Design and Simulation of a
Multicopter
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
Jaidev Sanketi EAU0512252
Srinivasa Raghavan EAU0812382
Sundus Awan EAU0812425
Rishika Kasliwal EAU0812361
RECAP
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
OBJECTIVES
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
Conduct experiments
Proof of concept through
mathematical modelling
 Simulate results
Program the flight controller
METHODOLOGY
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
Hover stability
Linear motion
Test Bench
Simulation
Test Bench
Software
Hardware
Automation
MATHEMATICAL MODEL
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
Drone
Model
Hover
Stability
Attitude
Control
Altitude
Control
Linear
Motion
Take-Off
Forward
Movement
Drone Trajectory Loop
Drone Altitude Loop
Drone Attitude Loop
Quad Attitude Loop
DYNAMIC MODELING (Quadcopter)
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
𝑥
𝑦
𝑧
= -g
0
0
1
+
Σ𝑇𝑖,𝑗
𝑚
𝑆𝜓𝑆𝜙 + 𝐶𝜓𝑆𝜃𝐶𝜙
𝑆𝜓𝑆𝜃𝐶𝜙 − 𝐶𝜓𝑆𝜙
𝐶𝜃𝐶𝜙
Equations of Motion
Equations of Angular Acceleration
𝐼 𝑥 𝜙
𝐼 𝑦 𝜃
𝐼𝑧 𝜓
=
𝑇𝑖,3 − 𝑇𝑖,1 𝑙 𝑞
𝑇𝑖,4 − 𝑇𝑖,2 𝑙 𝑞
𝑀𝑖,1 + 𝑀𝑖,3 − 𝑀𝑖,2 − 𝑀𝑖,4
𝑻𝒊= 𝑲 𝒇 𝝎𝒊
𝟐 𝑴𝒊 = 𝑲 𝒎 𝝎𝒊
𝟐
𝑻𝒉𝒓𝒖𝒔𝒕 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝑴𝒐𝒎𝒆𝒏𝒕 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏
TEST BENCH EXPERIMENT
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
DYNAMIC MODELING (Quadcopter)
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
𝑇𝑖= 𝐾𝑓 𝜔𝑖
2
𝐹𝑖 = 4𝑇𝑖
4 𝐹𝑖 𝑐𝑜𝑠𝜃 𝑞 = 𝑚𝑔
𝜔ℎ = 𝜔𝑖 =
𝑚𝑔
16𝑘𝑐𝑜𝑠𝜃 𝑞
𝐹ℎ= 4𝐾𝑓 𝜔ℎ
2
DYNAMIC MODELING (Drone)
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
Equations of Motion
Equations of Angular Acceleration
𝑥
𝑦
𝑧
= −𝑔
0
0
1
+
Σ𝐹𝑖,𝑗
𝑚
𝐶 𝜓 𝑞
𝐶 𝜃 𝑞
𝑆 𝜓 𝑞
𝐶 𝜓 𝑞
𝑆 𝜃 𝑞
−𝑆 𝜓 𝑞
𝐶 𝜃 𝑞
𝐶 𝜓 𝑞
−𝑆 𝜓 𝑞
𝑆 𝜃 𝑞
−𝑆 𝜃 𝑞
0 𝐶 𝜃 𝑞
𝐼 𝑥 𝜙 = 𝑙 𝐹3 𝑐𝜃3 − 𝐹1 𝑐𝜃1 − 𝐶′
1 𝜃 𝑑 + 𝑀1 𝑠𝜃1 − 𝑀3 𝑠𝜃3 + (𝑀2
′
+ 𝑀4
′
)
𝐼 𝑦 𝜃 = 𝑙 𝐹4 𝑐𝜃4 − 𝐹2 𝑐𝜃2 − 𝐶′
2 𝜙 𝑑 + 𝑀4 𝑠𝜃4 − 𝑀2 𝑠𝜃2 + (𝑀1
′
+ 𝑀3
′
)
𝐼𝑧 𝜑 = 𝑙 𝐹1 𝑠𝜃1 + 𝐹2 𝑠𝜃2 + 𝐹3 𝑠𝜃3 + 𝐹4 𝑠𝜃4 + 𝐶′
3 𝜃 𝑑 + 𝑀1 𝑐𝜃1 − 𝑀2 𝑐𝜃2 + 𝑀3 𝑐𝜃3 − 𝑀4 𝑐𝜃4
Hovering with Tilted Arms (Roll) Hovering with Tilted Arms (Pitch)
𝝓 𝒅 = 𝜽2 2 𝜽 𝒅 = 𝜽1 2
𝜽3 = -𝜽1
𝜽4 = -𝜽2
ATTITUDE CONTROL
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
𝜃1
𝑑𝑒𝑠
𝜃2
𝑑𝑒𝑠
𝜃3
𝑑𝑒𝑠
𝜃4
𝑑𝑒𝑠
=
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
2𝜃ℎ
𝑑𝑒𝑠
2𝜙ℎ
𝑑𝑒𝑠
Δ𝜃ℎ
Δ𝜙ℎ
𝐹1
𝑑𝑒𝑠
𝐹2
𝑑𝑒𝑠
𝐹3
𝑑𝑒𝑠
𝐹4
𝑑𝑒𝑠
=
1 0 − 1 1
1 1 0 − 1
1 0 1 1
1 − 1 0 1
𝐹ℎ
Δ𝐹 𝜙,𝑑
Δ𝐹𝜃,𝑑
Δ𝐹 𝜓,𝑑
Δ𝐹𝜃,𝑑 = 𝑘 𝑝,𝜃(𝜃 𝑑𝑒𝑠
ℎ − 𝜃 𝑑) − 𝑘 𝑑,𝜃(𝑞 𝑑𝑒𝑠
𝑑
− 𝑞 𝑑)
Δ𝐹 𝜙,𝑑 = 𝑘 𝑝,𝜙 𝜙 𝑑𝑒𝑠
ℎ − 𝜙 𝑑 − 𝑘 𝑑,𝜙(𝑞 𝑑𝑒𝑠
𝑑
− 𝑞 𝑑)
Δ𝐹 𝜓,𝑑 = 𝑘 𝑝,𝜓(𝜓 𝑑𝑒𝑠
ℎ
− 𝜓 𝑑) − 𝑘 𝑑,𝜙(𝑟 𝑑𝑒𝑠
𝑑
−𝑟𝑑)
Δ𝜃ℎ = 𝑘 𝑝,𝜃ℎ(𝜃 𝑑𝑒𝑠
𝑑 − 𝜃 𝑑) − 𝑘 𝑑,𝜃ℎ 𝑞
Δ𝜙ℎ = 𝑘 𝑝,𝜙ℎ(𝜙 𝑑𝑒𝑠
𝑑 − 𝜙 𝑑) − 𝑘 𝑑,𝜙ℎ 𝑝
Force Matrix Angle Matrix
Control Laws (PD) Control Laws (PD)
𝜔ℎ = 𝜔𝑖 =
𝑚𝑔
16𝑘𝑐𝑜𝑠𝜃 𝑞
𝜔ℎ = 𝜔𝑖 =
𝑚𝑔
16𝑘𝑐𝑜𝑠(𝜃2/2)
Angular Velocity Matrix
𝜔1
𝜔3
𝜔5
𝜔7
𝜔9
𝜔11
𝜔13
𝜔15
=
𝜔2
𝜔4
𝜔6
𝜔8
𝜔10
𝜔12
𝜔14
𝜔16
=
1 1
1 −1
0 1
0 −1
1 0
1 0
1 −1
1 1
1 0
1 0
−1 1
1 −1
0 1
0 −1
1 1
−1 −1
∗
𝜔ℎ + Δ𝜔 𝑓
Δ𝜔 𝜃
Δ𝜔 𝜙
Δ𝜔 𝜓
Control Laws (PD)
Δ𝜔 𝜃 = 𝑘 𝑝,𝜃(𝜃 𝑑𝑒𝑠
ℎ − 𝜃 𝑑) − 𝑘 𝑑,𝜃(𝑞 𝑑𝑒𝑠
𝑑
− 𝑞 𝑑)
Δ𝜔 𝜙 = 𝑘 𝑝,𝜙(𝜙 𝑑𝑒𝑠
ℎ
− 𝜙 𝑑) − 𝑘 𝑑,𝜙(𝑞 𝑑𝑒𝑠
𝑑
− 𝑞 𝑑)
Δ𝜔 𝜓 = 𝑘 𝑝,𝜓(𝜓 𝑑𝑒𝑠
ℎ
− 𝜓 𝑑) − 𝑘 𝑑,𝜙(𝑟 𝑑𝑒𝑠
𝑑
−𝑟𝑑)
ALTITUDE CONTROL
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
𝑟 𝑑𝑒𝑠
=
8𝐾 𝑚⍵ 𝑛
𝐼𝑧
∆⍵ 𝜓
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒
𝑟 𝑑𝑒𝑠
∆𝜔 𝑓 =
𝑚
8𝑘 𝑓 𝐹 𝑛
( 𝑟 𝑑𝑒𝑠
)
∆𝑭 𝒇 = 𝟎. 𝟓𝒌(∆𝝎 𝒇) 𝟐
𝐹1
𝑑𝑒𝑠
𝐹2
𝑑𝑒𝑠
𝐹3
𝑑𝑒𝑠
𝐹4
𝑑𝑒𝑠
=
1 0 − 1 1
1 1 0 − 1
1 0 1 1
1 − 1 0 1
𝐹ℎ + Δ𝐹𝑓
Δ𝐹 𝜙,𝑑
Δ𝐹𝜃,𝑑
Δ𝐹 𝜓,𝑑
Force Matrix
LINEAR MOTION MODELING
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
𝐹𝑥 = 0
𝐹1 𝑠𝑖𝑛𝜃1 − 𝐹3 𝑠𝑖𝑛𝜃3 = 0
𝐹𝑦 = 0
𝐹1 𝑐𝑜𝑠𝜃1 − 𝐹3 𝑐𝑜𝑠𝜃3 − 𝑊 = 0
𝑀𝑐 = 0;
𝐹1 𝑐𝑜𝑠𝜃1 𝑙 − 𝐹3 𝑐𝑜𝑠𝜃3 𝑙 = 0
𝒕𝒂𝒏𝜽 𝟏 − 𝒕𝒂𝒏𝜽 𝟑 = 𝟎
𝜃1 = 𝜃3
𝐹𝑥 = 0
𝐹1 𝑠𝑖𝑛𝜃1 − 𝐹3 𝑠𝑖𝑛𝜃3 = 0
𝐹𝑦 = 0
𝐹1 𝑐𝑜𝑠𝜃1 − 𝐹3 𝑐𝑜𝑠𝜃3 − 𝑊 = 0
𝑀𝑐 = 0;
𝐹1 𝑐𝑜𝑠𝜃1 𝑙 − 𝐹3 𝑐𝑜𝑠𝜃3 𝑙 = 0
𝒕𝒂𝒏𝜽 𝟏 − 𝒕𝒂𝒏𝜽 𝟑 = 𝟎
Hover (No Wind) Take-Off (No Wind)
Angular Take-Off Analogy
LINEAR MOTION MODELING
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
𝐹1 𝑠𝑖𝑛𝜃1 − 𝐹1 𝑠𝑖𝑛𝜃3 − 𝐹𝑛 = 0
𝑾
𝟒
(𝒕𝒂𝒏𝜽 𝟏 − 𝒕𝒂𝒏𝜽 𝟑) = 𝑭 𝒏
𝐹1 𝑐𝑜𝑠𝜃1 =
𝑊
4
Slow Forward Motion Faster Forward Motion Fastest Forward Motion
𝜃1 = 𝜃3
SIMULATION
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
Simulation
Simulink Simmechanics
SIMULINK SIMULATION
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
SIMULINK RESULTS- AT HOVER
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
ATTITUDE CONTROL
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
SIMULINK LONGITUDINAL RESPONSE AT DISTURBANCE
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
LONGITUDINAL STABILITY AT 5 DEGREESLONGITUDINAL STABILITY AT 15 DEGREES
TEST BENCH EXPERIMENT
M O D E L S I M U L A T I O NO V E R V I E W A U T O M A T I O N
ɵ = 30 degrees
Throttle input Force
40% 10N
80% 20N
100% 25N
SIMULINK LATERAL RESPONSE AT DISTURBANCE
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
LATERAL STABILITY AT 5 DEGREESLATERAL STABILITY AT 15 DEGREES
ALTITUDE CONTROL
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
SIMULINK LONGITUDINAL RESPONSE AT DISTURBANCE
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
SIMULINK LATERAL RESPONSE AT DISTURBANCE
5 DEGREES 15 DEGREES
SIMMECHANICS SIMULATION
A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
NORMAL TAKE-OFFANGULAR TAKE-OFF
AUTOMATION
M O D E L S I M U L A T I O NO V E R V I E W A U T O M A T I O N
AUTOMATION
M O D E L S I M U L A T I O NO V E R V I E W A U T O M A T I O N
CONCLUSION
A U T O M A T I O NO V E R V I E W M O D E L S I M U L A T I O N
Thank you for your
patience!

Modelling and simulation a multi quadcopter concept

  • 1.
    Design and Simulationof a Multicopter A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W Jaidev Sanketi EAU0512252 Srinivasa Raghavan EAU0812382 Sundus Awan EAU0812425 Rishika Kasliwal EAU0812361
  • 2.
    RECAP A U TO M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
  • 3.
    OBJECTIVES A U TO M A T I O NM O D E L S I M U L A T I O NO V E R V I E W Conduct experiments Proof of concept through mathematical modelling  Simulate results Program the flight controller
  • 4.
    METHODOLOGY A U TO M A T I O NM O D E L S I M U L A T I O NO V E R V I E W Hover stability Linear motion Test Bench Simulation Test Bench Software Hardware Automation
  • 5.
    MATHEMATICAL MODEL A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W Drone Model Hover Stability Attitude Control Altitude Control Linear Motion Take-Off Forward Movement Drone Trajectory Loop Drone Altitude Loop Drone Attitude Loop Quad Attitude Loop
  • 6.
    DYNAMIC MODELING (Quadcopter) AU T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W 𝑥 𝑦 𝑧 = -g 0 0 1 + Σ𝑇𝑖,𝑗 𝑚 𝑆𝜓𝑆𝜙 + 𝐶𝜓𝑆𝜃𝐶𝜙 𝑆𝜓𝑆𝜃𝐶𝜙 − 𝐶𝜓𝑆𝜙 𝐶𝜃𝐶𝜙 Equations of Motion Equations of Angular Acceleration 𝐼 𝑥 𝜙 𝐼 𝑦 𝜃 𝐼𝑧 𝜓 = 𝑇𝑖,3 − 𝑇𝑖,1 𝑙 𝑞 𝑇𝑖,4 − 𝑇𝑖,2 𝑙 𝑞 𝑀𝑖,1 + 𝑀𝑖,3 − 𝑀𝑖,2 − 𝑀𝑖,4 𝑻𝒊= 𝑲 𝒇 𝝎𝒊 𝟐 𝑴𝒊 = 𝑲 𝒎 𝝎𝒊 𝟐 𝑻𝒉𝒓𝒖𝒔𝒕 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝑴𝒐𝒎𝒆𝒏𝒕 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏
  • 7.
    TEST BENCH EXPERIMENT AU T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
  • 8.
    DYNAMIC MODELING (Quadcopter) AU T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W 𝑇𝑖= 𝐾𝑓 𝜔𝑖 2 𝐹𝑖 = 4𝑇𝑖 4 𝐹𝑖 𝑐𝑜𝑠𝜃 𝑞 = 𝑚𝑔 𝜔ℎ = 𝜔𝑖 = 𝑚𝑔 16𝑘𝑐𝑜𝑠𝜃 𝑞 𝐹ℎ= 4𝐾𝑓 𝜔ℎ 2
  • 9.
    DYNAMIC MODELING (Drone) AU T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W Equations of Motion Equations of Angular Acceleration 𝑥 𝑦 𝑧 = −𝑔 0 0 1 + Σ𝐹𝑖,𝑗 𝑚 𝐶 𝜓 𝑞 𝐶 𝜃 𝑞 𝑆 𝜓 𝑞 𝐶 𝜓 𝑞 𝑆 𝜃 𝑞 −𝑆 𝜓 𝑞 𝐶 𝜃 𝑞 𝐶 𝜓 𝑞 −𝑆 𝜓 𝑞 𝑆 𝜃 𝑞 −𝑆 𝜃 𝑞 0 𝐶 𝜃 𝑞 𝐼 𝑥 𝜙 = 𝑙 𝐹3 𝑐𝜃3 − 𝐹1 𝑐𝜃1 − 𝐶′ 1 𝜃 𝑑 + 𝑀1 𝑠𝜃1 − 𝑀3 𝑠𝜃3 + (𝑀2 ′ + 𝑀4 ′ ) 𝐼 𝑦 𝜃 = 𝑙 𝐹4 𝑐𝜃4 − 𝐹2 𝑐𝜃2 − 𝐶′ 2 𝜙 𝑑 + 𝑀4 𝑠𝜃4 − 𝑀2 𝑠𝜃2 + (𝑀1 ′ + 𝑀3 ′ ) 𝐼𝑧 𝜑 = 𝑙 𝐹1 𝑠𝜃1 + 𝐹2 𝑠𝜃2 + 𝐹3 𝑠𝜃3 + 𝐹4 𝑠𝜃4 + 𝐶′ 3 𝜃 𝑑 + 𝑀1 𝑐𝜃1 − 𝑀2 𝑐𝜃2 + 𝑀3 𝑐𝜃3 − 𝑀4 𝑐𝜃4 Hovering with Tilted Arms (Roll) Hovering with Tilted Arms (Pitch) 𝝓 𝒅 = 𝜽2 2 𝜽 𝒅 = 𝜽1 2 𝜽3 = -𝜽1 𝜽4 = -𝜽2
  • 10.
    ATTITUDE CONTROL A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W 𝜃1 𝑑𝑒𝑠 𝜃2 𝑑𝑒𝑠 𝜃3 𝑑𝑒𝑠 𝜃4 𝑑𝑒𝑠 = 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 2𝜃ℎ 𝑑𝑒𝑠 2𝜙ℎ 𝑑𝑒𝑠 Δ𝜃ℎ Δ𝜙ℎ 𝐹1 𝑑𝑒𝑠 𝐹2 𝑑𝑒𝑠 𝐹3 𝑑𝑒𝑠 𝐹4 𝑑𝑒𝑠 = 1 0 − 1 1 1 1 0 − 1 1 0 1 1 1 − 1 0 1 𝐹ℎ Δ𝐹 𝜙,𝑑 Δ𝐹𝜃,𝑑 Δ𝐹 𝜓,𝑑 Δ𝐹𝜃,𝑑 = 𝑘 𝑝,𝜃(𝜃 𝑑𝑒𝑠 ℎ − 𝜃 𝑑) − 𝑘 𝑑,𝜃(𝑞 𝑑𝑒𝑠 𝑑 − 𝑞 𝑑) Δ𝐹 𝜙,𝑑 = 𝑘 𝑝,𝜙 𝜙 𝑑𝑒𝑠 ℎ − 𝜙 𝑑 − 𝑘 𝑑,𝜙(𝑞 𝑑𝑒𝑠 𝑑 − 𝑞 𝑑) Δ𝐹 𝜓,𝑑 = 𝑘 𝑝,𝜓(𝜓 𝑑𝑒𝑠 ℎ − 𝜓 𝑑) − 𝑘 𝑑,𝜙(𝑟 𝑑𝑒𝑠 𝑑 −𝑟𝑑) Δ𝜃ℎ = 𝑘 𝑝,𝜃ℎ(𝜃 𝑑𝑒𝑠 𝑑 − 𝜃 𝑑) − 𝑘 𝑑,𝜃ℎ 𝑞 Δ𝜙ℎ = 𝑘 𝑝,𝜙ℎ(𝜙 𝑑𝑒𝑠 𝑑 − 𝜙 𝑑) − 𝑘 𝑑,𝜙ℎ 𝑝 Force Matrix Angle Matrix Control Laws (PD) Control Laws (PD) 𝜔ℎ = 𝜔𝑖 = 𝑚𝑔 16𝑘𝑐𝑜𝑠𝜃 𝑞 𝜔ℎ = 𝜔𝑖 = 𝑚𝑔 16𝑘𝑐𝑜𝑠(𝜃2/2) Angular Velocity Matrix 𝜔1 𝜔3 𝜔5 𝜔7 𝜔9 𝜔11 𝜔13 𝜔15 = 𝜔2 𝜔4 𝜔6 𝜔8 𝜔10 𝜔12 𝜔14 𝜔16 = 1 1 1 −1 0 1 0 −1 1 0 1 0 1 −1 1 1 1 0 1 0 −1 1 1 −1 0 1 0 −1 1 1 −1 −1 ∗ 𝜔ℎ + Δ𝜔 𝑓 Δ𝜔 𝜃 Δ𝜔 𝜙 Δ𝜔 𝜓 Control Laws (PD) Δ𝜔 𝜃 = 𝑘 𝑝,𝜃(𝜃 𝑑𝑒𝑠 ℎ − 𝜃 𝑑) − 𝑘 𝑑,𝜃(𝑞 𝑑𝑒𝑠 𝑑 − 𝑞 𝑑) Δ𝜔 𝜙 = 𝑘 𝑝,𝜙(𝜙 𝑑𝑒𝑠 ℎ − 𝜙 𝑑) − 𝑘 𝑑,𝜙(𝑞 𝑑𝑒𝑠 𝑑 − 𝑞 𝑑) Δ𝜔 𝜓 = 𝑘 𝑝,𝜓(𝜓 𝑑𝑒𝑠 ℎ − 𝜓 𝑑) − 𝑘 𝑑,𝜙(𝑟 𝑑𝑒𝑠 𝑑 −𝑟𝑑)
  • 11.
    ALTITUDE CONTROL A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W 𝑟 𝑑𝑒𝑠 = 8𝐾 𝑚⍵ 𝑛 𝐼𝑧 ∆⍵ 𝜓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑟 𝑑𝑒𝑠 ∆𝜔 𝑓 = 𝑚 8𝑘 𝑓 𝐹 𝑛 ( 𝑟 𝑑𝑒𝑠 ) ∆𝑭 𝒇 = 𝟎. 𝟓𝒌(∆𝝎 𝒇) 𝟐 𝐹1 𝑑𝑒𝑠 𝐹2 𝑑𝑒𝑠 𝐹3 𝑑𝑒𝑠 𝐹4 𝑑𝑒𝑠 = 1 0 − 1 1 1 1 0 − 1 1 0 1 1 1 − 1 0 1 𝐹ℎ + Δ𝐹𝑓 Δ𝐹 𝜙,𝑑 Δ𝐹𝜃,𝑑 Δ𝐹 𝜓,𝑑 Force Matrix
  • 12.
    LINEAR MOTION MODELING AU T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W 𝐹𝑥 = 0 𝐹1 𝑠𝑖𝑛𝜃1 − 𝐹3 𝑠𝑖𝑛𝜃3 = 0 𝐹𝑦 = 0 𝐹1 𝑐𝑜𝑠𝜃1 − 𝐹3 𝑐𝑜𝑠𝜃3 − 𝑊 = 0 𝑀𝑐 = 0; 𝐹1 𝑐𝑜𝑠𝜃1 𝑙 − 𝐹3 𝑐𝑜𝑠𝜃3 𝑙 = 0 𝒕𝒂𝒏𝜽 𝟏 − 𝒕𝒂𝒏𝜽 𝟑 = 𝟎 𝜃1 = 𝜃3 𝐹𝑥 = 0 𝐹1 𝑠𝑖𝑛𝜃1 − 𝐹3 𝑠𝑖𝑛𝜃3 = 0 𝐹𝑦 = 0 𝐹1 𝑐𝑜𝑠𝜃1 − 𝐹3 𝑐𝑜𝑠𝜃3 − 𝑊 = 0 𝑀𝑐 = 0; 𝐹1 𝑐𝑜𝑠𝜃1 𝑙 − 𝐹3 𝑐𝑜𝑠𝜃3 𝑙 = 0 𝒕𝒂𝒏𝜽 𝟏 − 𝒕𝒂𝒏𝜽 𝟑 = 𝟎 Hover (No Wind) Take-Off (No Wind) Angular Take-Off Analogy
  • 13.
    LINEAR MOTION MODELING AU T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W 𝐹1 𝑠𝑖𝑛𝜃1 − 𝐹1 𝑠𝑖𝑛𝜃3 − 𝐹𝑛 = 0 𝑾 𝟒 (𝒕𝒂𝒏𝜽 𝟏 − 𝒕𝒂𝒏𝜽 𝟑) = 𝑭 𝒏 𝐹1 𝑐𝑜𝑠𝜃1 = 𝑊 4 Slow Forward Motion Faster Forward Motion Fastest Forward Motion 𝜃1 = 𝜃3
  • 14.
    SIMULATION A U TO M A T I O NM O D E L S I M U L A T I O NO V E R V I E W Simulation Simulink Simmechanics
  • 15.
    SIMULINK SIMULATION A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
  • 16.
    SIMULINK RESULTS- ATHOVER A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
  • 17.
    ATTITUDE CONTROL A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
  • 18.
    SIMULINK LONGITUDINAL RESPONSEAT DISTURBANCE A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W LONGITUDINAL STABILITY AT 5 DEGREESLONGITUDINAL STABILITY AT 15 DEGREES
  • 19.
    TEST BENCH EXPERIMENT MO D E L S I M U L A T I O NO V E R V I E W A U T O M A T I O N ɵ = 30 degrees Throttle input Force 40% 10N 80% 20N 100% 25N
  • 20.
    SIMULINK LATERAL RESPONSEAT DISTURBANCE A U T O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W LATERAL STABILITY AT 5 DEGREESLATERAL STABILITY AT 15 DEGREES
  • 21.
    ALTITUDE CONTROL A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W
  • 22.
    A U TO M A T I O NM O D E L S I M U L A T I O NO V E R V I E W SIMULINK LONGITUDINAL RESPONSE AT DISTURBANCE
  • 23.
    A U TO M A T I O NM O D E L S I M U L A T I O NO V E R V I E W SIMULINK LATERAL RESPONSE AT DISTURBANCE 5 DEGREES 15 DEGREES
  • 24.
    SIMMECHANICS SIMULATION A UT O M A T I O NM O D E L S I M U L A T I O NO V E R V I E W NORMAL TAKE-OFFANGULAR TAKE-OFF
  • 25.
    AUTOMATION M O DE L S I M U L A T I O NO V E R V I E W A U T O M A T I O N
  • 26.
    AUTOMATION M O DE L S I M U L A T I O NO V E R V I E W A U T O M A T I O N
  • 27.
    CONCLUSION A U TO M A T I O NO V E R V I E W M O D E L S I M U L A T I O N
  • 28.
    Thank you foryour patience!