del nivel deseado) en el 36% de los casos. No existe correlación entre la manipulación vertebral específica y la localización de la cavitación en la columna lumbar y ASI. Parece que ni siquiera es necesario la reproducción del sonido para que la misma sea efectiva. Paradigma Biomecánico Movilización / Manipulación Ross 2004, Beffa 2004, Flynn 2003 La investigación acerca de la aplicación de movilización y manipulación ha mostrado lo poco específicos que son estos procedimientos. Mediante RMN se ha demostrado que aplicar movilizaciones PA en la región cervical o lumbar produce movimientos en todos los segmentos vertebrales de cada región. Por tanto, no pueden ser consideradas como simples deslizamientos de una vértebra sobre otra. Paradigma Biomecánico Movilización / Manipulación Lee 2005, Powers 2003 En relación al tratamiento por movilización y manipulación Diferentes formas de movilización y manipulación parecen tener efectos similares en cuanto a dolor y función percibida. Estos efectos no parecen depender de la selección de la técnica más “apropiada”. Paradigma Biomecánico Movilización / Manipulación
  • 14. En sujetos con dolor lumbar, se compara el efecto de un tratamiento específico basado en el examen del paciente (nivel vertebral, tipo de técnica y forma de aplicarla) con el efecto de un tratamiento elegido al azar. Ambos grupos mostraron reducción significativa del dolor y una mejor función. Elegir la técnica que parece ser la más apropiada no superó ningún resultado medido en este estudio. Chiradejnant 2003 Paradigma Biomecánico Movilización / Manipulación En pacientes con dolor lumbar crónico se compara el efecto inmediato, en la intensidad del dolor y en el umbral de dolor a la presión, de una manipulación lumbar específica (basada en el examen físico) con el efecto de una manipulación torácica superior. Ambos grupos mostraron una mejora clara en el dolor y en el UDP. En pacientes con dolor lumbar crónico, elegir una manipulación lumbar específica no produce un mejor efecto inmediato sobre el dolor y el Fernando de Oliveira 2013 Paradigma Biomecánico Movilización / Manipulación En pacientes con radiculopatía cervical se compara el efecto en dolor, ROM y función de un set de movilizaciones y ejercicios de estabilización con el efecto de añadir, al mismo programa, técnicas dirigidos a aumentar el tamaño del foramen intervertebral. Ambos grupos mostraron una mejoría clínica y estadísticamente significativa en el seguimiento a 4 y 8 semanas. Añadir técnicas dirigidas a aumentar el FIV no produce un mejor efecto Langevin P 2015 Paradigma Biomecánico Movilización / Manipulación
  • 15. En sujetos con dolor de cuello se compara el efecto de una manipulación cervical en rotación con el efecto de una manipulación cervical lateral que fueron asignadas al azar. No se encontraron diferencias mostrando ambos grupos mejoras significativas en cuanto a dolor y rango de movimiento después de 10 sesiones de tratamiento y en el seguimiento a un mes. En sujetos con dolor cuello, se ha comparado el efecto de una manipulación específica dirigida al segmento “hipomóvil” con el efecto de la misma manipulación en un segmento elegido al azar. Los resultados no encuentran diferencias entre los grupos mostrando ambos reducción en el dolor cervical. Paradigma Biomecánico Movilización / Manipulación Schalkwyk 2000, Haas 2003 Un metaanálisis compara los resultados de diferentes ensayos clínicos en los que se elige o no un procedimiento de movilización y/o manipulación específico para sujetos con dolor lumbar. En aproximadamente 2/3 de los ensayos, se había elegido un procedimiento específico. Sin embargo, no existían diferencias a favor de estos ensayos. La elección o no de una técnica específica de movilización / manipulación no parece influir en un mayor efecto de la Terapia Manual en el dolor lumbar. Kent 2005 Paradigma Biomecánico Movilización / Manipulación No se han identificado cambios biomecánicos duraderos. Los clínicos son incapaces de identificar de forma fiable qué alteraciones biomecánicas requieren TM. Las fuerzas asociadas con la TM no son específicas para una localización determinada y son variables entre los clínicos. La elección de la técnica que parece ser la más apropiada, en un análisis biomecánico, no parece que influya en los resultados. Las respuestas de signos y síntomas se producen en áreas alejadas de la región de aplicación. A pesar de estas inconsistencias con el modelo biomecánico, otros mecanismos adicionales pueden ser pertinentes para entender los efectos de la TM. Se sugiere que la fuerza mecánica es necesaria para iniciar una cadena de respuestas neurofisiológicas que producen los resultados asociados con la TM. Bialosky 2009 Mecanismos de la Terapia Manual
  • 16. En relación a las manipulaciones vertebrales en los modelos biomecánicos tradicionales. Las manipulaciones vertebrales NO colocan los huesos en su lugar. Las manipulaciones vertebrales NO producen cambios duraderos en la posición de las articulaciones. La investigación ha demostrado que un diagnóstico de mal-posición NO debe ser un criterio para seleccionar una técnica de manipulación. En más de la mitad de las veces, la manipulación NO se produce en la articulación seleccionada y, rara vez, es específica de esa articulación. Con un análisis de posición o de movilidad vertebral, la elección de un nivel vertebral hipomóvil o en “bloqueo” NO influye en un mayor efecto clínico de la manipulación. Además, esta elección, NO supera el efecto de técnicas elegidas al azar. Paradigma Biomecánico Movilización / Manipulación En relación a las pruebas pasivas de posición y movilidad intervertebral: Carecen de un estándar de comparación válido. NO permiten medir de forma precisa el movimiento pasivo intervertebral. Otro compañero entrenado NO obtiene los mismos resultados, lo que conduce a categorías diagnósticas y tratamientos diferentes. Incluso el mismo terapeuta NO concuerda con sus propios resultados en momentos diferentes. Las alteraciones de posición y movilidad son tan comunes en la gente con dolor que sin dolor de espalda. Por tanto, NO se correlacionan con el dolor y no pueden ser consideradas causas del mismo. La elección de la técnica que parece ser más apropiada, con este examen biomecánico, NO produce mayor efecto clínico que las Paradigma Biomecánico Movilización / Manipulación Paradigma Biomecánico Movilización / Manipulación Parece evidente que evaluar el movimiento mediante percepciones subjetivas no es válido para tomar decisiones terapéuticas. Existe una alta probabilidad de elegir y aplicar un tratamiento erróneo. En relación al examen del movimiento intervertebral, ¿existe alguna utilidad que sea respaldada por la investigación? Las movilizaciones PA en columna cervical y lumbar han mostrado alto grado de sensibilidad y especificidad al ser comparadas con bloqueos anestésicos. Tienen concordancia alta, inter e intra examinador, para detectar niveles vertebrales sintomáticos. Dependen en cierto grado de la comunicación verbal con el paciente para lograr la concordancia perfecta. Jull 1988, 1997, Phillips 1996
  • 17. ¿Qué consideras que estás intentando evaluar cuando realizas un movimiento pasivo accesorio PA central en la columna lumbar? Abbott 2009 Existe evidencia parcial acerca del efecto de una intervención por movilización / manipulación seleccionada en base a la localización de niveles vertebrales sintomáticos. (Niveles vertebrales en donde el procedimiento manual reproduce parcial o totalmente el dolor del paciente). Se ha demostrado que la movilización produce mayor reducción de dolor cuando ésta se aplica en el nivel vertebral que el fisioterapeuta identifica como más sintomático y con mayor capacidad de reproducir el síntoma del paciente. Chiradejnant 2002 Paradigma Biomecánico Movilización / Manipulación “La incapacidad de demostrar la superioridad sobre el placebo no implica falta de eficacia; puede reflejar únicamente similitud de mecanismos. La comparación de un tratamiento con el placebo no es, en consecuencia, una comparación de dos mecanismos, sino tan sólo la comparación de su capacidad de activar el mismo mecanismo….”. Lawes 2002 Mecanismos cerebrales específicos parecen mediar la respuesta al placebo. El grado en que una persona responde a un placebo está vinculado íntimamente a la actividad que registre el área del cerebro destinada a obtener un beneficio o una recompensa. Mecanismo Placebo Lawes 2002, Scott 2007
  • 18. Se ha estudiado el efecto en la percepción de dolor de crear expectativas positivas, negativas o neutras en cuanto al resultado de la manipulación. Expectativa positiva: “la manipulación es un procedimiento muy efectivo que se utiliza para tratar el dolor lumbar bajo, y esperamos que reduzca su percepción de dolor”. Expectativa negativa: “la manipulación es un procedimiento ineficaz que se utiliza para tratar el dolor lumbar bajo, y esperamos un empeoramiento temporal de su percepción de dolor”. Expectativa neutra: “la manipulación es un procedimiento que se utiliza para tratar el dolor lumbar bajo y desconocemos sus efectos en la percepción de dolor”. Bialosky 2008 Mecanismo Placebo Los sujetos que reciben la expectativa negativa muestran un aumento importante en la percepción de dolor en el área corporal donde se crea la expectativa del resultado, y que parece condicionar el efecto de hipoalgesia que se atribuye a la manipulación. La mayor parte de los estudios de investigación en Terapia Manual concluyen que ésta puede ser efectiva en el alivio del dolor y en la mejoría de la función en pacientes con dolor musculoesquelético. No está claro cómo deben ser aplicadas las diferentes maniobras en relación al orden de las mismas, intensidad, frecuencia, tiempo de duración, etc... Movilización / Manipulación