SlideShare a Scribd company logo
Excess	
  Manganese	
  Intake	
  During	
  Early	
  Life	
  Alters	
  Brain	
  
Catecholaminergic	
  Receptor	
  Expression	
  	
  
Mikhail	
  Gadomski,	
  Richard	
  Cathey,	
  Stephane	
  Beaudin,	
  Donald	
  Smith	
  
Department	
  of	
  Microbiology	
  and	
  Environmental	
  Toxicology	
  
	
  
ObjecEve:	
  Determine	
  the	
  developmental	
  window	
  of	
  greatest	
  
suscep<bility	
  to	
  excess	
  Mn	
  exposure	
  that	
  alters	
  brain	
  PFC	
  DRD2	
  and	
  
NET	
  expression.	
  	
  
	
  
Approach:	
  
Subjects:	
  50	
  male	
  Long-­‐Evans	
  rats	
  were	
  used.	
  	
  
Mn	
  Exposure: 	
  	
  At	
  birth	
  (postnatal	
  day	
  1),	
  animals	
  were	
  randomly	
  assigned	
  to	
  one	
  of	
  five	
  
treatment	
  condi<ons;	
  Control	
  (0	
  mg	
  Mn/kg/day);	
  (2)	
  50	
  mg	
  Mn/kg	
  PND	
  1-­‐7;	
  (3)	
  50	
  mg	
  Mn/kg/
d	
  PND	
  8-­‐15;	
  (4)	
  50	
  mg	
  Mn/kg/d	
  PND	
  16-­‐21;	
  and	
  (5)	
  50	
  mg	
  Mn/kg/d	
  PND	
  1–21.	
  Each	
  day	
  rats	
  
were	
  weighed,	
  and	
  administered	
  either	
  sucrose	
  vehicle	
  or	
  50	
  mg	
  Mn/kg.	
  Tissues	
  were	
  
collected	
  PND-­‐22.	
  
	
  
	
  
	
  
	
  
	
  
Immunohistochemistry:	
  
References:	
  
1	
  Bouchard	
  et	
  al.	
  2006	
  
2	
  Lucchini	
  et	
  al.	
  2011	
  
3	
  Arnsten	
  and	
  Rubia	
  2012	
  
4	
  Middleton	
  and	
  Strick	
  2000	
  
5	
  Kern	
  et	
  al	
  2010	
  
	
  
Summary:	
  
•  Research	
  shows	
  that	
  cell	
  type	
  (neuronal	
  vs.	
  non-­‐neuronal	
  )	
  can	
  be	
  
iden<fied	
  through	
  the	
  use	
  of	
  immunohistochemistry.	
  
•  Iden<fica<on	
  of	
  DRD2	
  specific	
  to	
  neuronal	
  cells	
  provides	
  vital	
  
informa<on	
  on	
  the	
  impact	
  of	
  Mn	
  on	
  the	
  PFC	
  during	
  neonatal	
  life	
  
and	
  associated	
  deficits.	
  
•  Over	
  expression	
  of	
  inhibitory	
  signaling	
  proteins	
  	
  in	
  the	
  PFC	
  is	
  a	
  
puta<ve	
  mechanism	
  media<ng	
  the	
  aen<on	
  and	
  behavior	
  deficits	
  
seen	
  in	
  children.	
  
	
  
	
  
Results:	
  	
  
•  Our	
  previous	
  study	
  shows	
  that	
  PFC	
  DRD2	
  is	
  up	
  regulated	
  a]er	
  Mn	
  
exposure.	
  	
  
•  We	
  predict	
  that	
  our	
  findings	
  of	
  PND1-­‐7	
  will	
  closely	
  resemble	
  these	
  
results.5	
  
	
  
	
  
	
  
	
  
•  In	
  order	
  to	
  determine	
  specificity	
  of	
  DRD2,	
  neuronal	
  markers	
  
overlapping	
  proteins	
  can	
  be	
  iden<fied	
  as	
  neurons	
  expressing	
  the	
  
protein	
  of	
  interest.	
  
	
  
RaEonal:	
  
•  Studies	
  in	
  children	
  have	
  associated	
  elevated	
  Mn	
  exposure	
  with	
  
behavioral,	
  cogni<ve	
  and	
  motor	
  func<on	
  deficits.	
  1,2	
  	
  
	
  
•  Elevated	
  exposure	
  may	
  arise	
  from: 	
  -­‐	
  Contaminated	
  water	
  
	
   	
   	
   	
  -­‐	
  Industrial	
  	
  sources	
  	
  
	
   	
   	
   	
  -­‐	
  Diet	
  (soy	
  formula)	
  
	
  	
  
•  Cor<cal	
  and	
  basal	
  ganglia	
  structures	
  are	
  densely	
  innervated	
  by	
  
dopamine	
  and	
  norepinephrine.4	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  The	
  PFC	
  regulates	
  aen<on,	
  cogni<ve	
  control,	
  mo<va<on	
  and	
  
emo<on	
  through	
  connec<ons	
  with	
  the	
  posterior	
  cor<cal	
  and	
  
subcor<cal	
  structures.	
  3	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  Presynap<c	
  DRD2	
  regulates	
  dopamine	
  synthesis	
  by	
  inhibi<ng	
  
Tyrosine	
  Hydroxylase	
  (TH).	
  Postsynap<cally	
  DRD2	
  inhibits	
  cyclic	
  
adenosine	
  monophosphate(cAMP)	
  à	
  inhibi<on	
  of	
  cAMP-­‐
dependent	
  	
  pathways	
  (second	
  messenger).	
  NET	
  is	
  the	
  main	
  
transporter	
  of	
  DA	
  and	
  NE	
  in	
  the	
  prefrontal	
  cortex.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  We	
  propose	
  that	
  developmental	
  Mn	
  exposure	
  causes	
  permanent	
  
up	
  regula<on	
  of	
  DRD2	
  in	
  PFC.	
  
•  Lifelong	
  up	
  regula<on	
  of	
  DRD2	
  may	
  underlie	
  aen<on	
  and	
  
cogni<ve	
  deficits	
  in	
  children.	
  
DraQ5	
  (10x)	
   GFAP	
  (10x)	
   NET	
  (10x)	
  
1)  Brain	
  perfusion	
  and	
  
fixaEon.	
  	
  
	
  	
  	
  	
  	
  0.1MPBS	
  +	
  4%	
  PFA	
  
	
  
2)	
  CryoprotecEon	
  
	
  	
  	
  	
  0.3%	
  sucrose	
  buffer	
  
	
  	
  	
  	
  	
  Store	
  at	
  -­‐80	
  C	
  
3)	
  Develop	
  cryostat	
  
	
  	
  	
  	
  secEoning	
  plan	
  
	
  	
  	
  	
  	
  	
  ~12mm	
  brain	
  @	
  40um	
  
	
  	
  	
  	
  	
  	
  	
  =	
  	
  288	
  slices	
  
Dopamine
input to
PFC
Norepinephrine
input to PFC
4)	
  Create	
  secEons	
  
	
  	
  	
  slice	
  coronally	
  at	
  40	
  um	
  
	
  	
  	
  Cryoprotect	
  at	
  -­‐20	
  C	
  
6)	
  Freefloat	
  stain	
  
	
  	
  	
  	
  	
  Wash	
  x	
  3	
  
	
  	
  	
  	
  	
  Blocking	
  incuba<on	
  
	
  	
  	
  	
  	
  Primary	
  incuba<on	
  
	
  	
  	
  	
  	
  	
  Wash	
  x	
  3	
  
	
  	
  	
  	
  Secondary	
  incuba<on	
  
	
  	
  	
  	
  	
  Wash	
  x	
  2	
  
	
  	
  	
  	
  	
  Nuclear	
  stain	
  
	
  	
  	
  	
  	
  Wash	
  
	
  	
  	
  	
  	
  Mount	
  on	
  slide	
  
	
  	
  
Tissue	
  
7)	
  Confocal	
  microscopy	
  
Exposure
Model
Shown is the five
treatment
exposures
5)	
  Design	
  indirect	
  Ab	
  
staining	
  protocol	
  	
  
	
  	
  1	
  Ab:Rabbit	
  an<-­‐DRD2	
  
	
  	
  2	
  Ab:Goat	
  an<-­‐Rabbit	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  (conjugated	
  488)	
  
	
  	
  Nuclear	
  stain	
  (DraQ5)	
  
DraQ5	
  +	
  GFAP	
  +	
  NET	
  
DRD2	
  localized	
  in	
  the	
  PFC	
  
stained	
  with	
  Alexa	
  Fluor	
  488	
  
	
  
10X	
   16X	
   40X	
  
Phenotypical	
  descrip<on	
  of	
  
PFC	
  circuitry.3	
  
Future	
  work:	
  
•  Perform	
  immunohistochemistry	
  on	
  <ssues	
  collected.	
  
•  Determine	
  the	
  ability	
  of	
  Mn	
  to	
  program	
  neuronal	
  cells	
  to	
  up	
  
regulate	
  the	
  expression	
  of	
  PFC	
  DRD2	
  during	
  specific	
  developmental	
  
windows;	
  PND	
  1-­‐7,	
  7-­‐15,	
  16-­‐21,	
  1-­‐21.	
  
NET	
  
DRD2	
  is	
  a	
  G	
  coupled	
  protein	
  
receptor	
  whose	
  downstream	
  
signal	
  is	
  inhibitory	
  

More Related Content

What's hot

Ectopic Expression of Hawthorn SND1 Gene in Tobacco
Ectopic Expression of Hawthorn SND1 Gene in TobaccoEctopic Expression of Hawthorn SND1 Gene in Tobacco
Ectopic Expression of Hawthorn SND1 Gene in Tobacco
Agriculture Journal IJOEAR
 
Molecular diagnostic techniques
Molecular diagnostic techniques Molecular diagnostic techniques
Molecular diagnostic techniques
Hossamaldin Alzawawi
 
Transfection – basics & optimization tips
Transfection – basics & optimization tipsTransfection – basics & optimization tips
Transfection – basics & optimization tips
ajithnandanam
 
Rdna technology
Rdna technologyRdna technology
Rdna technology
Stiti Dash
 
A panel of recombinant monoclonal antibodies against zebrafish
A panel of recombinant monoclonal antibodies against zebrafishA panel of recombinant monoclonal antibodies against zebrafish
A panel of recombinant monoclonal antibodies against zebrafish
Shahnaz Yusaf
 
Genome editing with engineered nucleases
Genome editing with engineered nucleasesGenome editing with engineered nucleases
Genome editing with engineered nucleases
Krishan Kumar
 
Dna sequencing methods
Dna sequencing methodsDna sequencing methods
Dna sequencing methods
ADEEL AKRAM
 
Molecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsMolecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in Insects
Saramita De Chakravarti
 
Genome editing
Genome editingGenome editing
Genome editing
Sudeep Pandey
 
Preparing Genomic DNA for Sequencing
Preparing Genomic DNA for SequencingPreparing Genomic DNA for Sequencing
Preparing Genomic DNA for Sequencing
Dr. Pavan Kundur
 
Zinc Finger Nuclease.
Zinc Finger Nuclease.Zinc Finger Nuclease.
Zinc Finger Nuclease.
Zeeshan Awan
 
Genome Editing Techniques by Kainat Ramzan
Genome Editing Techniques by Kainat RamzanGenome Editing Techniques by Kainat Ramzan
Genome Editing Techniques by Kainat Ramzan
KainatRamzan3
 
Presentation on DNA Sequencing Process
Presentation on DNA Sequencing ProcessPresentation on DNA Sequencing Process
Presentation on DNA Sequencing Process
Nahian Ahmed
 
Genome Editing Tool ZFNs and TALEs
Genome Editing Tool  ZFNs and TALEs Genome Editing Tool  ZFNs and TALEs
Genome Editing Tool ZFNs and TALEs
Manita Paneri
 
Method of gene transfer
Method of gene transferMethod of gene transfer
Method of gene transfer
SumedhaBobade
 
Transfection methods
Transfection methods Transfection methods
Transfection methods
AakifahAmreen
 
DNA sequencing
DNA sequencingDNA sequencing
DNA sequencing
Dr Anjani Kumar
 
Genome editing
Genome editingGenome editing
Genome editing
Shafi'i Abdullahi
 
Practical application of dna technology
Practical application of dna technologyPractical application of dna technology
Practical application of dna technology
Charles Robles Balsita
 
RECOMBINANT DNA TECHNOLOGY
RECOMBINANT DNA TECHNOLOGYRECOMBINANT DNA TECHNOLOGY
RECOMBINANT DNA TECHNOLOGY
Ashish Roge
 

What's hot (20)

Ectopic Expression of Hawthorn SND1 Gene in Tobacco
Ectopic Expression of Hawthorn SND1 Gene in TobaccoEctopic Expression of Hawthorn SND1 Gene in Tobacco
Ectopic Expression of Hawthorn SND1 Gene in Tobacco
 
Molecular diagnostic techniques
Molecular diagnostic techniques Molecular diagnostic techniques
Molecular diagnostic techniques
 
Transfection – basics & optimization tips
Transfection – basics & optimization tipsTransfection – basics & optimization tips
Transfection – basics & optimization tips
 
Rdna technology
Rdna technologyRdna technology
Rdna technology
 
A panel of recombinant monoclonal antibodies against zebrafish
A panel of recombinant monoclonal antibodies against zebrafishA panel of recombinant monoclonal antibodies against zebrafish
A panel of recombinant monoclonal antibodies against zebrafish
 
Genome editing with engineered nucleases
Genome editing with engineered nucleasesGenome editing with engineered nucleases
Genome editing with engineered nucleases
 
Dna sequencing methods
Dna sequencing methodsDna sequencing methods
Dna sequencing methods
 
Molecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in InsectsMolecular Markers: Major Applications in Insects
Molecular Markers: Major Applications in Insects
 
Genome editing
Genome editingGenome editing
Genome editing
 
Preparing Genomic DNA for Sequencing
Preparing Genomic DNA for SequencingPreparing Genomic DNA for Sequencing
Preparing Genomic DNA for Sequencing
 
Zinc Finger Nuclease.
Zinc Finger Nuclease.Zinc Finger Nuclease.
Zinc Finger Nuclease.
 
Genome Editing Techniques by Kainat Ramzan
Genome Editing Techniques by Kainat RamzanGenome Editing Techniques by Kainat Ramzan
Genome Editing Techniques by Kainat Ramzan
 
Presentation on DNA Sequencing Process
Presentation on DNA Sequencing ProcessPresentation on DNA Sequencing Process
Presentation on DNA Sequencing Process
 
Genome Editing Tool ZFNs and TALEs
Genome Editing Tool  ZFNs and TALEs Genome Editing Tool  ZFNs and TALEs
Genome Editing Tool ZFNs and TALEs
 
Method of gene transfer
Method of gene transferMethod of gene transfer
Method of gene transfer
 
Transfection methods
Transfection methods Transfection methods
Transfection methods
 
DNA sequencing
DNA sequencingDNA sequencing
DNA sequencing
 
Genome editing
Genome editingGenome editing
Genome editing
 
Practical application of dna technology
Practical application of dna technologyPractical application of dna technology
Practical application of dna technology
 
RECOMBINANT DNA TECHNOLOGY
RECOMBINANT DNA TECHNOLOGYRECOMBINANT DNA TECHNOLOGY
RECOMBINANT DNA TECHNOLOGY
 

Similar to Mik Symposium Poster

Personalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertensionPersonalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertension
Susanta Kumar Rout
 
caron.ppt educate the patient on the uses
caron.ppt educate the patient on the usescaron.ppt educate the patient on the uses
caron.ppt educate the patient on the uses
omar97227
 
Neuroscience Letters
Neuroscience LettersNeuroscience Letters
Neuroscience Letters
Piter Pen
 
Mon article
Mon articleMon article
Mon article
Dekky Bassil
 
Mockabee COM scholar poster 032316
Mockabee COM scholar poster 032316Mockabee COM scholar poster 032316
Mockabee COM scholar poster 032316
Ryan Mockabee
 
nrn_bdnf_poster
nrn_bdnf_posternrn_bdnf_poster
nrn_bdnf_poster
Pawel J. Ciesielczyk, PhD
 
ISSCR-2014-poster
ISSCR-2014-posterISSCR-2014-poster
ISSCR-2014-poster
Alicia Lee
 
John Short Presentation
John Short PresentationJohn Short Presentation
John Short Presentation
John Alexander Logan Short
 
screening model for parkinsons disease
screening model for parkinsons diseasescreening model for parkinsons disease
screening model for parkinsons disease
Kundlik Rathod
 
Slide Presentation
Slide PresentationSlide Presentation
Slide Presentation
gur509
 
7arup-180518123123 (1).pdf
7arup-180518123123 (1).pdf7arup-180518123123 (1).pdf
7arup-180518123123 (1).pdf
KiranSingh702787
 
i1552-5783-57-2-372
i1552-5783-57-2-372i1552-5783-57-2-372
i1552-5783-57-2-372
Ryo Iwata
 
JACS-CD38 localization using a fluorescent probe
JACS-CD38 localization using a fluorescent probeJACS-CD38 localization using a fluorescent probe
JACS-CD38 localization using a fluorescent probe
Jonathan Shrimp
 
BBRC ndrg2
BBRC ndrg2BBRC ndrg2
BBRC ndrg2
Cédric Langhi
 
Human Genomic DNA Isolation Methods
Human Genomic DNA Isolation MethodsHuman Genomic DNA Isolation Methods
Human Genomic DNA Isolation Methods
Amna Jalil
 
14825.full
14825.full14825.full
14825.full
Rozemarijn Dreesen
 
NLS presentation depicting data from my PhD defense
NLS presentation depicting data from my PhD defenseNLS presentation depicting data from my PhD defense
NLS presentation depicting data from my PhD defense
Animikh Ray
 
Sensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient Mice
Sensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient MiceSensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient Mice
Sensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient Mice
Sandra Field
 
polymerase chain reaction (PCR) technique
polymerase chain reaction (PCR) techniquepolymerase chain reaction (PCR) technique
polymerase chain reaction (PCR) technique
esraa allam
 
ChemE 395 final project
ChemE 395 final projectChemE 395 final project
ChemE 395 final project
ZI YANG
 

Similar to Mik Symposium Poster (20)

Personalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertensionPersonalized nanomedicine for the treatment of vascular hypertension
Personalized nanomedicine for the treatment of vascular hypertension
 
caron.ppt educate the patient on the uses
caron.ppt educate the patient on the usescaron.ppt educate the patient on the uses
caron.ppt educate the patient on the uses
 
Neuroscience Letters
Neuroscience LettersNeuroscience Letters
Neuroscience Letters
 
Mon article
Mon articleMon article
Mon article
 
Mockabee COM scholar poster 032316
Mockabee COM scholar poster 032316Mockabee COM scholar poster 032316
Mockabee COM scholar poster 032316
 
nrn_bdnf_poster
nrn_bdnf_posternrn_bdnf_poster
nrn_bdnf_poster
 
ISSCR-2014-poster
ISSCR-2014-posterISSCR-2014-poster
ISSCR-2014-poster
 
John Short Presentation
John Short PresentationJohn Short Presentation
John Short Presentation
 
screening model for parkinsons disease
screening model for parkinsons diseasescreening model for parkinsons disease
screening model for parkinsons disease
 
Slide Presentation
Slide PresentationSlide Presentation
Slide Presentation
 
7arup-180518123123 (1).pdf
7arup-180518123123 (1).pdf7arup-180518123123 (1).pdf
7arup-180518123123 (1).pdf
 
i1552-5783-57-2-372
i1552-5783-57-2-372i1552-5783-57-2-372
i1552-5783-57-2-372
 
JACS-CD38 localization using a fluorescent probe
JACS-CD38 localization using a fluorescent probeJACS-CD38 localization using a fluorescent probe
JACS-CD38 localization using a fluorescent probe
 
BBRC ndrg2
BBRC ndrg2BBRC ndrg2
BBRC ndrg2
 
Human Genomic DNA Isolation Methods
Human Genomic DNA Isolation MethodsHuman Genomic DNA Isolation Methods
Human Genomic DNA Isolation Methods
 
14825.full
14825.full14825.full
14825.full
 
NLS presentation depicting data from my PhD defense
NLS presentation depicting data from my PhD defenseNLS presentation depicting data from my PhD defense
NLS presentation depicting data from my PhD defense
 
Sensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient Mice
Sensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient MiceSensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient Mice
Sensory Evoked Cortical Function in Pyruvate Dehydrogenase Deficient Mice
 
polymerase chain reaction (PCR) technique
polymerase chain reaction (PCR) techniquepolymerase chain reaction (PCR) technique
polymerase chain reaction (PCR) technique
 
ChemE 395 final project
ChemE 395 final projectChemE 395 final project
ChemE 395 final project
 

Mik Symposium Poster

  • 1. Excess  Manganese  Intake  During  Early  Life  Alters  Brain   Catecholaminergic  Receptor  Expression     Mikhail  Gadomski,  Richard  Cathey,  Stephane  Beaudin,  Donald  Smith   Department  of  Microbiology  and  Environmental  Toxicology     ObjecEve:  Determine  the  developmental  window  of  greatest   suscep<bility  to  excess  Mn  exposure  that  alters  brain  PFC  DRD2  and   NET  expression.       Approach:   Subjects:  50  male  Long-­‐Evans  rats  were  used.     Mn  Exposure:    At  birth  (postnatal  day  1),  animals  were  randomly  assigned  to  one  of  five   treatment  condi<ons;  Control  (0  mg  Mn/kg/day);  (2)  50  mg  Mn/kg  PND  1-­‐7;  (3)  50  mg  Mn/kg/ d  PND  8-­‐15;  (4)  50  mg  Mn/kg/d  PND  16-­‐21;  and  (5)  50  mg  Mn/kg/d  PND  1–21.  Each  day  rats   were  weighed,  and  administered  either  sucrose  vehicle  or  50  mg  Mn/kg.  Tissues  were   collected  PND-­‐22.             Immunohistochemistry:   References:   1  Bouchard  et  al.  2006   2  Lucchini  et  al.  2011   3  Arnsten  and  Rubia  2012   4  Middleton  and  Strick  2000   5  Kern  et  al  2010     Summary:   •  Research  shows  that  cell  type  (neuronal  vs.  non-­‐neuronal  )  can  be   iden<fied  through  the  use  of  immunohistochemistry.   •  Iden<fica<on  of  DRD2  specific  to  neuronal  cells  provides  vital   informa<on  on  the  impact  of  Mn  on  the  PFC  during  neonatal  life   and  associated  deficits.   •  Over  expression  of  inhibitory  signaling  proteins    in  the  PFC  is  a   puta<ve  mechanism  media<ng  the  aen<on  and  behavior  deficits   seen  in  children.       Results:     •  Our  previous  study  shows  that  PFC  DRD2  is  up  regulated  a]er  Mn   exposure.     •  We  predict  that  our  findings  of  PND1-­‐7  will  closely  resemble  these   results.5           •  In  order  to  determine  specificity  of  DRD2,  neuronal  markers   overlapping  proteins  can  be  iden<fied  as  neurons  expressing  the   protein  of  interest.     RaEonal:   •  Studies  in  children  have  associated  elevated  Mn  exposure  with   behavioral,  cogni<ve  and  motor  func<on  deficits.  1,2       •  Elevated  exposure  may  arise  from:  -­‐  Contaminated  water          -­‐  Industrial    sources            -­‐  Diet  (soy  formula)       •  Cor<cal  and  basal  ganglia  structures  are  densely  innervated  by   dopamine  and  norepinephrine.4                           •  The  PFC  regulates  aen<on,  cogni<ve  control,  mo<va<on  and   emo<on  through  connec<ons  with  the  posterior  cor<cal  and   subcor<cal  structures.  3                     •  Presynap<c  DRD2  regulates  dopamine  synthesis  by  inhibi<ng   Tyrosine  Hydroxylase  (TH).  Postsynap<cally  DRD2  inhibits  cyclic   adenosine  monophosphate(cAMP)  à  inhibi<on  of  cAMP-­‐ dependent    pathways  (second  messenger).  NET  is  the  main   transporter  of  DA  and  NE  in  the  prefrontal  cortex.                 •  We  propose  that  developmental  Mn  exposure  causes  permanent   up  regula<on  of  DRD2  in  PFC.   •  Lifelong  up  regula<on  of  DRD2  may  underlie  aen<on  and   cogni<ve  deficits  in  children.   DraQ5  (10x)   GFAP  (10x)   NET  (10x)   1)  Brain  perfusion  and   fixaEon.              0.1MPBS  +  4%  PFA     2)  CryoprotecEon          0.3%  sucrose  buffer            Store  at  -­‐80  C   3)  Develop  cryostat          secEoning  plan              ~12mm  brain  @  40um                =    288  slices   Dopamine input to PFC Norepinephrine input to PFC 4)  Create  secEons        slice  coronally  at  40  um        Cryoprotect  at  -­‐20  C   6)  Freefloat  stain            Wash  x  3            Blocking  incuba<on            Primary  incuba<on              Wash  x  3          Secondary  incuba<on            Wash  x  2            Nuclear  stain            Wash            Mount  on  slide       Tissue   7)  Confocal  microscopy   Exposure Model Shown is the five treatment exposures 5)  Design  indirect  Ab   staining  protocol        1  Ab:Rabbit  an<-­‐DRD2      2  Ab:Goat  an<-­‐Rabbit                    (conjugated  488)      Nuclear  stain  (DraQ5)   DraQ5  +  GFAP  +  NET   DRD2  localized  in  the  PFC   stained  with  Alexa  Fluor  488     10X   16X   40X   Phenotypical  descrip<on  of   PFC  circuitry.3   Future  work:   •  Perform  immunohistochemistry  on  <ssues  collected.   •  Determine  the  ability  of  Mn  to  program  neuronal  cells  to  up   regulate  the  expression  of  PFC  DRD2  during  specific  developmental   windows;  PND  1-­‐7,  7-­‐15,  16-­‐21,  1-­‐21.   NET   DRD2  is  a  G  coupled  protein   receptor  whose  downstream   signal  is  inhibitory