IN THE NAME OF GOD THE MOST COMPASSIONATE AND THE MOST MERCIFUL
MATLAB TUTORIAL FOR BEGINNERS
HOSSEIN GHOLIZADEH
BACHELOR STUDENT OF SBU-TEHRAN-ISLAMIC REPUBLIC OF IRAN
ELECTRICAL ENGINEERING-POWER ENGINEERING(POWER ELECTRONICS)
• MATLAB COMMAND WINDOW PAGE 1
• >> %MATLAB AS A CALCULATOR
• >>
• >> SPEED_KPS=300000
• SPEED_KPS =
• 300000
• >> YEAR_SEC=365*24*60*60
• YEAR_SEC =
• 31536000
• >> LIGHT_YEAR_KM=SPEED_KPS*YEAR_SEC
• LIGHT_YEAR_KM =
• 9.4608E+12
• >> 9.4608*1000000000000
• ANS =
• 9.4608E+12
• >> SUN_TO_EARTH_KM=150E6
• SUN_TO_EARTH_KM =
• 150000000
• >> EARTH_TO_SUN_SEC=SUN_TO_EARTH_KM/SPEED_KPS
• EARTH_TO_SUN_SEC =
• 500
• >> EARTH_TO_SUN_MIN=EARTH_TO_SUN_SEC/60
• EARTH_TO_SUN_MIN =
• 8.3333
• >>
• >> X=42;Y=82;
• >> X=42,Y=82;
• X =
• 42
• >> A_REALLY_LONG_VARIABLE_NAME=7;
• >> AN_OTHER_LONG_VARIABLE_NAME=10;
• >> AN_EXTREMLY_REALLY_LONG_VARIABLE_NAME=
A_REALLY_LONG_VARIABLE_NAME+...
• AN_OTHER_LONG_VARIABLE_NAME
• AN_EXTREMLY_REALLY_LONG_VARIABLE_NAME =
• 17
• >> X=Y
• X =
• 82
• >> Y=X
• Y =
• 82
• >> X=42
• X =
• 42
• >> A=X
• A =
• 42
• >> X=Y
• X =
• 82
• >> Y=A
• Y =
• 42
• MATLAB COMMAND WINDOW PAGE 2
• >>
• >> HELP FORMAT
• FORMAT SET OUTPUT FORMAT.
• FORMAT WITH NO INPUTS SETS THE OUTPUT FORMAT TO THE DEFAULT
APPROPRIATE
• FOR THE CLASS OF THE VARIABLE. FOR FLOAT VARIABLES, THE DEFAULT IS
• FORMAT SHORT.
• FORMAT DOES NOT AFFECT HOW MATLAB COMPUTATIONS ARE DONE.
COMPUTATIONS
• ON FLOAT VARIABLES, NAMELY SINGLE OR DOUBLE, ARE DONE IN APPROPRIATE
• FLOATING POINT PRECISION, NO MATTER HOW THOSE VARIABLES ARE DISPLAYED.
• COMPUTATIONS ON INTEGER VARIABLES ARE DONE NATIVELY IN INTEGER. INTEGER
• VARIABLES ARE ALWAYS DISPLAYED TO THE APPROPRIATE NUMBER OF DIGITS FOR
• THE CLASS, FOR EXAMPLE, 3 DIGITS TO DISPLAY THE INT8 RANGE −128:127.
• FORMAT SHORT AND LONG DO NOT AFFECT THE DISPLAY OF INTEGER VARIABLES.
• FORMAT MAY BE USED TO SWITCH BETWEEN DIFFERENT OUTPUT DISPLAY FORMATS
• OF ALL FLOAT VARIABLES AS FOLLOWS:
• FORMAT SHORT SCALED FIXED POINT FORMAT WITH 5 DIGITS.
• FORMAT LONG SCALED FIXED POINT FORMAT WITH 15 DIGITS FOR DOUBLE
• AND 7 DIGITS FOR SINGLE.
• FORMAT SHORTE FLOATING POINT FORMAT WITH 5
DIGITS.
• FORMAT LONGE FLOATING POINT FORMAT WITH 15
DIGITS FOR DOUBLE AND
• 7 DIGITS FOR SINGLE.
• FORMAT SHORTG BEST OF FIXED OR FLOATING POINT
FORMAT WITH 5
• DIGITS.
• FORMAT LONGG BEST OF FIXED OR FLOATING POINT
FORMAT WITH 15
• DIGITS FOR DOUBLE AND 7 DIGITS FOR SINGLE.
• FORMAT SHORTENG ENGINEERING FORMAT THAT HAS AT
LEAST 5 DIGITS
• AND A POWER THAT IS A MULTIPLE OF THREE
• FORMAT LONGENG ENGINEERING FORMAT THAT HAS
EXACTLY 16 SIGNIFICANT
• DIGITS AND A POWER THAT IS A MULTIPLE OF THREE.
• FORMAT MAY BE USED TO SWITCH BETWEEN DIFFERENT
OUTPUT DISPLAY FORMATS
• OF ALL NUMERIC VARIABLES AS FOLLOWS:
• FORMAT HEX HEXADECIMAL FORMAT.
• FORMAT + THE SYMBOLS +, − AND BLANK ARE PRINTED
• FOR POSITIVE, NEGATIVE AND ZERO ELEMENTS.
• IMAGINARY PARTS ARE IGNORED.
• FORMAT BANK FIXED FORMAT FOR DOLLARS AND CENTS.
• FORMAT RAT APPROXIMATION BY RATIO OF SMALL
INTEGERS. NUMBERS
• WITH A LARGE NUMERATOR OR LARGE DENOMINATOR
ARE
• REPLACED BY ∗.
• FORMAT MAY BE USED TO AFFECT THE SPACING IN THE
DISPLAY OF ALL
• VARIABLES AS FOLLOWS:
• FORMAT COMPACT SUPPRESSES EXTRA LINE−FEEDS.
• FORMAT LOOSE PUTS THE EXTRA LINE−FEEDS BACK IN.
• EXAMPLE:
• FORMAT SHORT, PI, SINGLE(PI)
• DISPLAYS BOTH DOUBLE AND SINGLE PI WITH 5 DIGITS AS
3.1416 WHILE
• FORMAT LONG, PI, SINGLE(PI)
• MATLAB COMMAND WINDOW PAGE 2
• DISPLAYS PI AS 3.141592653589793 AND SINGLE(PI)
AS 3.1415927.
• FORMAT, INTMAX(′UINT64′), REALMAX
• SHOWS THESE VALUES AS 18446744073709551615
AND 1.7977E+308 WHILE
• FORMAT HEX, INTMAX(′UINT64′), REALMAX
• SHOWS THEM AS FFFFFFFFFFFFFFFF AND
7FEFFFFFFFFFFFFF RESPECTIVELY.
• THE HEX DISPLAY CORRESPONDS TO THE INTERNAL
REPRESENTATION OF THE VALUE
• AND IS NOT THE SAME AS THE HEXADECIMAL
NOTATION IN THE C PROGRAMMING
• LANGUAGE.
• SEE ALSO DISP, DISPLAY, ISNUMERIC, ISFLOAT,
ISINTEGER.
• REFERENCE PAGE IN HELP BROWSER
• DOC FORMAT
• >>
• MATLAB COMMAND WINDOW PAGE 1
• >> FORMAT COMPACT
• >> HOSSEIN=19/3
• HOSSEIN =
• 6.3333
• >> FORMAT LONG
• >> HOSSEIN=19/3
• HOSSEIN =
• 6.333333333333333
• >>
• MATLAB COMMAND WINDOW PAGE 1
• >> %COLON OPERATION
• >>
• >> 1:3:7
• ANS =
• 1 4 7
• >> 1:3:8
• ANS =
• 1 4 7
• >> 1:3:9.9
• ANS =
• 1 4 7
• >> 1:3:10
• ANS =
• 1 4 7 10
• >> X1=1:100
• X1 =
• COLUMNS 1 THROUGH 21
• 1 2 3 4 5 6 7 8 9 10 11 12 13 14
• 15 16 17 18 19 20 21
• COLUMNS 22 THROUGH 42
• 22 23 24 25 26 27 28 29 30 31 32 33 34 35
• 36 37 38 39 40 41 42
• COLUMNS 43 THROUGH 63
• 43 44 45 46 47 48 49 50 51 52 53 54 55 56
• 57 58 59 60 61 62 63
• COLUMNS 64 THROUGH 84
• 64 65 66 67 68 69 70 71 72 73 74 75 76 77
• 78 79 80 81 82 83 84
• COLUMNS 85 THROUGH 100
• MATLAB COMMAND WINDOW PAGE 2
• 85 86 87 88 89 90 91 92 93 94 95 96 97 98
• 99 100
• >> SIZE(X1)
• ANS =
• 1 100
• >> 1:7
• ANS =
• 1 2 3 4 5 6 7
• >> COLON(1,7)
• ANS =
• 1 2 3 4 5 6 7
• >> EVEN=2:2:500
• EVEN =
• COLUMNS 1 THROUGH 21
• 2 4 6 8 10 12 14 16 18 20 22 24 26 28
• 30 32 34 36 38 40 42
• COLUMNS 22 THROUGH 42
• 44 46 48 50 52 54 56 58 60 62 64 66 68 70
• 72 74 76 78 80 82 84
• COLUMNS 43 THROUGH 63
• 86 88 90 92 94 96 98 100 102 104 106 108 110 112
• 114 116 118 120 122 124 126
• COLUMNS 64 THROUGH 84
• 128 130 132 134 136 138 140 142 144 146 148 150 152 154
• 156 158 160 162 164 166 168
• COLUMNS 85 THROUGH 105
• 170 172 174 176 178 180 182 184 186 188 190 192 194 196
• 198 200 202 204 206 208 210
• MATLAB COMMAND WINDOW PAGE 3
• COLUMNS 106 THROUGH 126
• 212 214 216 218 220 222 224 226 228 230 232 234 236 238
• 240 242 244 246 248 250 252
• COLUMNS 127 THROUGH 147
• 254 256 258 260 262 264 266 268 270 272 274 276 278 280
• 282 284 286 288 290 292 294
• COLUMNS 148 THROUGH 168
• 296 298 300 302 304 306 308 310 312 314 316 318 320 322
• 324 326 328 330 332 334 336
• COLUMNS 169 THROUGH 189
• 338 340 342 344 346 348 350 352 354 356 358 360
362 364
• 366 368 370 372 374 376 378
• COLUMNS 190 THROUGH 210
• 380 382 384 386 388 390 392 394 396 398 400 402
404 406
• 408 410 412 414 416 418 420
• COLUMNS 211 THROUGH 231
• 422 424 426 428 430 432 434 436 438 440 442 444
446 448
• 450 452 454 456 458 460 462
• COLUMNS 232 THROUGH 250
• 464 466 468 470 472 474 476 478 480 482 484 486
488 490
• 492 494 496 498 500
• >> SIZE(EVEN)
• ANS =
• 1 250
• >> X3=[1:4;5:8;9:12]
• X3 =
• 1 2 3 4
• 5 6 7 8
• 9 10 11 12
• >> X3(2,3)
• MATLAB COMMAND WINDOW PAGE 4
• ANS =
• 7
• >> HOSSEIN=20;
• >> X(2,3)=HOSSEIN
• X =
• 0 0 0
• 0 0 20
• >> X3(2,3)=HOSSEIN
• X3 =
• 1 2 3 4
• 5 6 20 8
• 9 10 11 12
• >> X3(4,5)=100
• X3 =
• 1 2 3 4 0
• 5 6 20 8 0
• 9 10 11 12 0
• 0 0 0 0 100
• >> ALBERT=[1:3;4:6]
• ALBERT =
• 1 2 3
• 4 5 6
• >> ALBERT([1 2],2)
• ANS =
• 2
• 5
• >> ALBERT([2 1],2)
• ANS =
• 5
• 2
• >> ALBERT([2 1 2],[3 1 1 2])
• ANS =
• 6 4 4 5
• 3 1 1 2
• 6 4 4 5
• >> ALBERT(2,[1 2 3])
• ANS =
• 4 5 6
• >> ALBERT(2,1:3)
• ANS =
• 4 5 6
• >> ALBERT(END,2)
• ANS =
• 5
• >> END=5
• END=5
• |
• ERROR: ILLEGAL USE OF RESERVED KEYWORD "END".
• >> ALBERT([2 END 1 END],2)
• ANS =
• 5
• 5
• 2
• 5
• >> ALBERT(END−1,END−2)
• ANS =
• 1
• >> ALBERT(END+1,1)=17
• ALBERT =
• 1 2 3
• 4 5 6
• MATLAB COMMAND WINDOW PAGE 6
• 17 0 0
• >> ALBERT(1:END,1:END)
• ANS =
• 1 2 3
• 4 5 6
• 17 0 0
• >> ALBERT(END,1:END)
• ANS =
• 17 0 0
• >> ALBERT(END,1:END)=−44
• ALBERT =
• 1 2 3
• 4 5 6
• −44 −44 −44
• >> ALBERT(1:2,2:END)
• ANS =
• 2 3
• 5 6
• >> %COMBINING MATRICES
• >> A1=[1 1 1;1 1 1];A2=[2 2 2;2 2 2];A3=[3 3 3;3 3
3];
• >> [A1 A2 A3]
• ANS =
• 1 1 1 2 2 2 3 3 3
• 1 1 1 2 2 2 3 3 3
• >> [A1;A2;A3]
• ANS =
• 1 1 1
• 1 1 1
• 2 2 2
• 2 2 2
• 3 3 3
• 3 3 3
• >> B1=[1;1];B2=[2 2;2 2];
• >> B3=[3 3 3;3 3 3];
• >> [B1 B2 B3]
• ANS =
• 1 2 2 3 3 3
• 1 2 2 3 3 3
• >> [B1 B2 B3 B1]
• ANS =
• 1 2 2 3 3 3 1
• 1 2 2 3 3 3 1
• >> [B1 B3 B2 B1]
• ANS =
• 1 3 3 3 2 2 1
• 1 3 3 3 2 2 1
• >> GILBERT=[1 2 3;4 5 6]
• GILBERT =
• 1 2 3
• 4 5 6
• >> JAKOP=GILBERT ′
• JAKOP =
• 1 4
• 2 5
• 3 6
• >> ALBERT=[1 ; 2 ; 3 ; 4]
• ALBERT =
• 1
• 2
• 3
• 4
• >> ALBERT′
• ANS =
• 1 2 3 4
• >> 1:2:5′
• ANS =
• 1 3 5
• >> (1:2:5)′
• ANS =
• 1
• 3
• 5
• >> HOSSEIN=[1 −5 2 3 0 1];
• >> NS=[1 : 3 , 4 : 6] ;
• >> NS+HOSSEIN
• ANS =
• 2 −3 5 7 5 7
• >> NS−HOSSEIN
• ANS =
• 0 7 1 1 5 5
• >> NS .∗ HOSSEIN
• ANS =
• 1 −10 6 12 0 6
• >> HIGHS_MEASURED=[71.001 52.4010 78.1818 ;
73.5967 78.6214 59.6462];
• >> CALIBRATION_FACTORS=[1.1100 1.500 .9900 ;
.9210 1.001 1.3001];
• >> CALIBRATION_FACTORS.∗CALIBRATION_FACTOR
• UNDEFINED FUNCTION OR VARIABLE
′CALIBRATION_FACTOR′.
• DID YOU MEAN:
• >> CALIBRATION_FACTORS.∗CALIBRATION_FACTORS
• ANS =
• 1.2321 2.2500 0.9801
• 0.8482 1.0020 1.6903
• >>
• >> A=[1 2 3 ; 4 5 6 ; 6 1 1 ; 0 1 3] ;
• >> B=[2 −2 ; 3 8 ; 7 4] ;
• >> C=[SIZE(A) SIZE(B)]
• C =
• 4 3 3 2
• >> % MATRICES PRODUCTION CAN BE DONE
• >>
• >> A∗B
• ANS =
• 29 26
• 65 56
• 22 0
• 24 20
• >> X=[1 2 ; 3 4];
• >> N=[6 .5 ; −1 2];
• >> X∗N
• ANS =
• 4.0000 4.5000
• 14.0000 9.5000
• >> X.∗N
• ANS =
• 6 1
• −3 8
• >> X^3
• ANS =
• 37 54
• 81 118
• >> X.^3
• ANS =
• 1 8
• 27 64
• >> A=[ 1 2 3 ; 4 5 6];
• >> A+3
• ANS =
• 4 5 6
• 7 8 9
• >> 20∗A
• ANS =
• 20 40 60
• 80 100 120
• >> A∗20
• ANS =
• 20 40 60
• 80 100 120
• >> A./2
• ANS =
• 0.5000 1.0000 1.5000
• 2.0000 2.5000 3.0000
• >> 2./A
• ANS =
• 2.0000 1.0000 0.6667
• 0.5000 0.4000 0.3333
• >> 2.^A
• ANS =
• 2 4 8
• 16 32 64
• >> A.^2
• ANS =
• 1 4 9
• 16 25 36
• >>
• >> 1:10+3
• ANS =
• 1 2 3 4 5 6 7 8 9 10 11 12 13
• >> 1:(10+3)
• ANS =
• 1 2 3 4 5 6 7 8 9 10 11 12 13
• >> 6/2∗3
• ANS =
• 9
• >> 6∗2/9
• ANS =
• 1.3333
• >> 6^2^3
• ANS =
• 46656
• >> 36^3
• ANS =
• 46656
• >> 6^(2^3)
• ANS =
• 1679616
• >> 6^8
• ANS =
• 1679616
• >> HELP PRECEDANCE
• PRECEDANCE NOT FOUND.
• MATLAB COMMAND WINDOW PAGE 2
• USE THE HELP BROWSER SEARCH FIELD TO SEARCH THE
DOCUMENTATION, OR
• TYPE "HELP HELP" FOR HELP COMMAND OPTIONS, SUCH
AS HELP FOR METHODS.
• >> HELP HELP PRECEDANCE
• ERROR USING HELP (LINE 49)
• HELP ONLY SUPPORTS ONE TOPIC
• >>
• %%%FIRST FUNCTION ADVANCED MY RAND
• FUNCTION A=ADVANCEDMYRAND(LOW,HIGH)
• A=LOW+RAND(3,4)∗(HIGH−LOW);
• END
• % SECOND FUNCTION GIVE ME ONE MORE
• FUNCTION A=GIVEMEONEMORE
• X=INPUT(′GIVE ME ONE MORE BUDDY:′);
• A=X+1;
• END
• >> ADVANCEDMYRAND(1,10)
• ANS =
• 9.6145 2.2770 8.1299 1.3214
• 5.3684 4.7959 9.6354 8.6422
• 8.2025 9.2416 6.9017 9.4059
• >> ADVANCEDMYRAND(4,7)
• ANS =
• 6.0362 5.1767 6.1181 4.1385
• 6.2732 5.9664 4.0955 4.2914
• 6.2294 4.5136 4.8308 6.4704
• >> ADVANCEDMYRAND(3,4)
• ANS =
• 3.6948 3.0344 3.7655 3.4898
• 3.3171 3.4387 3.7952 3.4456
• 3.9502 3.3816 3.1869 3.6463
• >> ADVANCEDMYRAND(−2,6)
• ANS =
• 3.6749 3.4376 −1.0480 0.7231
• 4.0375 3.2408 1.9869 2.6821
• 0.2082 −0.6991 5.6780 −0.2095
• >> GIVEMEONEMORE
• GIVE ME ONE MORE BUDDY:5
• ANS =
• 6
• >> GIVEMEONEMORE
• GIVE ME ONE MORE BUDDY:1001
• ANS =
• 1002
• >> ADVANCEDMYRAND1(1,10)
• ANS =
• 7.7614 7.2917 5.9249 3.3176
• 3.2959 9.0181 2.2476 8.5665
• 5.5536 9.6336 2.3436 3.2885
• >> [A,B]=ADVANCEDMYRAND1(2,5)
• A =
• 4.4429 3.0500 3.8481 4.4925
• 2.7306 2.5898 3.4199 3.7558
• 4.7878 2.7533 3.0550 3.6492
• B =
• 42.5746
• >> [A,B]=ADVANCEDMYRAND1(1,10)
• A =
• 9.2547 7.7836 1.6827 8.0125
• 3.5726 4.4240 1.4856 9.4061
• 7.8148 6.1104 5.7772 2.1692
• B =
• 67.4932
• >> FPRINTF(′THIS CONCLUDES LESSON3′)
• THIS CONCLUDES LESSON3>>
• >> FPRINTF(′THIS CONCLUDES LESSON3N′)
• THIS CONCLUDES LESSON3
• >>
• FUNCTION TOTAL=CHECKOUT(N,PRICE)
• TOTAL=N∗PRICE;
• FPRINTF(′%D ITEMS AT %02F EACHN
TOTAL=%$5.2FN′,N,PRICE,TOTAL);
• END
• >> CHECKOUT(4,3.14)
• 4 ITEMS AT 3.140000 EACH
• TOTAL=
• ANS =
• 12.5600
• >>
• >> A=(1:10)^2
• ERROR USING ^
• INPUTS MUST BE A SCALAR AND A SQUARE
MATRIX.
• TO COMPUTE ELEMENTWISE POWER, USE POWER
(.^) INSTEAD.
• >> A=(1:10).^2
• A =
• 1 4 9 16 25 36 49 64 81 100
• >> PLOT(A)
• >>
• TYPE EQUATION HERE.
• >> B=(−10:1:10).^2
• B =
• 100 81 64 49 36 25 16 9 4 1 0 1 4 9
• 16 25 36 49 64 81 100
• >> PLOT(B)
• >>
• >> T=−10:10;
• >> A=T^.2;
• ERROR USING ^
• INPUTS MUST BE A SCALAR AND A SQUARE MATRIX.
• TO COMPUTE ELEMENTWISE POWER, USE POWER (.^) INSTEAD.
• >> A=T.^2;
• >> PLOT(T,A)
• >>
• >> X1=0:.1:PI/2;Y1=SIN(X1);
• >> X2=PI/2:.1:3∗PI/2;Y2=COS(X2);
• >> PLOT(X1,Y1,X2,Y2)
• >>
• >> X1=0:.1:PI/2;Y1=SIN(X1);
• >> X2=PI/2:.1:3∗PI;Y2=COS(X2);
• >> PLOT(X1,Y1,′R′,X2,Y2,′K′)
• >>
• >> T=−10:10;
• >> Y=T.^2;
• >> PLOT(T,B,′M−−O′)
• UNDEFINED FUNCTION OR VARIABLE ′B′.
• >> PLOT(T,Y,′M−−O′)
• >>
• >> X1=0:.1:PI/2;
• Y1=SIN(X1);
• X2=PI/2:.1:3∗PI;
• Y2=COS(X2);
• PLOT(X1,Y1,′R′)
• HOLD ON
• PLOT(X2,Y2,′K:′)
• >>
• >> X1=0:.1:PI/2;Y1=SIN(X1);
• >> X2=PI/2:.1:3∗PI;Y2=COS(X2);
• >> PLOT(X1,Y1,X2,Y2);
• >> TITLE(′SIN AND COS′);
• >> XLABEL(′ARGUMENT OF SIN AND COS′);
• >> YLABEL(′AMOUNT OF SIN AND COS′);
• >>
• >> X1=0:.1:PI/2;Y1=SIN(X1);
• X2=PI/2:.1:3∗PI;Y2=COS(X2);
• PLOT(X1,Y1,X2,Y2);
• TITLE(′SIN AND COS′);
• XLABEL(′ARGUMENT OF SIN AND COS′);
• YLABEL(′AMOUNT OF SIN AND COS′);
• LEGEND(′SIN′,′COS′);
• >>
• >> SYMS F(T)
• >> DSOLVE(DIFF(F)==F+SIN(T));
• >> DSOLVE(DIFF(F)==F+SIN(T))
• ANS =
• C3∗EXP(T) − (2^(1/2)∗COS(T − PI/4))/2
• >> SYMS A X(T)
• >> DSOLVE(DIFF(X)==A∗X(T))
• ANS =
• C5∗EXP(A∗T)
• >> SYMS A B Y(T)
• >> DSOLVE(DIFF(Y)==A∗Y,Y(0)=B);
• DSOLVE(DIFF(Y)==A∗Y,Y(0)=B);
• |
• ERROR: THE EXPRESSION TO THE LEFT OF THE EQUALS SIGN IS NOT A VALID
TARGET FOR AN
• ASSIGNMENT.
• >> DSOLVE(DIFF(Y)==A∗Y,Y(0)==B)
• ANS =
• B∗EXP(A∗T)
• >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′)
• WARNING: THE NUMBER OF INDETERMINATES EXCEEDS THE NUMBER OF
EQUATIONS. TRYING TO
• PARAMETERIZE SOLUTIONS IN TERMS
• INDETERMINATES.
• > IN SYMENGINE (LINE 57)
• IN MUPADENGINE/EVALIN (LINE 102)
• IN MUPADENGINE/FEVAL (LINE 158)
• IN DSOLVE>MUPADDSOLVE (LINE 332)
• IN DSOLVE (LINE 193)
• Y =
• WARNING: THE RESULT CANNOT BE DISPLAYED DUE A PREVIOUSLY INTERRUPTED
COMPUTATION OR OUT
• OF MEMORY. RUN ′RESET(SYMENGINE)′ AND
• RERUN THE COMMANDS TO REGENERATE THE RESULT.
• > IN SYM/DISP (LINE 43)
• IN SYM/DISPLAY (LINE 39)
• >> SYMS T Y(T)
• >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′)
• Y =
• WARNING: THE RESULT CANNOT BE DISPLAYED DUE A PREVIOUSLY INTERRUPTED
COMPUTATION OR OUT
• MATLAB COMMAND WINDOW PAGE 2
• OF MEMORY. RUN ′RESET(SYMENGINE)′ AND
• RERUN THE COMMANDS TO REGENERATE THE RESULT.
• > IN SYM/DISP (LINE 43)
• IN SYM/DISPLAY (LINE 39)
• >>
• >>
Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′)
• Y =
• (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2
• >>
• >>
Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′)
• Y =
• (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2
• >> PLOT(T,Y)
• UNDEFINED FUNCTION OR VARIABLE ′T′.
• >> EZPLOT(Y,[0 8])
• >>
• >>
Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′)
• Y =
• (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2
• >> PLOT(T,Y)
• UNDEFINED FUNCTION OR VARIABLE ′T′.
• >> EZPLOT(Y,[0 8])
• >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==0′,′Y(0)==3′,′DY(0)==4′)
• Y =
• (13∗EXP(−T))/2 − (7∗EXP(−3∗T))/2
• >> EZPLOT(Y,[0 5])
• >>
• >>
Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′)
• Y =
• (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2
• >> PLOT(T,Y)
• UNDEFINED FUNCTION OR VARIABLE ′T′.
• >> EZPLOT(Y,[0 8])
• >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==0′,′Y(0)==3′,′DY(0)==4′)
• Y =
• (13∗EXP(−T))/2 − (7∗EXP(−3∗T))/2
• >> EZPLOT(Y,[0 5])
• >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′)
• Y =
• C9∗EXP(−T) − 3∗EXP(−2∗T) + C10∗EXP(−3∗T)
• >>
• %GUESS MY NUMBER
• FUNCTION GUESSMYNUMBER(X)
• IF X==2
• FPRINTF(′CONGRATS;YOU HAVE GUESSED MY NUMBERN′)
• END
• >> GUESSMYNUMBER(2)
• CONGRATS;YOU HAVE GUESSED MY NUMBER
• >> GUESSMYNUMBER(5)
• >>
• >> GUESSMYNUMBER(5)
• NOT RIGHT BUT IT WAS GOOD
• >> GUESSMYNUMBER(2)
• CONGRATS;YOU HAVE GUESSED MY NUMBER
• >>
• %GUESS MY NUMBER
• FUNCTION GUESSMYNUMBER(X)
• IF X==2
• FPRINTF(′CONGRATS;YOU HAVE GUESSED MY NUMBERN′)
• ELSE
• FPRINTF(′NOT RIGHT BUT IT WAS GOODN′)
• END
• % DAYS OF WEEK
• FUNCTION DAYSOFWEEK(X)
• IF X==1
• FPRINTF(′SUNDAYN′);
• ELSE IF X==2
• FPRINTF(′MONDAYN′);
• ELSE IF X==3
• FPRINTF(′TUESDAYN′);
• ELSE IF X==4
• FPRINTF(′WEDNSDAYN′);
• ELSE IF X==5
• FPRINTF(′THURSDAYN′);
• ELSE IF X==6
• FPRINTF(′FRIDAYN′);
• ELSE IF X==7
• FPRINTF(′SATURDAYN′)
• END
• END
• END
• END
• END
• END
• END
• END
• >> DAYSOFWEEK(6)
• FRIDAY
• >> DAYSOFWEEK(7)
• SATURDAY
• >> DAYSOFWEEK(5)
• THURSDAY
• >> DAYSOFWEEK(4)
• WEDNSDAY
• >> DAYSOFWEEK(3)
• TUESDAY
• >> DAYSOFWEEK(2)
• MONDAY
• >> DAYSOFWEEK(1)
• SUNDAY
• >>
• >> 351/7
• ANS =
• 50.1429
• >> FORMAT SHORT
• >> 351/7
• ANS =
• 50.1429
• >> FORMATLONG
• UNDEFINED FUNCTION OR VARIABLE ′FORMATLONG′.
• >> FORMAT LONG
• >> 351/7
• ANS =
• 50.142857142857146
• >> FORMAT SHORT E
• >> 351/7
• ANS =
• 5.0143E+01
• >> FORMAT SHORT G
• >> 351/7
• ANS =
• 50.143
• >> FORMAT LONG G
• >> 351/7
• ANS =
• 50.1428571428571
• >> FORMAT BANK
• >> 351/7
• ANS =
• 50.14
• MATLAB COMMAND WINDOW PAGE 2
• >>
• >> ABS(−13)
• ANS =
• 13.00
• >> ABS(1+1∗I)
• ANS =
• 1.41
• >> SQRT(81)
• ANS =
• 9.00
• >> ROUND(9.43)
• ANS =
• 9.00
• >> ROUND(9.65)
• ANS =
• 10.00
• >> FIX(9.32)
• ANS =
• 9.00
• >> FIX(−9.32)
• ANS =
• −9.00
• >> FLOOR(2.3)
• ANS =
• 2.00
• >> FLOOR(−2.3)
• ANS =
• MATLAB COMMAND WINDOW PAGE 2
• −3.00
• >> CEIL(2.3)
• ANS =
• 3.00
• >> CEIL(−2.3)
• ANS =
• −2.00
• >> SIGN(2)
• ANS =
• 1.00
• >> SIGN(−2)
• ANS =
• −1.00
• >> LOG(E)
• UNDEFINED FUNCTION OR VARIABLE ′E′.
• >> LO(EXP(1))
• UNDEFINED FUNCTION OR VARIABLE ′LO′.
• DID YOU MEAN:
• >> LOG(EXP(1))
• ANS =
• 1.00
• >> LOG10(2)
• ANS =
• 0.30
• >> FORMAT LONG
• >>
• >> LOG10(2)
• ANS =
• MATLAB COMMAND WINDOW PAGE 3
• 0.301029995663981
• >> LOG2(4)
• ANS =
• 2
• >> SIN(PI/6)
• ANS =
• 0.500000000000000
• >> SIND(30)
• ANS =
• 0.500000000000000
• >> TAND(45)
• ANS =
• 1
• >> TAN(PI/4)
• ANS =
• 1.000000000000000
• >> ASIN(.5)
• ANS =
• 0.523598775598299
• >> ASIND(.5)
• ANS =
• 30.000000000000004
• >> ACOS(.5)
• ANS =
• 1.047197551196598
• MATLAB COMMAND WINDOW PAGE 4
• >> ACOSD(.5)
• ANS =
• 60.000000000000007
• >> COSH(0)
• ANS =
• 1
• >> CONJ(1+I∗1)
• ANS =
• 1.000000000000000 − 1.000000000000000I
• >> ANGLE(1+I∗1)
• ANS =
• 0.785398163397448
• >> ANGLED(1+I∗1)
• UNDEFINED FUNCTION OR VARIABLE ′ANGLED′.
• DID YOU MEAN:
• >> ANGLE(1+I∗1)
• ANS =
• 0.785398163397448
• >> ABS(1+I∗1)
• ANS =
• 1.414213562373095
• >> IMAG(1+I∗1)
• ANS =
• 1
• >> REAL(1+I∗1)
• ANS =
• 1
• MATLAB COMMAND WINDOW PAGE 5
• >> COMPLX(6,8)
• UNDEFINED FUNCTION OR VARIABLE ′COMPLX′.
• DID YOU MEAN:
• >> COMPLEX(6,8)
• ANS =
• 6.000000000000000 + 8.000000000000000I
• >> X=LINSPAC(1,2,10)
• UNDEFINED FUNCTION OR VARIABLE ′LINSPAC′.
• DID YOU MEAN:
• >> X=LINSPACE(1,2,10)
• X =
• COLUMNS 1 THROUGH 6
• 1.000000000000000 1.111111111111111 1.222222222222222
1.333333333333333
• 1.444444444444444 1.555555555555556
• COLUMNS 7 THROUGH 10
• 1.666666666666667 1.777777777777778 1.888888888888889
2.000000000000000
• >>
• >> LINSPACE(0,2,10)
• ANS =
• 0 0.2222 0.4444 0.6667 0.8889 1.1111 1.3333 1.5556
• 1.7778 2.0000
• >> LINSPACE(0,2,11)
• ANS =
• 0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000
• 1.6000 1.8000 2.0000
• >> LOGSPACE(0,2,3)
• ANS =
• 1 10 100
• >>
• >> ONES(3)
• ANS =
• 1 1 1
• 1 1 1
• 1 1 1
• >> ONES(2,3)
• ANS =
• 1 1 1
• 1 1 1
• >> ZEROS(3)
• ANS =
• 0 0 0
• 0 0 0
• 0 0 0
• >> ZEROS(2,3)
• ANS =
• 0 0 0
• 0 0 0
• >> EYES(3)
• UNDEFINED FUNCTION OR VARIABLE ′EYES′.
• DID YOU MEAN:
• >> EYE(3)
• ANS =
• 1 0 0
• 0 1 0
• 0 0 1
• >> EYE(6,10)
• ANS =
• 1 0 0 0 0 0 0 0 0 0
• 0 1 0 0 0 0 0 0 0 0
• 0 0 1 0 0 0 0 0 0 0
• 0 0 0 1 0 0 0 0 0 0
• 0 0 0 0 1 0 0 0 0 0
• MATLAB COMMAND WINDOW PAGE 2
• 0 0 0 0 0 1 0 0 0 0
• >> RANDPERM(10)
• ANS =
• 6 3 7 8 5 1 2 4 9 10
• >> RANDPERM(10)
• ANS =
• 6 1 7 4 9 5 8 3 10 2
• >> RANDPERM(10)
• ANS =
• 2 10 8 9 1 5 7 6 3 4
• >> MAGIC(3)
• ANS =
• 8 1 6
• 3 5 7
• 4 9 2
• >> MAGIC(3)
• ANS =
• 8 1 6
• 3 5 7
• 4 9 2
• >> MAGIC(4)
• ANS =
• 16 2 3 13
• 5 11 10 8
• 9 7 6 12
• 4 14 15 1
• >> MAGIC(5)
• ANS =
• 17 24 1 8 15
• 23 5 7 14 16
• MATLAB COMMAND WINDOW PAGE 3
• 4 6 13 20 22
• 10 12 19 21 3
• 11 18 25 2 9
• >> MAGIC(6)
• ANS =
• 35 1 6 26 19 24
• 3 32 7 21 23 25
• 31 9 2 22 27 20
• 8 28 33 17 10 15
• 30 5 34 12 14 16
• 4 36 29 13 18 11
• >> X=[1 2 3;4 5 6]
• X =
• 1 2 3
• 4 5 6
• >> RESHAPE(X,2,3)
• ANS =
• 1 2 3
• 4 5 6
• >> RESHAPE(X,3,2)
• ANS =
• 1 5
• 4 3
• 2 6
• >> V=[1 2 3]
• V =
• 1 2 3
• >> DIAG(V)
• ANS =
• 1 0 0
• 0 2 0
• 0 0 3
• MATLAB COMMAND WINDOW PAGE 4
• >> A=[1 2 3;4 5 6;7 8 9]
• A =
• 1 2 3
• 4 5 6
• 7 8 9
• >> DIAG(A)
• ANS =
• 1
• 5
• 9
• >> EIG(A)
• ANS =
• 16.1168
• −1.1168
• −0.0000
• >> DET(A)
• ANS =
• 6.6613E−16
• >> [L,U]=LU(A)
• L =
• 0.1429 1.0000 0
• 0.5714 0.5000 1.0000
• 1.0000 0 0
• U =
• 7.0000 8.0000 9.0000
• 0 0.857 1.7143
• 0 0 0.0000
• >> MAX(A)
• ANS =
• 7 8 9
• MATLAB COMMAND WINDOW PAGE 5
• >> MEAN(A)
• ANS =
• 4 5 6
• >> SUM(A)
• ANS =
• 12 15 18
• >> SORT(A)
• ANS =
• 1 2 3
• 4 5 6
• 7 8 9
• >> E=[1 2 3];
• >> R=[4 5 6];
• >> DOT(E,R)
• ANS =
• 32
• >> CROSS(E,R)
• ANS =
• −3 6 −3
• >> CROSS(R,E)
• ANS =
• 3 −6 3
• >>
• >> A=[1 4 5;7 8 9;2 7 9]
• A =
• 1 4 5
• 7 8 9
• 2 7 9
• >> INV(A)
• ANS =
• −1.5000 0.1667 0.6667
• 7.5000 0.1667 −4.3333
• −5.5000 −0.1667 3.3333
• >>
• %DIAGNAL MATRIX
• FUNCTION DIAGNALMATRIX(N)
• FOR I=1:N
• FOR J=1:N
• IF I==J
• A(I,J)=1
• ELSE
• A(I,J)=0
• END
• END
• END
• >> DIAGNALMATRIX(5)
• >> DIAGNALMATRIX(5)
• >> DIAGNALMATRIX(5)
• A =
• 1
• A =
• 1 0
• A =
• 1 0 0
• A =
• 1 0 0 0
• A =
• 1 0 0 0 0
• A =
• 1 0 0 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• MATLAB COMMAND WINDOW PAGE 2
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 0 0
• MATLAB COMMAND WINDOW PAGE 3
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• 0 0 0 0 0
• A =
• MATLAB COMMAND WINDOW PAGE 4
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 1 0 0 0
• 0 0 1 0 0
• 0 0 0 1 0
• 0 0 0 0 1
• >>
• %ADDVANCED DIAGNAL MATRIX
• FUNCTION DIAGMATRIX(N)
• FOR I=1:N
• FOR J=1:N
• IF I==J
• A(I,J)=I
• ELSE
• A(I,J)=0
• END
• END
• END
• END
• >> DIAGMATRIX(5)
• A =
• 1
• A =
• 1 0
• A =
• 1 0 0
• A =
• 1 0 0 0
• A =
• 1 0 0 0 0
• A =
• 1 0 0 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• MATLAB COMMAND WINDOW PAGE 2
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 0 0
• A =
• MATLAB COMMAND WINDOW PAGE 3
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• MATLAB COMMAND WINDOW PAGE 4
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 0
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 0
• >>
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 5
• %ADDVANCED DIAGNAL MATRIX
• FUNCTION DIAGMATRIX(N)
• FOR I=1:N
• FOR J=1:N
• IF I==J
• A(I,J)=I;
• ELSE
• A(I,J)=0;
• END
• END
• END
• A
• END
• >> DIAGMATRIX(5)
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 5
• >>
• %ADDVANCED DIAGNAL MATRIX
• FUNCTION DIAGMATRIX(N)
• FOR I=1:N
• FOR J=1:N
• IF I==J
• A(I,J)=I;
• ELSE
• A(I,J)=0;
• END
• END
• END
• DISPLAY(A)
• END
• >> DIAGMATRIX(5)
• A =
• 1 0 0 0 0
• 0 2 0 0 0
• 0 0 3 0 0
• 0 0 0 4 0
• 0 0 0 0 5
• >>
• % FUNCTION VECTOR CROSS
• FUNCTION VECTORCROSS(A,B)
• C(1,1)=DET([A(2,1),B(2,1);A(3,1),B(3,1)]);
• C(2,1)=−1∗DET([A(1,1),B(1,1);A(3,1),B(3,1)]);
• C(3,1)=DET([A(1,1),B(1,1);A(2,1),B(2,1)]);
• DISPLAY(C)
• END
• >> A=[1;2;3];
• >> B=[4;5;6];
• >> VECTOORCROS(A,B)
• UNDEFINED FUNCTION OR VARIABLE ′VECTOORCROS′.
• >> VECTOORCROSS(A,B)
• UNDEFINED FUNCTION OR VARIABLE ′VECTOORCROSS′.
• DID YOU MEAN:
• >> VECTORCROSS(A,B)
• C =
• −3
• 6
• −3
• >>
• % SYMETRIC FUNCTION
• FUNCTION SYMETRICMATRIX(N,M)
• IF M==N
• FPRINTF(′YOUR MATRIX IS SYMETRETIC′);
• ELSE
• FPRINTF(′YOUR MATRIX IS NOT SYMETRIC′);
• END
• FOR I=1:N
• FOR J=M:−1:1
• A(I,J)=I^2+J^2;
• END
• END
• DISPLAY(A)
• END
• >> SYMETRICMATRIX(5,5)
• YOUR MATRIX IS SYMETRETIC
• A =
• 2 5 10 17 26
• 5 8 13 20 29
• 10 13 18 25 34
• 17 20 25 32 41
• 26 29 34 41 50
• >> SYMETRICMATRIX(5,6)
• YOUR MATRIX IS NOT SYMETRIC
• A =
• 2 5 10 17 26 37
• 5 8 13 20 29 40
• 10 13 18 25 34 45
• 17 20 25 32 41 52
• 26 29 34 41 50 61
• >>
• % SYMETRIC FUNCTION
• FUNCTION SYMETRICMATRIX(N,M)
• IF M==N
• FPRINTF(′YOUR MATRIX IS SYMETRETIC′);
• ELSE
• FPRINTF(′YOUR MATRIX IS NOT SYMETRIC′);
• END
• FOR I=1:N
• FOR J=1:M
• A(I,J)=I^2+J^2;
• END
• END
• DISPLAY(A)
• END
• % QUADRITIC EQUATION
• FUNCTION QUADRITICEQUATION
• A=INPUT(′ENTER A(A∗X∗X+B∗X+C):′);
• B=INPUT(′ENTER B(A∗X∗X+B∗X+C):′);
• C=INPUT(′ENTER C(A∗X∗X+B∗X+C):′);
• IF A==0 && B~=0
• X=−C/B;
• DISPLAY(X);
• ELSE
• DELTA=B∗B−4∗A∗C;
• X1=(−B+SQRT(DELTA))/(2∗A);
• X2=(−B−SQRT(DELTA))/(2∗A);
• END
• DISPLAY(X1);
• DISPLAY(X2);
• END
• >> QUADRITICEQUATION
• ENTER A(A∗X∗X+B∗X+C):1
• ENTER B(A∗X∗X+B∗X+C):2
• ENTER C(A∗X∗X+B∗X+C):4
• X1 =
• −1.0000 + 1.7321I
• X2 =
• −1.0000 − 1.7321I
• >> QUADRITICEQUATION
• ENTER A(A∗X∗X+B∗X+C):1
• ENTER B(A∗X∗X+B∗X+C):2
• ENTER C(A∗X∗X+B∗X+C):1
• X1 =
• −1
• X2 =
• −1
• >>
• >> PHI=LINSPACE(0,1,30);
• >> THETA=LINSPACE(0,2∗PI,30);
• >> [PHI,THETA]=MESHGRID(PHI,THETA);
• >> X=R.∗COS(THETA);
• UNDEFINED FUNCTION OR VARIABLE ′R′.
• >> X=PH.∗COS(THETA);
• UNDEFINED FUNCTION OR VARIABLE ′PH′.
• DID YOU MEAN:
• >> X=PHI.∗COS(THETA);
• >> Y=PHI.∗SIN(THETA);
• >> Z=PHI;
• >> MESH(X,Y,Z)
• >>
• >> PHI=LINSPACE(0,1,30);
• THETA=LINSPACE(0,2∗PI,30);
• [PHI,THETA]=MESHGRID(PHI,THETA);
• X=PHI.∗COS(THETA);
• Y=PHI.∗SIN(THETA);
• Z=PHI;
• MESH(X,Y,Z)
• >> XLABEL(′X′;)
• XLABEL(′X′;)
• |
• ERROR: UNBALANCED OR UNEXPECTED PARENTHESIS OR BRACKET.
• >> XLABEL(′X′);
• >> YLABEL(′Y′);
• >> ZLABEL(′Z′);
• >>
• >>
• >> THETA=LINSPACE(0,PI,30);
• >> ALPHA=LINSPACE(0,2∗PI,30);
• >> [THETA,ALPHA]=MESHGRID(THETA,ALPHA);
• >> X=SIN(THETA).∗COS(ALPHA);
• >> Y=SIN(THETA).∗SIN(ALPHA);
• >> Z=COS(THETA);
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(0,6∗PI,60);
• >> V=LINSPACE(0,2∗PI,60);
• >> [U,V]=MEASHGRID(U,V);
• UNDEFINED FUNCTION OR VARIABLE ′MEASHGRID′.
• DID YOU MEAN:
• >> [U,V]=MESHGRID(U,V);
• >> X=2∗(1−EXP(U/(6∗PI))).∗COS(U).∗COS(V/2).^2;
• >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2;
• Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2;
• |
• ERROR: UNEXPECTED MATLAB EXPRESSION.
• >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).^2;
• >> Z=1−EXP(U/(3∗PHI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V);
• UNDEFINED FUNCTION OR VARIABLE ′PHI′.
• >> Z=1−EXP(U/(3∗PI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V);
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(0,6∗PI,60);
• >> V=LINSPACE(0,2∗PI,60);
• >> [U,V]=MEASHGRID(U,V);
• UNDEFINED FUNCTION OR VARIABLE ′MEASHGRID′.
• DID YOU MEAN:
• >> [U,V]=MESHGRID(U,V);
• >> X=2∗(1−EXP(U/(6∗PI))).∗COS(U).∗COS(V/2).^2;
• >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2;
• Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2;
• |
• ERROR: UNEXPECTED MATLAB EXPRESSION.
• >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).^2;
• >> Z=1−EXP(U/(3∗PHI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V);
• UNDEFINED FUNCTION OR VARIABLE ′PHI′.
• >> Z=1−EXP(U/(3∗PI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V);
• >> MESH(X,Y,Z)
• >> VIEW(10,50)
• >>
• >> U=LINSPACE(0,6∗PI,60);
• >> V=LINSPACE(0,2∗PI,60);
• >> [U,V]=MEASHGRID(U,V);
• UNDEFINED FUNCTION OR VARIABLE ′MEASHGRID′.
• DID YOU MEAN:
• >> [U,V]=MESHGRID(U,V);
• >> X=2∗(1−EXP(U/(6∗PI))).∗COS(U).∗COS(V/2).^2;
• >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2;
• Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2;
• |
• ERROR: UNEXPECTED MATLAB EXPRESSION.
• >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).^2;
• >> Z=1−EXP(U/(3∗PHI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V);
• UNDEFINED FUNCTION OR VARIABLE ′PHI′.
• >> Z=1−EXP(U/(3∗PI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V);
• >> MESH(X,Y,Z)
• >> VIEW(10,50)
• >> VIEW(50,10)
• >> VIEW(50,70)
• >> VIEW(100,10)
• >>
• >> U=LINSPACE(0,2∗PI,30);
• >> V=LINSPACE(−1,1,15);
• >> [U,V]=MESHGRID(U,V);
• >> X=V/2.∗SIN(U/2);
• >> Y=(1+COS(U/2)).∗COS(U);
• >> Y=(1+COS(U/2)).∗SIN(U);
• >> Z=(1+COS(U/2)).∗COS(U);
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(0,2∗PI,30);
• >> V=LINSPACE(−1,1,15);
• >> [U,V]=MESHGRID(U,V);
• >> X=V/2.∗SIN(U/2);
• >> Y=(1+COS(U/2)).∗COS(U);
• >> Y=(1+COS(U/2)).∗SIN(U);
• >> Z=(1+COS(U/2)).∗COS(U);
• >> MESH(X,Y,Z)
• >> VIEW(100,5)
• >>
• >> U=LINSPACE(0,2∗PI,60);
• >> V=LINSPACE(0,2∗PI,60);
• >> [U,V]=MESHGRID(U,V);
• >> X=(1+COS(U/2)).∗SIN(V)−SIN(U/2).∗SIN(2∗V).COS(U);
• UNDEFINED VARIABLE "SIN" OR CLASS "SIN".
• >> X=(1+COS(U/2)).∗SIN(V)−SIN(U/2).∗SIN(2∗V).∗COS(U);
• >> Y=(1+COS(U/2)).∗SIN(V)−SIN(U/2).∗SIN(2∗V).∗SIN(U);
• >> Z=SIN(U/2);
• >> MESH(X,Y,Z)
• >>
• >> V=U=LINSPACE(−1.5,1.5,40);
• V=U=LINSPACE(−1.5,1.5,40);
• |
• ERROR: THE EXPRESSION TO THE LEFT OF THE EQUALS SIGN IS NOT A
• VALID TARGET FOR AN ASSIGNMENT.
• DID YOU MEAN:
• >> U = LINSPACE(−1.5,1.5,40); V = U;
• >> [U,V]=MESHGRID(U,V);
• >> X=U−U.^3/3+U.∗V.^3;
• >> Y=V−V.^3/3+V.∗U.^3;
• >> U.^2−V.^2;
• >> Z=U.^2−V.^2;
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(−2,2,40);
• >> V=LINSPACE(0,2∗PI,40);
• >> [U,V]=MESHGRID(U,V);
• >> X=COSH(U).∗COS(V);
• >> Y=COSH(U).∗SIN(V);
• >> Z=SINH(U);
• >> MESH(X,Y,Z);
• >>
• >> U=LINSPACE(−2,2,40);
• >> V=LINSPACE(0,2−PI,40);
• >> [U,V]=MESHGRID(U,V);
• >> X=SINH(U).∗COSH(V);
• >> Y=SINH(U).∗SIN(V);
• >> Z=COSH(U);
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(−2,2,40);
• V=LINSPACE(0,2−PI,40);
• [U,V]=MESHGRID(U,V);
• X=SINH(U).∗COSH(V);
• Y=SINH(U).∗SIN(V);
• Z=COSH(U);
• MESH(X,Y,Z)
• >> U=LINSPACE(−2,2,40);
• >> V=LINSPACE(0,2−PI);
• >> [U,V]=MESHGRID(U,V);
• >> X=SINH(U).∗COSH(V);
• >> Y=SINH(U).∗SIN(V);
• >> Z=COSH(U);
• >> MESH(X,Y,Z)
• >> U=LINSPACE(−2,2,40);
• >> V=LINSPACE(0,2∗PI);
• >> [U,V]=MESHGRID(U,V);
• >> X=SINH(U).∗COSH(V);
• >> Y=SINH(U).∗SIN(V);
• >> Z=COSH(U);
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(−1,1,40);
• >> V=U;
• >> [U,V]=MESHGRID(U,V);
• >> X=U.∗V;
• >> Y=U;
• >> Z=V.^2;
• >> MESH(X,Y,Z)
• >>
• >> U=LINSPACE(−2,2,40);
• >> V=LINSPACE(−2,2,40);
• >> [U,V]=MESHGRID(U,V);
• >> X=V.∗COS(U);
• >> Y=V.∗SIN(U);
• >> Z=U;
• >> MESH(X,Y,Z)
• >>
• >> T=LINSPACE(0,2,200);
• >> X=T;Y=T.^2;Z=T.^3;
• >> PLOT3(X,Y,Z)
• >> GRID
• >>
• >> T=LINSPACE(0,2,100);
• >> [X,Y]=MESHGRID(T);
• >> Z=−7./(1+X.^2+Y.^2);
• >> MESH(X,Y,Z)
• >> VIEW(160,30)
• >>
• >> SYMS X;
• >> S1=EXP(X^8);
• >> DIFF(S1)
• ANS =
• 8∗X^7∗EXP(X^8)
• >> S2=3∗X^3∗EXP(X^5);
• >> DIFF(S2)
• ANS =
• 9∗X^2∗EXP(X^5) + 15∗X^7∗EXP(X^5)
• >>
• >> SYMS X
• >> S1=ABS(X);
• >> INT(S1,.2,.7)
• ANS =
• 9/40
• >> S2=COS(X)+7∗X^2;
• >> INT(S2,.2,PI)
• ANS =
• (7∗PI^3)/3 − SIN(1/5) − 7/375
• >> S3=SQRT(X);
• >> INT(S3)
• ANS =
• (2∗X^(3/2))/3
• >>
• >> DSOLVE(′DY=5∗T−6∗Y′)
• ANS =
• (5∗T)/6 + (C6∗EXP(−6∗T))/36 − 5/36
• >> DSOLVE(′D2Y+3∗DY=0′)
• ANS =
• C8 + C9∗EXP(−3∗T)
• >> DSOLVE(′D2Y+3∗DY+Y=0′)
• ANS =
• C11∗EXP(T∗(5^(1/2)/2 − 3/2)) + C12∗EXP(−T∗(5^(1/2)/2 + 3/2))
• >> DSOLVE(′DY=−7∗X^2′,′Y(1)=.7′)
• ANS =
• 7∗X^2 − 7∗T∗X^2 + 7/10
• >>
• >> SYMS X Y
• >> INT(INT(X^2+Y^2,Y,0,SIN(X)),0,PI)
• ANS =
• PI^2 − 32/9
• >>
• >> %%%1/(S^4+5S^3+7S^2)
• >>
• >> B=[0 0 0 0 1];
• >> A=[1 5 7 0 0];
• >> [R,P,K]=RESIDUE(B,A)
• R =
• 0.0510 − 0.0648I
• 0.0510 + 0.0648I
• −0.1020 + 0.0000I
• 0.1429 + 0.0000I
• P =
• −2.5000 + 0.8660I
• −2.5000 − 0.8660I
• 0.0000 + 0.0000I
• 0.0000 + 0.0000I
• K =
• []
• >>
• >> SYMS S
• >> F=1/(S^4+5S^3+7S^2);
• F=1/(S^4+5S^3+7S^2);
• |
• ERROR: UNEXPECTED MATLAB EXPRESSION.
• >> F=1/(S^4+5∗S^3+7∗S^2);
• >> ILAPLACE(F)
• ANS =
• T/7 + (5∗EXP(−(5∗T)/2)∗(COS((3^(1/2)∗T)/2) +
(11∗3^(1/2)∗SIN((3^(1/2)∗T)/2))/15))/49 −
• 5/49
• >>
• >>
%(5∗S^2+3∗S^+6)/(S^4+3∗S^3+7∗S^2+9∗S+12)
• >> B=[5 3 6];
• >> A=[1 3 7 9 12];
• >> [R,P,K]=RESIDUE(B,A)
• R =
• −0.5357 − 1.0394I
• −0.5357 + 1.0394I
• 0.5357 − 0.1856I
• 0.5357 + 0.1856I
• P =
• −1.5000 + 1.3229I
• −1.5000 − 1.3229I
• 0.0000 + 1.7321I
• 0.0000 − 1.7321I
• K =
• []
• >> F=TF(B,A);
• >> ILAPLACE(F)
• UNDEFINED FUNCTION ′ILAPLACE′ FOR INPUT
• ARGUMENTS OF TYPE ′TF′.
• >>
ILAPLACE((5∗S^2+3∗S^+6)/(S^4+3∗S^3+7∗S^2+9∗S+12))
• ANS =
• (72∗COS(3^(1/2)∗T))/7 + 6∗DIRAC(T) −
(8∗3^(1/2)∗SIN(3^(1/2)∗T))/7 − 9∗DIRAC(1, T) +
• 3∗DIRAC(2, T) +
(54∗EXP(−(3∗T)/2)∗(COS((7^(1/2)∗T)/2) −
(31∗7^(1/2)∗SIN((7^(1/2)∗T)/2))
• /27))/7
• >>
• >> SYMS X
• >> LIMIT(SIN(X),X,0)
• ANS =
• 0
• >> LIMIT(ABS(X)/X,X,0,′LEFT′)
• ANS =
• −1
• >> LIMIT((1−COS(X))/X^2,X,0)
• ANS =
• 1/2
• >>
• >> SYMS X Y Z
• >> JACOBIAN([SIN(X∗Y) COS(Y∗Z) EXP(X∗Y∗Z)],[X,Y,Z]);
• >> JACOBIAN([SIN(X∗Y) COS(Y∗Z) EXP(X∗Y∗Z)],[X,Y,Z])
• ANS =
• [ Y∗COS(X∗Y), X∗COS(X∗Y) , 0]
• [ 0, −Z∗SIN(Y∗Z), −Y∗SIN(Y∗Z)]
• [ Y∗Z∗EXP(X∗Y∗Z), X∗Z∗EXP(X∗Y∗Z), X∗Y∗EXP(X∗Y∗Z)]
• >>
• >> N=100;
• LINSPACE(−3,3,N);
• X=LINSPACE(−3,3,N);
• Y=LINSPACE(−3,3,N);
• Z=LINSPACE(−3,3,N);
• [X,Y,Z]=NDGRID(X,Y,Z);
• F=((−(X.^2).∗(Z.^3)−(9/80).∗(Y.^2).∗(Z.^3))+((X.^2)+(9/4).∗(Y.^2)+(Z.^2)−1).^3);
• >> ISOSURFACE(F,0)
• >> LIGHTING PHONG
• >> CAXIS
• ANS =
• −1 1
• >> AXIS EQUAL
• >> COLORMAP(′FLAG′);
• >> VIEW([55 10]);
• >>
• >> X=−2.9:.2:2.9;
• >> Y=EXP(−X.∗X);
• >> BAR(X,Y)
• >>
• >> X=0:.25:10;
• >> Y=SIN(X);
• >> STAIRS(X,Y)
• >>
• >> X=−2:.1:2;
• >> Y=ERF(X);
• >> EB=RAND(SIZE(X))7;
• EB=RAND(SIZE(X))7;
• |
• ERROR: UNEXPECTED MATLAB EXPRESSION.
• DID YOU MEAN:
• >> EB = RAND(SIZE(X))∗7;
• >> ERRORBAR(X,Y,EB)
• >>
• >> THETA=0:.1:2∗PI;
• >> RHO=ABS(SIN(2∗THETA).∗COS(2∗THETA));
• >> POLARPLOT(THETA,RHO)
• UNDEFINED FUNCTION OR VARIABLE ′POLARPLOT′.
• >> POLAR(THETA,RHO)
• >>
• >> THETA=0:.1:2∗PI;
• >> RHO=ABS(SIN(2∗THETA).∗COS(2∗THETA));
• >> POLARPLOT(THETA,RHO)
• UNDEFINED FUNCTION OR VARIABLE ′POLARPLOT′.
• >> POLAR(THETA,RHO)
• >> POLT(THETA,RHO)
• UNDEFINED FUNCTION OR VARIABLE ′POLT′.
• DID YOU MEAN:
• >> PLOT(THETA,RHO)
• >>
• >> X=0:.1:4;
• >> Y=SIN(X.^2).∗EXP(−X);
• >> STEM(X,Y)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >> COLORMAP(SPRING)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >> COLORMAP(SPRING)
• >> COLORMAP(SUMMER)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >> COLORMAP(SPRING)
• >> COLORMAP(SUMMER)
• >> COLORMAP(AUTUMN)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >> COLORMAP(SPRING)
• >> COLORMAP(SUMMER)
• >> COLORMAP(AUTUMN)
• >> COLORMAP(WINTER)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >> COLORMAP(SPRING)
• >> COLORMAP(SUMMER)
• >> COLORMAP(AUTUMN)
• >> COLORMAP(WINTER)
• >> COLORMAP(GRAY)
• >>
• >> Z=PEAKS(25);
• >> FIGURE
• >> MESH(Z)
• >> Z=PEAKS(100);
• >> MESH(Z)
• >> COLORMAP(JET)
• >> COLORMAP(PARULA)
• >> COLORMAP(HSV)
• >> COLORMAP(HOT)
• >> COLORMAP(COOL)
• >> COLORMAP(SPRING)
• >> COLORMAP(SUMMER)
• >> COLORMAP(AUTUMN)
• >> COLORMAP(WINTER)
• >> COLORMAP(GRAY)
• >> SHADING INTERP
• >>
• >> CONTOUR(Z,16)
• >> COLORMAP(JET)
• >>
• >> X=−2:.2:2;
• >> Y=−1:.2:1;
• >> [XX,YY]=MESHGRID(X,Y);
• >> ZZ=XX.∗EXP(−XX.^2−YY.^2);
• >> [PX,PY]=GRADIANT(ZZ,.2,.2);
• UNDEFINED FUNCTION OR VARIABLE ′GRADIANT′.
• DID YOU MEAN:
• >> [PX,PY]=GRADIENT(ZZ,.2,.2);
• >> QUIVER(X,Y,PX,PY)
• >>
• >> X=−2:.2:2;
• >> Y=−1:.2:1;
• >> [XX,YY]=MESHGRID(X,Y);
• >> ZZ=XX.∗EXP(−XX.^2−YY.^2);
• >> [PX,PY]=GRADIANT(ZZ,.2,.2);
• UNDEFINED FUNCTION OR VARIABLE ′GRADIANT′.
• DID YOU MEAN:
• >> [PX,PY]=GRADIENT(ZZ,.2,.2);
• >> QUIVER(X,Y,PX,PY)
• >> XLIM([−2.5 2.5])
• >>
• >> X=−2:.2:2;
• >> Y=−2:.25:2;
• >> Z=−2:.16:2;
• >> [X,Y,Z]=MESHGRID(X,Y,Z);
• >> V=X.∗EXP(−X.^2−Y.^2−Z.^2);
• >> XSLICE=[−1.2,.8,2];
• >> YSLICE=2;
• >> ZSLICE=[−2,0];
• >> SLICE(X,Y,Z,V,XSLICE,YSLICE,ZSLICE)
• >>
• TYPE EQUATION HERE.
• TYPE EQUATION HERE. • TYPE EQUATION HERE.

Matlab teaching

  • 1.
    IN THE NAMEOF GOD THE MOST COMPASSIONATE AND THE MOST MERCIFUL MATLAB TUTORIAL FOR BEGINNERS HOSSEIN GHOLIZADEH BACHELOR STUDENT OF SBU-TEHRAN-ISLAMIC REPUBLIC OF IRAN ELECTRICAL ENGINEERING-POWER ENGINEERING(POWER ELECTRONICS)
  • 2.
    • MATLAB COMMANDWINDOW PAGE 1 • >> %MATLAB AS A CALCULATOR • >> • >> SPEED_KPS=300000 • SPEED_KPS = • 300000 • >> YEAR_SEC=365*24*60*60 • YEAR_SEC = • 31536000 • >> LIGHT_YEAR_KM=SPEED_KPS*YEAR_SEC • LIGHT_YEAR_KM = • 9.4608E+12 • >> 9.4608*1000000000000 • ANS = • 9.4608E+12 • >> SUN_TO_EARTH_KM=150E6 • SUN_TO_EARTH_KM = • 150000000 • >> EARTH_TO_SUN_SEC=SUN_TO_EARTH_KM/SPEED_KPS • EARTH_TO_SUN_SEC = • 500 • >> EARTH_TO_SUN_MIN=EARTH_TO_SUN_SEC/60 • EARTH_TO_SUN_MIN = • 8.3333 • >>
  • 3.
    • >> X=42;Y=82; •>> X=42,Y=82; • X = • 42 • >> A_REALLY_LONG_VARIABLE_NAME=7; • >> AN_OTHER_LONG_VARIABLE_NAME=10; • >> AN_EXTREMLY_REALLY_LONG_VARIABLE_NAME= A_REALLY_LONG_VARIABLE_NAME+... • AN_OTHER_LONG_VARIABLE_NAME • AN_EXTREMLY_REALLY_LONG_VARIABLE_NAME = • 17 • >> X=Y • X = • 82 • >> Y=X • Y = • 82 • >> X=42 • X = • 42 • >> A=X • A = • 42 • >> X=Y • X = • 82 • >> Y=A • Y = • 42 • MATLAB COMMAND WINDOW PAGE 2 • >>
  • 4.
    • >> HELPFORMAT • FORMAT SET OUTPUT FORMAT. • FORMAT WITH NO INPUTS SETS THE OUTPUT FORMAT TO THE DEFAULT APPROPRIATE • FOR THE CLASS OF THE VARIABLE. FOR FLOAT VARIABLES, THE DEFAULT IS • FORMAT SHORT. • FORMAT DOES NOT AFFECT HOW MATLAB COMPUTATIONS ARE DONE. COMPUTATIONS • ON FLOAT VARIABLES, NAMELY SINGLE OR DOUBLE, ARE DONE IN APPROPRIATE • FLOATING POINT PRECISION, NO MATTER HOW THOSE VARIABLES ARE DISPLAYED. • COMPUTATIONS ON INTEGER VARIABLES ARE DONE NATIVELY IN INTEGER. INTEGER • VARIABLES ARE ALWAYS DISPLAYED TO THE APPROPRIATE NUMBER OF DIGITS FOR • THE CLASS, FOR EXAMPLE, 3 DIGITS TO DISPLAY THE INT8 RANGE −128:127. • FORMAT SHORT AND LONG DO NOT AFFECT THE DISPLAY OF INTEGER VARIABLES. • FORMAT MAY BE USED TO SWITCH BETWEEN DIFFERENT OUTPUT DISPLAY FORMATS • OF ALL FLOAT VARIABLES AS FOLLOWS: • FORMAT SHORT SCALED FIXED POINT FORMAT WITH 5 DIGITS. • FORMAT LONG SCALED FIXED POINT FORMAT WITH 15 DIGITS FOR DOUBLE • AND 7 DIGITS FOR SINGLE. • FORMAT SHORTE FLOATING POINT FORMAT WITH 5 DIGITS. • FORMAT LONGE FLOATING POINT FORMAT WITH 15 DIGITS FOR DOUBLE AND • 7 DIGITS FOR SINGLE. • FORMAT SHORTG BEST OF FIXED OR FLOATING POINT FORMAT WITH 5 • DIGITS. • FORMAT LONGG BEST OF FIXED OR FLOATING POINT FORMAT WITH 15 • DIGITS FOR DOUBLE AND 7 DIGITS FOR SINGLE. • FORMAT SHORTENG ENGINEERING FORMAT THAT HAS AT LEAST 5 DIGITS • AND A POWER THAT IS A MULTIPLE OF THREE • FORMAT LONGENG ENGINEERING FORMAT THAT HAS EXACTLY 16 SIGNIFICANT • DIGITS AND A POWER THAT IS A MULTIPLE OF THREE. • FORMAT MAY BE USED TO SWITCH BETWEEN DIFFERENT OUTPUT DISPLAY FORMATS • OF ALL NUMERIC VARIABLES AS FOLLOWS: • FORMAT HEX HEXADECIMAL FORMAT.
  • 5.
    • FORMAT +THE SYMBOLS +, − AND BLANK ARE PRINTED • FOR POSITIVE, NEGATIVE AND ZERO ELEMENTS. • IMAGINARY PARTS ARE IGNORED. • FORMAT BANK FIXED FORMAT FOR DOLLARS AND CENTS. • FORMAT RAT APPROXIMATION BY RATIO OF SMALL INTEGERS. NUMBERS • WITH A LARGE NUMERATOR OR LARGE DENOMINATOR ARE • REPLACED BY ∗. • FORMAT MAY BE USED TO AFFECT THE SPACING IN THE DISPLAY OF ALL • VARIABLES AS FOLLOWS: • FORMAT COMPACT SUPPRESSES EXTRA LINE−FEEDS. • FORMAT LOOSE PUTS THE EXTRA LINE−FEEDS BACK IN. • EXAMPLE: • FORMAT SHORT, PI, SINGLE(PI) • DISPLAYS BOTH DOUBLE AND SINGLE PI WITH 5 DIGITS AS 3.1416 WHILE • FORMAT LONG, PI, SINGLE(PI) • MATLAB COMMAND WINDOW PAGE 2 • DISPLAYS PI AS 3.141592653589793 AND SINGLE(PI) AS 3.1415927. • FORMAT, INTMAX(′UINT64′), REALMAX • SHOWS THESE VALUES AS 18446744073709551615 AND 1.7977E+308 WHILE • FORMAT HEX, INTMAX(′UINT64′), REALMAX • SHOWS THEM AS FFFFFFFFFFFFFFFF AND 7FEFFFFFFFFFFFFF RESPECTIVELY. • THE HEX DISPLAY CORRESPONDS TO THE INTERNAL REPRESENTATION OF THE VALUE • AND IS NOT THE SAME AS THE HEXADECIMAL NOTATION IN THE C PROGRAMMING • LANGUAGE. • SEE ALSO DISP, DISPLAY, ISNUMERIC, ISFLOAT, ISINTEGER. • REFERENCE PAGE IN HELP BROWSER • DOC FORMAT • >>
  • 6.
    • MATLAB COMMANDWINDOW PAGE 1 • >> FORMAT COMPACT • >> HOSSEIN=19/3 • HOSSEIN = • 6.3333 • >> FORMAT LONG • >> HOSSEIN=19/3 • HOSSEIN = • 6.333333333333333 • >> • MATLAB COMMAND WINDOW PAGE 1 • >> %COLON OPERATION • >> • >> 1:3:7 • ANS = • 1 4 7 • >> 1:3:8 • ANS = • 1 4 7 • >> 1:3:9.9 • ANS = • 1 4 7 • >> 1:3:10 • ANS = • 1 4 7 10 • >> X1=1:100 • X1 =
  • 7.
    • COLUMNS 1THROUGH 21 • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 • 15 16 17 18 19 20 21 • COLUMNS 22 THROUGH 42 • 22 23 24 25 26 27 28 29 30 31 32 33 34 35 • 36 37 38 39 40 41 42 • COLUMNS 43 THROUGH 63 • 43 44 45 46 47 48 49 50 51 52 53 54 55 56 • 57 58 59 60 61 62 63 • COLUMNS 64 THROUGH 84 • 64 65 66 67 68 69 70 71 72 73 74 75 76 77 • 78 79 80 81 82 83 84 • COLUMNS 85 THROUGH 100 • MATLAB COMMAND WINDOW PAGE 2 • 85 86 87 88 89 90 91 92 93 94 95 96 97 98 • 99 100 • >> SIZE(X1) • ANS = • 1 100 • >> 1:7 • ANS = • 1 2 3 4 5 6 7 • >> COLON(1,7) • ANS = • 1 2 3 4 5 6 7 • >> EVEN=2:2:500 • EVEN = • COLUMNS 1 THROUGH 21 • 2 4 6 8 10 12 14 16 18 20 22 24 26 28 • 30 32 34 36 38 40 42 • COLUMNS 22 THROUGH 42 • 44 46 48 50 52 54 56 58 60 62 64 66 68 70 • 72 74 76 78 80 82 84
  • 8.
    • COLUMNS 43THROUGH 63 • 86 88 90 92 94 96 98 100 102 104 106 108 110 112 • 114 116 118 120 122 124 126 • COLUMNS 64 THROUGH 84 • 128 130 132 134 136 138 140 142 144 146 148 150 152 154 • 156 158 160 162 164 166 168 • COLUMNS 85 THROUGH 105 • 170 172 174 176 178 180 182 184 186 188 190 192 194 196 • 198 200 202 204 206 208 210 • MATLAB COMMAND WINDOW PAGE 3 • COLUMNS 106 THROUGH 126 • 212 214 216 218 220 222 224 226 228 230 232 234 236 238 • 240 242 244 246 248 250 252 • COLUMNS 127 THROUGH 147 • 254 256 258 260 262 264 266 268 270 272 274 276 278 280 • 282 284 286 288 290 292 294 • COLUMNS 148 THROUGH 168 • 296 298 300 302 304 306 308 310 312 314 316 318 320 322 • 324 326 328 330 332 334 336 • COLUMNS 169 THROUGH 189 • 338 340 342 344 346 348 350 352 354 356 358 360 362 364 • 366 368 370 372 374 376 378 • COLUMNS 190 THROUGH 210 • 380 382 384 386 388 390 392 394 396 398 400 402 404 406 • 408 410 412 414 416 418 420 • COLUMNS 211 THROUGH 231 • 422 424 426 428 430 432 434 436 438 440 442 444 446 448 • 450 452 454 456 458 460 462 • COLUMNS 232 THROUGH 250 • 464 466 468 470 472 474 476 478 480 482 484 486 488 490 • 492 494 496 498 500 • >> SIZE(EVEN) • ANS = • 1 250
  • 9.
    • >> X3=[1:4;5:8;9:12] •X3 = • 1 2 3 4 • 5 6 7 8 • 9 10 11 12 • >> X3(2,3) • MATLAB COMMAND WINDOW PAGE 4 • ANS = • 7 • >> HOSSEIN=20; • >> X(2,3)=HOSSEIN • X = • 0 0 0 • 0 0 20 • >> X3(2,3)=HOSSEIN • X3 = • 1 2 3 4 • 5 6 20 8 • 9 10 11 12 • >> X3(4,5)=100 • X3 = • 1 2 3 4 0 • 5 6 20 8 0 • 9 10 11 12 0 • 0 0 0 0 100 • >> ALBERT=[1:3;4:6] • ALBERT = • 1 2 3 • 4 5 6 • >> ALBERT([1 2],2) • ANS = • 2 • 5 • >> ALBERT([2 1],2) • ANS = • 5 • 2
  • 10.
    • >> ALBERT([21 2],[3 1 1 2]) • ANS = • 6 4 4 5 • 3 1 1 2 • 6 4 4 5 • >> ALBERT(2,[1 2 3]) • ANS = • 4 5 6 • >> ALBERT(2,1:3) • ANS = • 4 5 6 • >> ALBERT(END,2) • ANS = • 5 • >> END=5 • END=5 • | • ERROR: ILLEGAL USE OF RESERVED KEYWORD "END". • >> ALBERT([2 END 1 END],2) • ANS = • 5 • 5 • 2 • 5 • >> ALBERT(END−1,END−2) • ANS = • 1 • >> ALBERT(END+1,1)=17 • ALBERT = • 1 2 3 • 4 5 6 • MATLAB COMMAND WINDOW PAGE 6 • 17 0 0 • >> ALBERT(1:END,1:END) • ANS = • 1 2 3 • 4 5 6 • 17 0 0
  • 11.
    • >> ALBERT(END,1:END) •ANS = • 17 0 0 • >> ALBERT(END,1:END)=−44 • ALBERT = • 1 2 3 • 4 5 6 • −44 −44 −44 • >> ALBERT(1:2,2:END) • ANS = • 2 3 • 5 6 • >> %COMBINING MATRICES • >> A1=[1 1 1;1 1 1];A2=[2 2 2;2 2 2];A3=[3 3 3;3 3 3]; • >> [A1 A2 A3] • ANS = • 1 1 1 2 2 2 3 3 3 • 1 1 1 2 2 2 3 3 3 • >> [A1;A2;A3] • ANS = • 1 1 1 • 1 1 1 • 2 2 2 • 2 2 2 • 3 3 3 • 3 3 3 • >> B1=[1;1];B2=[2 2;2 2]; • >> B3=[3 3 3;3 3 3];
  • 12.
    • >> [B1B2 B3] • ANS = • 1 2 2 3 3 3 • 1 2 2 3 3 3 • >> [B1 B2 B3 B1] • ANS = • 1 2 2 3 3 3 1 • 1 2 2 3 3 3 1 • >> [B1 B3 B2 B1] • ANS = • 1 3 3 3 2 2 1 • 1 3 3 3 2 2 1 • >> GILBERT=[1 2 3;4 5 6] • GILBERT = • 1 2 3 • 4 5 6 • >> JAKOP=GILBERT ′ • JAKOP = • 1 4 • 2 5 • 3 6 • >> ALBERT=[1 ; 2 ; 3 ; 4] • ALBERT = • 1 • 2 • 3 • 4 • >> ALBERT′ • ANS = • 1 2 3 4 • >> 1:2:5′ • ANS = • 1 3 5 • >> (1:2:5)′ • ANS = • 1 • 3 • 5 • >> HOSSEIN=[1 −5 2 3 0 1]; • >> NS=[1 : 3 , 4 : 6] ; • >> NS+HOSSEIN • ANS = • 2 −3 5 7 5 7
  • 13.
    • >> NS−HOSSEIN •ANS = • 0 7 1 1 5 5 • >> NS .∗ HOSSEIN • ANS = • 1 −10 6 12 0 6 • >> HIGHS_MEASURED=[71.001 52.4010 78.1818 ; 73.5967 78.6214 59.6462]; • >> CALIBRATION_FACTORS=[1.1100 1.500 .9900 ; .9210 1.001 1.3001]; • >> CALIBRATION_FACTORS.∗CALIBRATION_FACTOR • UNDEFINED FUNCTION OR VARIABLE ′CALIBRATION_FACTOR′. • DID YOU MEAN: • >> CALIBRATION_FACTORS.∗CALIBRATION_FACTORS • ANS = • 1.2321 2.2500 0.9801 • 0.8482 1.0020 1.6903 • >> • >> A=[1 2 3 ; 4 5 6 ; 6 1 1 ; 0 1 3] ; • >> B=[2 −2 ; 3 8 ; 7 4] ; • >> C=[SIZE(A) SIZE(B)] • C = • 4 3 3 2 • >> % MATRICES PRODUCTION CAN BE DONE • >> • >> A∗B • ANS = • 29 26 • 65 56 • 22 0 • 24 20 • >> X=[1 2 ; 3 4]; • >> N=[6 .5 ; −1 2]; • >> X∗N • ANS = • 4.0000 4.5000 • 14.0000 9.5000
  • 14.
    • >> X.∗N •ANS = • 6 1 • −3 8 • >> X^3 • ANS = • 37 54 • 81 118 • >> X.^3 • ANS = • 1 8 • 27 64 • >> A=[ 1 2 3 ; 4 5 6]; • >> A+3 • ANS = • 4 5 6 • 7 8 9 • >> 20∗A • ANS = • 20 40 60 • 80 100 120 • >> A∗20 • ANS = • 20 40 60 • 80 100 120 • >> A./2 • ANS = • 0.5000 1.0000 1.5000 • 2.0000 2.5000 3.0000 • >> 2./A • ANS = • 2.0000 1.0000 0.6667 • 0.5000 0.4000 0.3333 • >> 2.^A • ANS = • 2 4 8 • 16 32 64 • >> A.^2 • ANS = • 1 4 9 • 16 25 36 • >>
  • 15.
    • >> 1:10+3 •ANS = • 1 2 3 4 5 6 7 8 9 10 11 12 13 • >> 1:(10+3) • ANS = • 1 2 3 4 5 6 7 8 9 10 11 12 13 • >> 6/2∗3 • ANS = • 9 • >> 6∗2/9 • ANS = • 1.3333 • >> 6^2^3 • ANS = • 46656 • >> 36^3 • ANS = • 46656 • >> 6^(2^3) • ANS = • 1679616 • >> 6^8 • ANS = • 1679616 • >> HELP PRECEDANCE • PRECEDANCE NOT FOUND. • MATLAB COMMAND WINDOW PAGE 2 • USE THE HELP BROWSER SEARCH FIELD TO SEARCH THE DOCUMENTATION, OR • TYPE "HELP HELP" FOR HELP COMMAND OPTIONS, SUCH AS HELP FOR METHODS. • >> HELP HELP PRECEDANCE • ERROR USING HELP (LINE 49) • HELP ONLY SUPPORTS ONE TOPIC • >>
  • 16.
    • %%%FIRST FUNCTIONADVANCED MY RAND • FUNCTION A=ADVANCEDMYRAND(LOW,HIGH) • A=LOW+RAND(3,4)∗(HIGH−LOW); • END • % SECOND FUNCTION GIVE ME ONE MORE • FUNCTION A=GIVEMEONEMORE • X=INPUT(′GIVE ME ONE MORE BUDDY:′); • A=X+1; • END
  • 17.
    • >> ADVANCEDMYRAND(1,10) •ANS = • 9.6145 2.2770 8.1299 1.3214 • 5.3684 4.7959 9.6354 8.6422 • 8.2025 9.2416 6.9017 9.4059 • >> ADVANCEDMYRAND(4,7) • ANS = • 6.0362 5.1767 6.1181 4.1385 • 6.2732 5.9664 4.0955 4.2914 • 6.2294 4.5136 4.8308 6.4704 • >> ADVANCEDMYRAND(3,4) • ANS = • 3.6948 3.0344 3.7655 3.4898 • 3.3171 3.4387 3.7952 3.4456 • 3.9502 3.3816 3.1869 3.6463 • >> ADVANCEDMYRAND(−2,6) • ANS = • 3.6749 3.4376 −1.0480 0.7231 • 4.0375 3.2408 1.9869 2.6821 • 0.2082 −0.6991 5.6780 −0.2095 • >> GIVEMEONEMORE • GIVE ME ONE MORE BUDDY:5 • ANS = • 6 • >> GIVEMEONEMORE • GIVE ME ONE MORE BUDDY:1001 • ANS = • 1002
  • 18.
    • >> ADVANCEDMYRAND1(1,10) •ANS = • 7.7614 7.2917 5.9249 3.3176 • 3.2959 9.0181 2.2476 8.5665 • 5.5536 9.6336 2.3436 3.2885 • >> [A,B]=ADVANCEDMYRAND1(2,5) • A = • 4.4429 3.0500 3.8481 4.4925 • 2.7306 2.5898 3.4199 3.7558 • 4.7878 2.7533 3.0550 3.6492 • B = • 42.5746 • >> [A,B]=ADVANCEDMYRAND1(1,10) • A = • 9.2547 7.7836 1.6827 8.0125 • 3.5726 4.4240 1.4856 9.4061 • 7.8148 6.1104 5.7772 2.1692 • B = • 67.4932 • >> FPRINTF(′THIS CONCLUDES LESSON3′) • THIS CONCLUDES LESSON3>> • >> FPRINTF(′THIS CONCLUDES LESSON3N′) • THIS CONCLUDES LESSON3 • >>
  • 19.
    • FUNCTION TOTAL=CHECKOUT(N,PRICE) •TOTAL=N∗PRICE; • FPRINTF(′%D ITEMS AT %02F EACHN TOTAL=%$5.2FN′,N,PRICE,TOTAL); • END • >> CHECKOUT(4,3.14) • 4 ITEMS AT 3.140000 EACH • TOTAL= • ANS = • 12.5600 • >>
  • 20.
    • >> A=(1:10)^2 •ERROR USING ^ • INPUTS MUST BE A SCALAR AND A SQUARE MATRIX. • TO COMPUTE ELEMENTWISE POWER, USE POWER (.^) INSTEAD. • >> A=(1:10).^2 • A = • 1 4 9 16 25 36 49 64 81 100 • >> PLOT(A) • >> • TYPE EQUATION HERE.
  • 21.
    • >> B=(−10:1:10).^2 •B = • 100 81 64 49 36 25 16 9 4 1 0 1 4 9 • 16 25 36 49 64 81 100 • >> PLOT(B) • >> • >> T=−10:10; • >> A=T^.2; • ERROR USING ^ • INPUTS MUST BE A SCALAR AND A SQUARE MATRIX. • TO COMPUTE ELEMENTWISE POWER, USE POWER (.^) INSTEAD. • >> A=T.^2; • >> PLOT(T,A) • >>
  • 22.
    • >> X1=0:.1:PI/2;Y1=SIN(X1); •>> X2=PI/2:.1:3∗PI/2;Y2=COS(X2); • >> PLOT(X1,Y1,X2,Y2) • >> • >> X1=0:.1:PI/2;Y1=SIN(X1); • >> X2=PI/2:.1:3∗PI;Y2=COS(X2); • >> PLOT(X1,Y1,′R′,X2,Y2,′K′) • >>
  • 23.
    • >> T=−10:10; •>> Y=T.^2; • >> PLOT(T,B,′M−−O′) • UNDEFINED FUNCTION OR VARIABLE ′B′. • >> PLOT(T,Y,′M−−O′) • >> • >> X1=0:.1:PI/2; • Y1=SIN(X1); • X2=PI/2:.1:3∗PI; • Y2=COS(X2); • PLOT(X1,Y1,′R′) • HOLD ON • PLOT(X2,Y2,′K:′) • >>
  • 24.
    • >> X1=0:.1:PI/2;Y1=SIN(X1); •>> X2=PI/2:.1:3∗PI;Y2=COS(X2); • >> PLOT(X1,Y1,X2,Y2); • >> TITLE(′SIN AND COS′); • >> XLABEL(′ARGUMENT OF SIN AND COS′); • >> YLABEL(′AMOUNT OF SIN AND COS′); • >> • >> X1=0:.1:PI/2;Y1=SIN(X1); • X2=PI/2:.1:3∗PI;Y2=COS(X2); • PLOT(X1,Y1,X2,Y2); • TITLE(′SIN AND COS′); • XLABEL(′ARGUMENT OF SIN AND COS′); • YLABEL(′AMOUNT OF SIN AND COS′); • LEGEND(′SIN′,′COS′); • >>
  • 25.
    • >> SYMSF(T) • >> DSOLVE(DIFF(F)==F+SIN(T)); • >> DSOLVE(DIFF(F)==F+SIN(T)) • ANS = • C3∗EXP(T) − (2^(1/2)∗COS(T − PI/4))/2 • >> SYMS A X(T) • >> DSOLVE(DIFF(X)==A∗X(T)) • ANS = • C5∗EXP(A∗T) • >> SYMS A B Y(T) • >> DSOLVE(DIFF(Y)==A∗Y,Y(0)=B); • DSOLVE(DIFF(Y)==A∗Y,Y(0)=B); • | • ERROR: THE EXPRESSION TO THE LEFT OF THE EQUALS SIGN IS NOT A VALID TARGET FOR AN • ASSIGNMENT. • >> DSOLVE(DIFF(Y)==A∗Y,Y(0)==B) • ANS = • B∗EXP(A∗T) • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′) • WARNING: THE NUMBER OF INDETERMINATES EXCEEDS THE NUMBER OF EQUATIONS. TRYING TO • PARAMETERIZE SOLUTIONS IN TERMS • INDETERMINATES. • > IN SYMENGINE (LINE 57) • IN MUPADENGINE/EVALIN (LINE 102) • IN MUPADENGINE/FEVAL (LINE 158) • IN DSOLVE>MUPADDSOLVE (LINE 332) • IN DSOLVE (LINE 193) • Y = • WARNING: THE RESULT CANNOT BE DISPLAYED DUE A PREVIOUSLY INTERRUPTED COMPUTATION OR OUT • OF MEMORY. RUN ′RESET(SYMENGINE)′ AND • RERUN THE COMMANDS TO REGENERATE THE RESULT. • > IN SYM/DISP (LINE 43) • IN SYM/DISPLAY (LINE 39) • >> SYMS T Y(T) • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′) • Y = • WARNING: THE RESULT CANNOT BE DISPLAYED DUE A PREVIOUSLY INTERRUPTED COMPUTATION OR OUT • MATLAB COMMAND WINDOW PAGE 2 • OF MEMORY. RUN ′RESET(SYMENGINE)′ AND • RERUN THE COMMANDS TO REGENERATE THE RESULT. • > IN SYM/DISP (LINE 43) • IN SYM/DISPLAY (LINE 39) • >>
  • 26.
    • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′) • Y= • (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2 • >> • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′) • Y = • (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2 • >> PLOT(T,Y) • UNDEFINED FUNCTION OR VARIABLE ′T′. • >> EZPLOT(Y,[0 8]) • >>
  • 27.
    • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′) • Y= • (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2 • >> PLOT(T,Y) • UNDEFINED FUNCTION OR VARIABLE ′T′. • >> EZPLOT(Y,[0 8]) • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==0′,′Y(0)==3′,′DY(0)==4′) • Y = • (13∗EXP(−T))/2 − (7∗EXP(−3∗T))/2 • >> EZPLOT(Y,[0 5]) • >> • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′,′Y(0)==1′,′DY(0)==−1′) • Y = • (5∗EXP(−T))/2 − 3∗EXP(−2∗T) + (3∗EXP(−3∗T))/2 • >> PLOT(T,Y) • UNDEFINED FUNCTION OR VARIABLE ′T′. • >> EZPLOT(Y,[0 8]) • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==0′,′Y(0)==3′,′DY(0)==4′) • Y = • (13∗EXP(−T))/2 − (7∗EXP(−3∗T))/2 • >> EZPLOT(Y,[0 5]) • >> Y=DSOLVE(′D2Y+4∗DY+3∗Y==3∗EXP(−2∗T)′) • Y = • C9∗EXP(−T) − 3∗EXP(−2∗T) + C10∗EXP(−3∗T) • >>
  • 28.
    • %GUESS MYNUMBER • FUNCTION GUESSMYNUMBER(X) • IF X==2 • FPRINTF(′CONGRATS;YOU HAVE GUESSED MY NUMBERN′) • END • >> GUESSMYNUMBER(2) • CONGRATS;YOU HAVE GUESSED MY NUMBER • >> GUESSMYNUMBER(5) • >>
  • 29.
    • >> GUESSMYNUMBER(5) •NOT RIGHT BUT IT WAS GOOD • >> GUESSMYNUMBER(2) • CONGRATS;YOU HAVE GUESSED MY NUMBER • >> • %GUESS MY NUMBER • FUNCTION GUESSMYNUMBER(X) • IF X==2 • FPRINTF(′CONGRATS;YOU HAVE GUESSED MY NUMBERN′) • ELSE • FPRINTF(′NOT RIGHT BUT IT WAS GOODN′) • END
  • 30.
    • % DAYSOF WEEK • FUNCTION DAYSOFWEEK(X) • IF X==1 • FPRINTF(′SUNDAYN′); • ELSE IF X==2 • FPRINTF(′MONDAYN′); • ELSE IF X==3 • FPRINTF(′TUESDAYN′); • ELSE IF X==4 • FPRINTF(′WEDNSDAYN′); • ELSE IF X==5 • FPRINTF(′THURSDAYN′); • ELSE IF X==6 • FPRINTF(′FRIDAYN′); • ELSE IF X==7 • FPRINTF(′SATURDAYN′) • END • END • END • END • END • END • END • END
  • 31.
    • >> DAYSOFWEEK(6) •FRIDAY • >> DAYSOFWEEK(7) • SATURDAY • >> DAYSOFWEEK(5) • THURSDAY • >> DAYSOFWEEK(4) • WEDNSDAY • >> DAYSOFWEEK(3) • TUESDAY • >> DAYSOFWEEK(2) • MONDAY • >> DAYSOFWEEK(1) • SUNDAY • >> • >> 351/7 • ANS = • 50.1429 • >> FORMAT SHORT • >> 351/7 • ANS = • 50.1429 • >> FORMATLONG • UNDEFINED FUNCTION OR VARIABLE ′FORMATLONG′. • >> FORMAT LONG • >> 351/7 • ANS = • 50.142857142857146 • >> FORMAT SHORT E • >> 351/7 • ANS = • 5.0143E+01 • >> FORMAT SHORT G • >> 351/7 • ANS = • 50.143
  • 32.
    • >> FORMATLONG G • >> 351/7 • ANS = • 50.1428571428571 • >> FORMAT BANK • >> 351/7 • ANS = • 50.14 • MATLAB COMMAND WINDOW PAGE 2 • >> • >> ABS(−13) • ANS = • 13.00 • >> ABS(1+1∗I) • ANS = • 1.41 • >> SQRT(81) • ANS = • 9.00 • >> ROUND(9.43) • ANS = • 9.00 • >> ROUND(9.65) • ANS = • 10.00 • >> FIX(9.32) • ANS = • 9.00 • >> FIX(−9.32) • ANS = • −9.00
  • 33.
    • >> FLOOR(2.3) •ANS = • 2.00 • >> FLOOR(−2.3) • ANS = • MATLAB COMMAND WINDOW PAGE 2 • −3.00 • >> CEIL(2.3) • ANS = • 3.00 • >> CEIL(−2.3) • ANS = • −2.00 • >> SIGN(2) • ANS = • 1.00 • >> SIGN(−2) • ANS = • −1.00 • >> LOG(E) • UNDEFINED FUNCTION OR VARIABLE ′E′. • >> LO(EXP(1)) • UNDEFINED FUNCTION OR VARIABLE ′LO′. • DID YOU MEAN: • >> LOG(EXP(1)) • ANS = • 1.00 • >> LOG10(2) • ANS = • 0.30 • >> FORMAT LONG • >> • >> LOG10(2) • ANS = • MATLAB COMMAND WINDOW PAGE 3 • 0.301029995663981 • >> LOG2(4) • ANS = • 2 • >> SIN(PI/6) • ANS = • 0.500000000000000 • >> SIND(30) • ANS = • 0.500000000000000 • >> TAND(45) • ANS = • 1
  • 34.
    • >> TAN(PI/4) •ANS = • 1.000000000000000 • >> ASIN(.5) • ANS = • 0.523598775598299 • >> ASIND(.5) • ANS = • 30.000000000000004 • >> ACOS(.5) • ANS = • 1.047197551196598 • MATLAB COMMAND WINDOW PAGE 4 • >> ACOSD(.5) • ANS = • 60.000000000000007 • >> COSH(0) • ANS = • 1 • >> CONJ(1+I∗1) • ANS = • 1.000000000000000 − 1.000000000000000I • >> ANGLE(1+I∗1) • ANS = • 0.785398163397448 • >> ANGLED(1+I∗1) • UNDEFINED FUNCTION OR VARIABLE ′ANGLED′. • DID YOU MEAN: • >> ANGLE(1+I∗1) • ANS = • 0.785398163397448 • >> ABS(1+I∗1) • ANS = • 1.414213562373095 • >> IMAG(1+I∗1) • ANS = • 1 • >> REAL(1+I∗1) • ANS = • 1 • MATLAB COMMAND WINDOW PAGE 5 • >> COMPLX(6,8) • UNDEFINED FUNCTION OR VARIABLE ′COMPLX′. • DID YOU MEAN: • >> COMPLEX(6,8) • ANS = • 6.000000000000000 + 8.000000000000000I • >> X=LINSPAC(1,2,10) • UNDEFINED FUNCTION OR VARIABLE ′LINSPAC′. • DID YOU MEAN:
  • 35.
    • >> X=LINSPACE(1,2,10) •X = • COLUMNS 1 THROUGH 6 • 1.000000000000000 1.111111111111111 1.222222222222222 1.333333333333333 • 1.444444444444444 1.555555555555556 • COLUMNS 7 THROUGH 10 • 1.666666666666667 1.777777777777778 1.888888888888889 2.000000000000000 • >> • >> LINSPACE(0,2,10) • ANS = • 0 0.2222 0.4444 0.6667 0.8889 1.1111 1.3333 1.5556 • 1.7778 2.0000 • >> LINSPACE(0,2,11) • ANS = • 0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 • 1.6000 1.8000 2.0000 • >> LOGSPACE(0,2,3) • ANS = • 1 10 100 • >>
  • 36.
    • >> ONES(3) •ANS = • 1 1 1 • 1 1 1 • 1 1 1 • >> ONES(2,3) • ANS = • 1 1 1 • 1 1 1 • >> ZEROS(3) • ANS = • 0 0 0 • 0 0 0 • 0 0 0 • >> ZEROS(2,3) • ANS = • 0 0 0 • 0 0 0 • >> EYES(3) • UNDEFINED FUNCTION OR VARIABLE ′EYES′. • DID YOU MEAN: • >> EYE(3) • ANS = • 1 0 0 • 0 1 0 • 0 0 1 • >> EYE(6,10) • ANS = • 1 0 0 0 0 0 0 0 0 0 • 0 1 0 0 0 0 0 0 0 0 • 0 0 1 0 0 0 0 0 0 0 • 0 0 0 1 0 0 0 0 0 0 • 0 0 0 0 1 0 0 0 0 0 • MATLAB COMMAND WINDOW PAGE 2 • 0 0 0 0 0 1 0 0 0 0 • >> RANDPERM(10) • ANS = • 6 3 7 8 5 1 2 4 9 10 • >> RANDPERM(10) • ANS = • 6 1 7 4 9 5 8 3 10 2 • >> RANDPERM(10) • ANS = • 2 10 8 9 1 5 7 6 3 4 • >> MAGIC(3) • ANS = • 8 1 6 • 3 5 7 • 4 9 2
  • 37.
    • >> MAGIC(3) •ANS = • 8 1 6 • 3 5 7 • 4 9 2 • >> MAGIC(4) • ANS = • 16 2 3 13 • 5 11 10 8 • 9 7 6 12 • 4 14 15 1 • >> MAGIC(5) • ANS = • 17 24 1 8 15 • 23 5 7 14 16 • MATLAB COMMAND WINDOW PAGE 3 • 4 6 13 20 22 • 10 12 19 21 3 • 11 18 25 2 9 • >> MAGIC(6) • ANS = • 35 1 6 26 19 24 • 3 32 7 21 23 25 • 31 9 2 22 27 20 • 8 28 33 17 10 15 • 30 5 34 12 14 16 • 4 36 29 13 18 11 • >> X=[1 2 3;4 5 6] • X = • 1 2 3 • 4 5 6 • >> RESHAPE(X,2,3) • ANS = • 1 2 3 • 4 5 6 • >> RESHAPE(X,3,2) • ANS = • 1 5 • 4 3 • 2 6 • >> V=[1 2 3] • V = • 1 2 3 • >> DIAG(V) • ANS = • 1 0 0 • 0 2 0 • 0 0 3 • MATLAB COMMAND WINDOW PAGE 4
  • 38.
    • >> A=[12 3;4 5 6;7 8 9] • A = • 1 2 3 • 4 5 6 • 7 8 9 • >> DIAG(A) • ANS = • 1 • 5 • 9 • >> EIG(A) • ANS = • 16.1168 • −1.1168 • −0.0000 • >> DET(A) • ANS = • 6.6613E−16 • >> [L,U]=LU(A) • L = • 0.1429 1.0000 0 • 0.5714 0.5000 1.0000 • 1.0000 0 0 • U = • 7.0000 8.0000 9.0000 • 0 0.857 1.7143 • 0 0 0.0000 • >> MAX(A) • ANS = • 7 8 9 • MATLAB COMMAND WINDOW PAGE 5 • >> MEAN(A) • ANS = • 4 5 6 • >> SUM(A) • ANS = • 12 15 18 • >> SORT(A) • ANS = • 1 2 3 • 4 5 6 • 7 8 9 • >> E=[1 2 3]; • >> R=[4 5 6]; • >> DOT(E,R) • ANS = • 32 • >> CROSS(E,R) • ANS = • −3 6 −3 • >> CROSS(R,E) • ANS = • 3 −6 3 • >>
  • 39.
    • >> A=[14 5;7 8 9;2 7 9] • A = • 1 4 5 • 7 8 9 • 2 7 9 • >> INV(A) • ANS = • −1.5000 0.1667 0.6667 • 7.5000 0.1667 −4.3333 • −5.5000 −0.1667 3.3333 • >> • %DIAGNAL MATRIX • FUNCTION DIAGNALMATRIX(N) • FOR I=1:N • FOR J=1:N • IF I==J • A(I,J)=1 • ELSE • A(I,J)=0 • END • END • END
  • 40.
    • >> DIAGNALMATRIX(5) •>> DIAGNALMATRIX(5) • >> DIAGNALMATRIX(5) • A = • 1 • A = • 1 0 • A = • 1 0 0 • A = • 1 0 0 0 • A = • 1 0 0 0 0 • A = • 1 0 0 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • MATLAB COMMAND WINDOW PAGE 2 • A = • 1 0 0 0 0 • 0 1 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0
  • 41.
    • A = •1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 0 0 • MATLAB COMMAND WINDOW PAGE 3 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • 0 0 0 0 0
  • 42.
    • A = •MATLAB COMMAND WINDOW PAGE 4 • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 1 0 0 0 • 0 0 1 0 0 • 0 0 0 1 0 • 0 0 0 0 1 • >> • %ADDVANCED DIAGNAL MATRIX • FUNCTION DIAGMATRIX(N) • FOR I=1:N • FOR J=1:N • IF I==J • A(I,J)=I • ELSE • A(I,J)=0 • END • END • END • END
  • 43.
    • >> DIAGMATRIX(5) •A = • 1 • A = • 1 0 • A = • 1 0 0 • A = • 1 0 0 0 • A = • 1 0 0 0 0 • A = • 1 0 0 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • MATLAB COMMAND WINDOW PAGE 2 • A = • 1 0 0 0 0 • 0 2 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0
  • 44.
    • A = •1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 0 0 • A = • MATLAB COMMAND WINDOW PAGE 3 • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • MATLAB COMMAND WINDOW PAGE 4 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 0 • A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 0 • >>
  • 45.
    • A = •1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 5 • %ADDVANCED DIAGNAL MATRIX • FUNCTION DIAGMATRIX(N) • FOR I=1:N • FOR J=1:N • IF I==J • A(I,J)=I; • ELSE • A(I,J)=0; • END • END • END • A • END
  • 46.
    • >> DIAGMATRIX(5) •A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 5 • >> • %ADDVANCED DIAGNAL MATRIX • FUNCTION DIAGMATRIX(N) • FOR I=1:N • FOR J=1:N • IF I==J • A(I,J)=I; • ELSE • A(I,J)=0; • END • END • END • DISPLAY(A) • END
  • 47.
    • >> DIAGMATRIX(5) •A = • 1 0 0 0 0 • 0 2 0 0 0 • 0 0 3 0 0 • 0 0 0 4 0 • 0 0 0 0 5 • >> • % FUNCTION VECTOR CROSS • FUNCTION VECTORCROSS(A,B) • C(1,1)=DET([A(2,1),B(2,1);A(3,1),B(3,1)]); • C(2,1)=−1∗DET([A(1,1),B(1,1);A(3,1),B(3,1)]); • C(3,1)=DET([A(1,1),B(1,1);A(2,1),B(2,1)]); • DISPLAY(C) • END
  • 48.
    • >> A=[1;2;3]; •>> B=[4;5;6]; • >> VECTOORCROS(A,B) • UNDEFINED FUNCTION OR VARIABLE ′VECTOORCROS′. • >> VECTOORCROSS(A,B) • UNDEFINED FUNCTION OR VARIABLE ′VECTOORCROSS′. • DID YOU MEAN: • >> VECTORCROSS(A,B) • C = • −3 • 6 • −3 • >> • % SYMETRIC FUNCTION • FUNCTION SYMETRICMATRIX(N,M) • IF M==N • FPRINTF(′YOUR MATRIX IS SYMETRETIC′); • ELSE • FPRINTF(′YOUR MATRIX IS NOT SYMETRIC′); • END • FOR I=1:N • FOR J=M:−1:1 • A(I,J)=I^2+J^2; • END • END • DISPLAY(A) • END
  • 49.
    • >> SYMETRICMATRIX(5,5) •YOUR MATRIX IS SYMETRETIC • A = • 2 5 10 17 26 • 5 8 13 20 29 • 10 13 18 25 34 • 17 20 25 32 41 • 26 29 34 41 50 • >> SYMETRICMATRIX(5,6) • YOUR MATRIX IS NOT SYMETRIC • A = • 2 5 10 17 26 37 • 5 8 13 20 29 40 • 10 13 18 25 34 45 • 17 20 25 32 41 52 • 26 29 34 41 50 61 • >> • % SYMETRIC FUNCTION • FUNCTION SYMETRICMATRIX(N,M) • IF M==N • FPRINTF(′YOUR MATRIX IS SYMETRETIC′); • ELSE • FPRINTF(′YOUR MATRIX IS NOT SYMETRIC′); • END • FOR I=1:N • FOR J=1:M • A(I,J)=I^2+J^2; • END • END • DISPLAY(A) • END
  • 50.
    • % QUADRITICEQUATION • FUNCTION QUADRITICEQUATION • A=INPUT(′ENTER A(A∗X∗X+B∗X+C):′); • B=INPUT(′ENTER B(A∗X∗X+B∗X+C):′); • C=INPUT(′ENTER C(A∗X∗X+B∗X+C):′); • IF A==0 && B~=0 • X=−C/B; • DISPLAY(X); • ELSE • DELTA=B∗B−4∗A∗C; • X1=(−B+SQRT(DELTA))/(2∗A); • X2=(−B−SQRT(DELTA))/(2∗A); • END • DISPLAY(X1); • DISPLAY(X2); • END • >> QUADRITICEQUATION • ENTER A(A∗X∗X+B∗X+C):1 • ENTER B(A∗X∗X+B∗X+C):2 • ENTER C(A∗X∗X+B∗X+C):4 • X1 = • −1.0000 + 1.7321I • X2 = • −1.0000 − 1.7321I • >> QUADRITICEQUATION • ENTER A(A∗X∗X+B∗X+C):1 • ENTER B(A∗X∗X+B∗X+C):2 • ENTER C(A∗X∗X+B∗X+C):1 • X1 = • −1 • X2 = • −1 • >>
  • 51.
    • >> PHI=LINSPACE(0,1,30); •>> THETA=LINSPACE(0,2∗PI,30); • >> [PHI,THETA]=MESHGRID(PHI,THETA); • >> X=R.∗COS(THETA); • UNDEFINED FUNCTION OR VARIABLE ′R′. • >> X=PH.∗COS(THETA); • UNDEFINED FUNCTION OR VARIABLE ′PH′. • DID YOU MEAN: • >> X=PHI.∗COS(THETA); • >> Y=PHI.∗SIN(THETA); • >> Z=PHI; • >> MESH(X,Y,Z) • >> • >> PHI=LINSPACE(0,1,30); • THETA=LINSPACE(0,2∗PI,30); • [PHI,THETA]=MESHGRID(PHI,THETA); • X=PHI.∗COS(THETA); • Y=PHI.∗SIN(THETA); • Z=PHI; • MESH(X,Y,Z) • >> XLABEL(′X′;) • XLABEL(′X′;) • | • ERROR: UNBALANCED OR UNEXPECTED PARENTHESIS OR BRACKET. • >> XLABEL(′X′); • >> YLABEL(′Y′); • >> ZLABEL(′Z′); • >> • >>
  • 52.
    • >> THETA=LINSPACE(0,PI,30); •>> ALPHA=LINSPACE(0,2∗PI,30); • >> [THETA,ALPHA]=MESHGRID(THETA,ALPHA); • >> X=SIN(THETA).∗COS(ALPHA); • >> Y=SIN(THETA).∗SIN(ALPHA); • >> Z=COS(THETA); • >> MESH(X,Y,Z) • >> • >> U=LINSPACE(0,6∗PI,60); • >> V=LINSPACE(0,2∗PI,60); • >> [U,V]=MEASHGRID(U,V); • UNDEFINED FUNCTION OR VARIABLE ′MEASHGRID′. • DID YOU MEAN: • >> [U,V]=MESHGRID(U,V); • >> X=2∗(1−EXP(U/(6∗PI))).∗COS(U).∗COS(V/2).^2; • >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2; • Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2; • | • ERROR: UNEXPECTED MATLAB EXPRESSION. • >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).^2; • >> Z=1−EXP(U/(3∗PHI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V); • UNDEFINED FUNCTION OR VARIABLE ′PHI′. • >> Z=1−EXP(U/(3∗PI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V); • >> MESH(X,Y,Z) • >>
  • 53.
    • >> U=LINSPACE(0,6∗PI,60); •>> V=LINSPACE(0,2∗PI,60); • >> [U,V]=MEASHGRID(U,V); • UNDEFINED FUNCTION OR VARIABLE ′MEASHGRID′. • DID YOU MEAN: • >> [U,V]=MESHGRID(U,V); • >> X=2∗(1−EXP(U/(6∗PI))).∗COS(U).∗COS(V/2).^2; • >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2; • Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2; • | • ERROR: UNEXPECTED MATLAB EXPRESSION. • >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).^2; • >> Z=1−EXP(U/(3∗PHI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V); • UNDEFINED FUNCTION OR VARIABLE ′PHI′. • >> Z=1−EXP(U/(3∗PI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V); • >> MESH(X,Y,Z) • >> VIEW(10,50) • >> • >> U=LINSPACE(0,6∗PI,60); • >> V=LINSPACE(0,2∗PI,60); • >> [U,V]=MEASHGRID(U,V); • UNDEFINED FUNCTION OR VARIABLE ′MEASHGRID′. • DID YOU MEAN: • >> [U,V]=MESHGRID(U,V); • >> X=2∗(1−EXP(U/(6∗PI))).∗COS(U).∗COS(V/2).^2; • >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2; • Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).2; • | • ERROR: UNEXPECTED MATLAB EXPRESSION. • >> Y=2∗(−1+EXP(U/(6∗PI))).∗SIN(U).∗COS(V/2).^2; • >> Z=1−EXP(U/(3∗PHI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V); • UNDEFINED FUNCTION OR VARIABLE ′PHI′. • >> Z=1−EXP(U/(3∗PI))−SIN(V)+EXP(U/(6∗PI)).∗SIN(V); • >> MESH(X,Y,Z) • >> VIEW(10,50) • >> VIEW(50,10) • >> VIEW(50,70) • >> VIEW(100,10) • >>
  • 54.
    • >> U=LINSPACE(0,2∗PI,30); •>> V=LINSPACE(−1,1,15); • >> [U,V]=MESHGRID(U,V); • >> X=V/2.∗SIN(U/2); • >> Y=(1+COS(U/2)).∗COS(U); • >> Y=(1+COS(U/2)).∗SIN(U); • >> Z=(1+COS(U/2)).∗COS(U); • >> MESH(X,Y,Z) • >> • >> U=LINSPACE(0,2∗PI,30); • >> V=LINSPACE(−1,1,15); • >> [U,V]=MESHGRID(U,V); • >> X=V/2.∗SIN(U/2); • >> Y=(1+COS(U/2)).∗COS(U); • >> Y=(1+COS(U/2)).∗SIN(U); • >> Z=(1+COS(U/2)).∗COS(U); • >> MESH(X,Y,Z) • >> VIEW(100,5) • >>
  • 55.
    • >> U=LINSPACE(0,2∗PI,60); •>> V=LINSPACE(0,2∗PI,60); • >> [U,V]=MESHGRID(U,V); • >> X=(1+COS(U/2)).∗SIN(V)−SIN(U/2).∗SIN(2∗V).COS(U); • UNDEFINED VARIABLE "SIN" OR CLASS "SIN". • >> X=(1+COS(U/2)).∗SIN(V)−SIN(U/2).∗SIN(2∗V).∗COS(U); • >> Y=(1+COS(U/2)).∗SIN(V)−SIN(U/2).∗SIN(2∗V).∗SIN(U); • >> Z=SIN(U/2); • >> MESH(X,Y,Z) • >> • >> V=U=LINSPACE(−1.5,1.5,40); • V=U=LINSPACE(−1.5,1.5,40); • | • ERROR: THE EXPRESSION TO THE LEFT OF THE EQUALS SIGN IS NOT A • VALID TARGET FOR AN ASSIGNMENT. • DID YOU MEAN: • >> U = LINSPACE(−1.5,1.5,40); V = U; • >> [U,V]=MESHGRID(U,V); • >> X=U−U.^3/3+U.∗V.^3; • >> Y=V−V.^3/3+V.∗U.^3; • >> U.^2−V.^2; • >> Z=U.^2−V.^2; • >> MESH(X,Y,Z) • >>
  • 56.
    • >> U=LINSPACE(−2,2,40); •>> V=LINSPACE(0,2∗PI,40); • >> [U,V]=MESHGRID(U,V); • >> X=COSH(U).∗COS(V); • >> Y=COSH(U).∗SIN(V); • >> Z=SINH(U); • >> MESH(X,Y,Z); • >> • >> U=LINSPACE(−2,2,40); • >> V=LINSPACE(0,2−PI,40); • >> [U,V]=MESHGRID(U,V); • >> X=SINH(U).∗COSH(V); • >> Y=SINH(U).∗SIN(V); • >> Z=COSH(U); • >> MESH(X,Y,Z) • >>
  • 57.
    • >> U=LINSPACE(−2,2,40); •V=LINSPACE(0,2−PI,40); • [U,V]=MESHGRID(U,V); • X=SINH(U).∗COSH(V); • Y=SINH(U).∗SIN(V); • Z=COSH(U); • MESH(X,Y,Z) • >> U=LINSPACE(−2,2,40); • >> V=LINSPACE(0,2−PI); • >> [U,V]=MESHGRID(U,V); • >> X=SINH(U).∗COSH(V); • >> Y=SINH(U).∗SIN(V); • >> Z=COSH(U); • >> MESH(X,Y,Z) • >> U=LINSPACE(−2,2,40); • >> V=LINSPACE(0,2∗PI); • >> [U,V]=MESHGRID(U,V); • >> X=SINH(U).∗COSH(V); • >> Y=SINH(U).∗SIN(V); • >> Z=COSH(U); • >> MESH(X,Y,Z) • >> • >> U=LINSPACE(−1,1,40); • >> V=U; • >> [U,V]=MESHGRID(U,V); • >> X=U.∗V; • >> Y=U; • >> Z=V.^2; • >> MESH(X,Y,Z) • >>
  • 58.
    • >> U=LINSPACE(−2,2,40); •>> V=LINSPACE(−2,2,40); • >> [U,V]=MESHGRID(U,V); • >> X=V.∗COS(U); • >> Y=V.∗SIN(U); • >> Z=U; • >> MESH(X,Y,Z) • >> • >> T=LINSPACE(0,2,200); • >> X=T;Y=T.^2;Z=T.^3; • >> PLOT3(X,Y,Z) • >> GRID • >>
  • 59.
    • >> T=LINSPACE(0,2,100); •>> [X,Y]=MESHGRID(T); • >> Z=−7./(1+X.^2+Y.^2); • >> MESH(X,Y,Z) • >> VIEW(160,30) • >> • >> SYMS X; • >> S1=EXP(X^8); • >> DIFF(S1) • ANS = • 8∗X^7∗EXP(X^8) • >> S2=3∗X^3∗EXP(X^5); • >> DIFF(S2) • ANS = • 9∗X^2∗EXP(X^5) + 15∗X^7∗EXP(X^5) • >>
  • 60.
    • >> SYMSX • >> S1=ABS(X); • >> INT(S1,.2,.7) • ANS = • 9/40 • >> S2=COS(X)+7∗X^2; • >> INT(S2,.2,PI) • ANS = • (7∗PI^3)/3 − SIN(1/5) − 7/375 • >> S3=SQRT(X); • >> INT(S3) • ANS = • (2∗X^(3/2))/3 • >> • >> DSOLVE(′DY=5∗T−6∗Y′) • ANS = • (5∗T)/6 + (C6∗EXP(−6∗T))/36 − 5/36 • >> DSOLVE(′D2Y+3∗DY=0′) • ANS = • C8 + C9∗EXP(−3∗T) • >> DSOLVE(′D2Y+3∗DY+Y=0′) • ANS = • C11∗EXP(T∗(5^(1/2)/2 − 3/2)) + C12∗EXP(−T∗(5^(1/2)/2 + 3/2)) • >> DSOLVE(′DY=−7∗X^2′,′Y(1)=.7′) • ANS = • 7∗X^2 − 7∗T∗X^2 + 7/10 • >>
  • 61.
    • >> SYMSX Y • >> INT(INT(X^2+Y^2,Y,0,SIN(X)),0,PI) • ANS = • PI^2 − 32/9 • >> • >> %%%1/(S^4+5S^3+7S^2) • >> • >> B=[0 0 0 0 1]; • >> A=[1 5 7 0 0]; • >> [R,P,K]=RESIDUE(B,A) • R = • 0.0510 − 0.0648I • 0.0510 + 0.0648I • −0.1020 + 0.0000I • 0.1429 + 0.0000I • P = • −2.5000 + 0.8660I • −2.5000 − 0.8660I • 0.0000 + 0.0000I • 0.0000 + 0.0000I • K = • [] • >>
  • 62.
    • >> SYMSS • >> F=1/(S^4+5S^3+7S^2); • F=1/(S^4+5S^3+7S^2); • | • ERROR: UNEXPECTED MATLAB EXPRESSION. • >> F=1/(S^4+5∗S^3+7∗S^2); • >> ILAPLACE(F) • ANS = • T/7 + (5∗EXP(−(5∗T)/2)∗(COS((3^(1/2)∗T)/2) + (11∗3^(1/2)∗SIN((3^(1/2)∗T)/2))/15))/49 − • 5/49 • >> • >> %(5∗S^2+3∗S^+6)/(S^4+3∗S^3+7∗S^2+9∗S+12) • >> B=[5 3 6]; • >> A=[1 3 7 9 12]; • >> [R,P,K]=RESIDUE(B,A) • R = • −0.5357 − 1.0394I • −0.5357 + 1.0394I • 0.5357 − 0.1856I • 0.5357 + 0.1856I • P = • −1.5000 + 1.3229I • −1.5000 − 1.3229I • 0.0000 + 1.7321I • 0.0000 − 1.7321I • K = • []
  • 63.
    • >> F=TF(B,A); •>> ILAPLACE(F) • UNDEFINED FUNCTION ′ILAPLACE′ FOR INPUT • ARGUMENTS OF TYPE ′TF′. • >> ILAPLACE((5∗S^2+3∗S^+6)/(S^4+3∗S^3+7∗S^2+9∗S+12)) • ANS = • (72∗COS(3^(1/2)∗T))/7 + 6∗DIRAC(T) − (8∗3^(1/2)∗SIN(3^(1/2)∗T))/7 − 9∗DIRAC(1, T) + • 3∗DIRAC(2, T) + (54∗EXP(−(3∗T)/2)∗(COS((7^(1/2)∗T)/2) − (31∗7^(1/2)∗SIN((7^(1/2)∗T)/2)) • /27))/7 • >> • >> SYMS X • >> LIMIT(SIN(X),X,0) • ANS = • 0 • >> LIMIT(ABS(X)/X,X,0,′LEFT′) • ANS = • −1 • >> LIMIT((1−COS(X))/X^2,X,0) • ANS = • 1/2 • >>
  • 64.
    • >> SYMSX Y Z • >> JACOBIAN([SIN(X∗Y) COS(Y∗Z) EXP(X∗Y∗Z)],[X,Y,Z]); • >> JACOBIAN([SIN(X∗Y) COS(Y∗Z) EXP(X∗Y∗Z)],[X,Y,Z]) • ANS = • [ Y∗COS(X∗Y), X∗COS(X∗Y) , 0] • [ 0, −Z∗SIN(Y∗Z), −Y∗SIN(Y∗Z)] • [ Y∗Z∗EXP(X∗Y∗Z), X∗Z∗EXP(X∗Y∗Z), X∗Y∗EXP(X∗Y∗Z)] • >> • >> N=100; • LINSPACE(−3,3,N); • X=LINSPACE(−3,3,N); • Y=LINSPACE(−3,3,N); • Z=LINSPACE(−3,3,N); • [X,Y,Z]=NDGRID(X,Y,Z); • F=((−(X.^2).∗(Z.^3)−(9/80).∗(Y.^2).∗(Z.^3))+((X.^2)+(9/4).∗(Y.^2)+(Z.^2)−1).^3); • >> ISOSURFACE(F,0) • >> LIGHTING PHONG • >> CAXIS • ANS = • −1 1 • >> AXIS EQUAL • >> COLORMAP(′FLAG′); • >> VIEW([55 10]); • >>
  • 65.
    • >> X=−2.9:.2:2.9; •>> Y=EXP(−X.∗X); • >> BAR(X,Y) • >> • >> X=0:.25:10; • >> Y=SIN(X); • >> STAIRS(X,Y) • >>
  • 66.
    • >> X=−2:.1:2; •>> Y=ERF(X); • >> EB=RAND(SIZE(X))7; • EB=RAND(SIZE(X))7; • | • ERROR: UNEXPECTED MATLAB EXPRESSION. • DID YOU MEAN: • >> EB = RAND(SIZE(X))∗7; • >> ERRORBAR(X,Y,EB) • >> • >> THETA=0:.1:2∗PI; • >> RHO=ABS(SIN(2∗THETA).∗COS(2∗THETA)); • >> POLARPLOT(THETA,RHO) • UNDEFINED FUNCTION OR VARIABLE ′POLARPLOT′. • >> POLAR(THETA,RHO) • >>
  • 67.
    • >> THETA=0:.1:2∗PI; •>> RHO=ABS(SIN(2∗THETA).∗COS(2∗THETA)); • >> POLARPLOT(THETA,RHO) • UNDEFINED FUNCTION OR VARIABLE ′POLARPLOT′. • >> POLAR(THETA,RHO) • >> POLT(THETA,RHO) • UNDEFINED FUNCTION OR VARIABLE ′POLT′. • DID YOU MEAN: • >> PLOT(THETA,RHO) • >> • >> X=0:.1:4; • >> Y=SIN(X.^2).∗EXP(−X); • >> STEM(X,Y) • >>
  • 68.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> • >> Z=PEAKS(25); • >> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >>
  • 69.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> • >> Z=PEAKS(25); • >> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >>
  • 70.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> • >> Z=PEAKS(25); • >> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >>
  • 71.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> • >> Z=PEAKS(25); • >> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> COLORMAP(SPRING) • >>
  • 72.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> COLORMAP(SPRING) • >> COLORMAP(SUMMER) • >> • >> Z=PEAKS(25); • >> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> COLORMAP(SPRING) • >> COLORMAP(SUMMER) • >> COLORMAP(AUTUMN) • >>
  • 73.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> COLORMAP(SPRING) • >> COLORMAP(SUMMER) • >> COLORMAP(AUTUMN) • >> COLORMAP(WINTER) • >> • >> Z=PEAKS(25); • >> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> COLORMAP(SPRING) • >> COLORMAP(SUMMER) • >> COLORMAP(AUTUMN) • >> COLORMAP(WINTER) • >> COLORMAP(GRAY) • >>
  • 74.
    • >> Z=PEAKS(25); •>> FIGURE • >> MESH(Z) • >> Z=PEAKS(100); • >> MESH(Z) • >> COLORMAP(JET) • >> COLORMAP(PARULA) • >> COLORMAP(HSV) • >> COLORMAP(HOT) • >> COLORMAP(COOL) • >> COLORMAP(SPRING) • >> COLORMAP(SUMMER) • >> COLORMAP(AUTUMN) • >> COLORMAP(WINTER) • >> COLORMAP(GRAY) • >> SHADING INTERP • >> • >> CONTOUR(Z,16) • >> COLORMAP(JET) • >>
  • 75.
    • >> X=−2:.2:2; •>> Y=−1:.2:1; • >> [XX,YY]=MESHGRID(X,Y); • >> ZZ=XX.∗EXP(−XX.^2−YY.^2); • >> [PX,PY]=GRADIANT(ZZ,.2,.2); • UNDEFINED FUNCTION OR VARIABLE ′GRADIANT′. • DID YOU MEAN: • >> [PX,PY]=GRADIENT(ZZ,.2,.2); • >> QUIVER(X,Y,PX,PY) • >> • >> X=−2:.2:2; • >> Y=−1:.2:1; • >> [XX,YY]=MESHGRID(X,Y); • >> ZZ=XX.∗EXP(−XX.^2−YY.^2); • >> [PX,PY]=GRADIANT(ZZ,.2,.2); • UNDEFINED FUNCTION OR VARIABLE ′GRADIANT′. • DID YOU MEAN: • >> [PX,PY]=GRADIENT(ZZ,.2,.2); • >> QUIVER(X,Y,PX,PY) • >> XLIM([−2.5 2.5]) • >>
  • 76.
    • >> X=−2:.2:2; •>> Y=−2:.25:2; • >> Z=−2:.16:2; • >> [X,Y,Z]=MESHGRID(X,Y,Z); • >> V=X.∗EXP(−X.^2−Y.^2−Z.^2); • >> XSLICE=[−1.2,.8,2]; • >> YSLICE=2; • >> ZSLICE=[−2,0]; • >> SLICE(X,Y,Z,V,XSLICE,YSLICE,ZSLICE) • >> • TYPE EQUATION HERE.
  • 77.
    • TYPE EQUATIONHERE. • TYPE EQUATION HERE.