MATLAB
inf infinity
pi Ratio of circle
exp ( degree ) Exponential
sin (radian) cos (radian) tan (radian)
sind (degree) cosd(degree) tand (degree)
X = 3 + 4i
real ( X ) = 3
imag ( X ) = 4
abd ( X ) = 5
angle ( X ) = 0.9273 Angle in radian
conj ( X ) = 3.0000 - 4.0000i
asin (Value) Inverse sin
acos (Value) Inverse cos
atan (Value) Inverse tan
sec cosec cot sinh cosh tanh sech cosech coth
Can add ( d ) to use in degree or add ( a ) in first to get inverse
sqrt ( Value ) Root
log ( Value ) Ln
log10 ( Value )
factorial ( Value )
round ( Value ) Closest number for value
Format long increase accuracy of number
Format short decrease accuracy of number
round ( Value ) Round nearest integer  .5
fix ( Value ) Round toward zero
ceil ( Value ) Round toward infinity
floor ( Value ) Round toward minus infinity
rem ( X , Y ) Returns the remainder
sign ( X ) sign function. [ X>0 -> 1 , X<0 -> -1 , X=0 -> 0 ]
clc Clean command window
clear Delete all variable
clear all Delete all variable
clear A Delete variable A only
who Show all variables
& = and ( x , y ) And
~ = not( x ) Not
| = or( x , y ) Or
xor ( x, y ) Xor
Define Vector (horizontal matrix)
Vector = [ a(1) a(2) a(3) a(4) a(5) ] Define vector by elements
X = [ 12 8 2 34 0 ]
X = [ A : B : C ] Define vector by steps
A : first element B : steps of counter C : last element
X = [ 1 : 2 : 5 ]
X = 1 3 5
X = [ 1 : 5 ] Define with one step by default
X = 1 2 3 4 5
If you write X = [ 12 8 2 34 0 ] on command window without ; (semi Colom)
Matlab will print it .
X = [ 12 8 2 34 0 ]
X =
12 8 2 34 0
But if write X = [ 12 8 2 34 0 ] ; ( with semi Colom ) the matlab will not print
it.
X = [ 12 8 2 34 0 ] ;
Print vector
X = [ 0 1 2 3 4 ]
answer = X ( 1 ) print element a( 1 ) = 0
answer = X ( 1 : 4 ) print from elements from 0 to 3
answer = X ( 1 : end ) print from elements from 0 to 4
answer = X ( 1 : end - 1 ) print from elements from 0 to 3
OPERATIONS ON VECTOR
X = [ 1 2 3 ] Y = [ 4 5 6 ]
prod ( X ) Product all elements of vector
Answer = prod ( X ) = 1 * 2 * 3 * 4 = 24
dot ( X , Y ) Dot product of two vectors
Answer = 1*4 + 2*5 + 3*6 = 32
cross ( X , Y ) Cross product of two vectors
Answer = -3 6 -3
Sum (X) To sum all elements in matrix
Answer = 6
linspace ( A , B , C ) generates C points between A and B
A : first element B : last element C : number of elements
X = linspace ( 0 , 1 , 5 )
= 0 0.2500 0.5000 0.7500 1.0000
X = linspace ( 0 , 1 , 6 )
= 0 0.2000 0.4000 0.6000 0.8000 1.0000
Define matrix
X = [ A B C ; D E F ] or X = [ A , B , C ; D , E , F ]
X = A B C Semi Colom to make new row
D E F
X = [ 1 : 0.5 : 2 ; 2 : -0.5 : 1 ] Different way to define
X = 1 1.5 2
2 1.5 1
Print matrix
X = [ 1 2 5 ; 0 1 7 ; 2 3 4 ]
X (1 , 3) = X ( A ( 1 ) , B ( 3 ) )
= 5
X (end - 1 , end - 2 ) = X ( A ( 2 ) , B ( 1 ) )
= 0
X (end , end) = X ( A ( 3 ) , B ( 3 ) )
= 4
X = [ 1 2 5 ; 0 1 7 ; 2 3 4 ]
X (1 , 1 : 3 ) = X (1 , : )
= 1 2 5
X (1 , [ 1 3 ] ) = X ( A( 1 ) , B( 1 ) X ( A( 1 ) , B( 3 ) )
= 1 5
X ([ 1 3 ] , [ 1 3 ] ) = 1 5
2 4
Delete Elements
Define by index number for row or column then equal with []
X = [ 1 2 5 8 ; 0 1 7 2 ; 6 2 3 4 ]
X = X (1 , : ) =[] Delete first row
= 0 1 7 2
6 2 3 4
X ( : , [ 1 3 ] ) = [] Delete first and third column
= 2 8
1 2
2 4
Add Elements
Define by index number for row or column then equal with elements
X = [ 1 2 5 ; 0 1 7 ; 6 2 3 ]
X = X ( 4 , : ) = [ 0 0 0 ] Adding row in last
= 1 2 5
0 1 7
6 2 3
0 0 0
Operations on matrix
X = [ 1 2 : 3 4 ] Addition on matrix
Answer = X + 5
Answer = 6 7
8 9
rand ( A , B ) Make matrix with random values
A : Number of rows B : Number of columns
X = prod ( 2 , 3 )
0.8147 0.1270 0.6324
0.9058 0.9134 0.0975
E–notation
E – 1 = 0.1
E – 2 = 0.01
9E - 1 = .9
4E - 2 = .04
X = [ 5E-1 7E-2 9e-4]
= 0.5000 0.0700 0.0009
It can be e or E
Complex Numbers
•Both i and j are allowed
•Don’t write I nor J
•Write 3i and don’t write i3
•You can write 3*i or i*3
X = [ 1 + 3i ; 5 - 1i ; 4 + 3j ]
1.0000 + 3.0000i
5.0000 - 1.0000i
4.0000 + 3.0000i
Special matrix
zeros ( Raw , Column ) Elements of matrix are zeros only
X= zeros ( 2 , 3 )
= 0 0 0
0 0 0
ones ( Raw , Column ) Elements of matrix are ones only
X= ones ( 1 , 4 )
= 1 1 1 1
eye( N ) Square matrix ( Identity matrix )
X= eye ( 3 )
= 1 0 0
0 1 0
0 0 1
inv ( X ) = X^-1 Inverse the matrix X=[ 1 2 ; 1 6 ]
answer= inv ( X )
= 1.5000 -0.5000
-0.2500 0.2500
magic ( N ) Make square matrix with random values
X= magic ( 2 ) N : number of raw or column
= 1 3
4 2
reshape ( A , B , C ) Reshape the size of matrix
A : Name of matrix B : Row of new matrix C : Column of new matrix
answer= reshape ( X , 2 ,3 ) // X = [ 1 2 ; 3 4 ; 5 6 ]
= 1 5 4
3 2 6
X = [ 1 2 3 ; 4 5 6 ]
max ( X ) Maximum element in matrix
= 6
min ( X ) Minimum element in matrix
= 1
size ( X ) Size of matrix
= 2 3 2 is raw , 3 is column
length ( X ) Number of columns in matrix
= 3
X = [ 1 2 3 ; 4 5 6 ]
fliplr ( X ) Replace columns from left to right
= 3 2 1
6 5 4
flipud ( X ) Replace rows from up to down
= 4 5 6
1 2 3
X = [ 1 2 3 ; 4 5 6 ]
transpose ( X ) = X ' Make rows to columns
= 1 4
2 5
3 6
rot90 ( X ) Rotate matrix 90 degree anti-clockwise
= 3 6
2 5
1 4
X = [ 1 2 ; 4 5 ] Y = [ 6 7 ; 8 9 ]
Product matrix element by element (square element)
Answer = X . * Y
= 6 1 4
3 2 4 5
Division in matrix element by element
Answer = X . / Y
= 0.1667 0.2857
0.5000 0.5556
X = [ 1 2 ; 4 5 ]
Product and matrix ( cross product )
X*X = X^2
= 7 1 0
1 5 2 2
Product matrix by number
Answer = X * 2
= 2 4
6 8
X = [ 1 2 ; 4 5 ]
Division in matrix by number (using / )
Answer = X / 2
= 0.5000 1.0000
1.5000 2.0000
Division in matrix to solve equations (using  )
By invers matrix ( power -1 )
x + y = 2
x - y = 0
A ^ - 1 * B = inv( A ) * B = A  B  is up of enter key
B * A ^ - 1 = B * inv( A ) = B  A
A X B
A = [ 1 1 ; 1 -1 ] B = [ 2 ; 0 ]
X = A  B = inv (A) * B
answer = 1 x=1 y=1
1
X = [ 1 2 3 ; 4 5 6 ]
Power in matrix power elements
Answer = X.^2
= 1 4 9
16 25 36
Power to product in matrix ( cross product )
Answer = X^2 = X*X Must dimension allow
= Error
A = [ 1 2 ; 3 4 ] B = [ 1 -1 ; 2 -2 ]
Power in matrix by matrix
Answer = A.^B
= 1.0000 0.5000
9.0000 0.0625
The determinant in matrix ( | ‫المحددة‬ | )
det (A) = -2
det (B) = 0
A = [ 1 2 ; 3 4 ] Matrix
B = [ 10 -1 2 -2 ] Vector
sum ( Matrix ) Sum elements in each column
sum ( A ) = 4 6
But in vector the sum for row
sum ( B ) = 9
A = [ 1 2 5 ; 0 1 7 ; 2 3 4 ]
rank ( Matrix ) provides an estimate of the number of linearly independent
rows or columns of matrix.
rank ( A ) = 3
trace ( Matrix ) Sum of the diagonal elements
trace ( A ) = 6
pascal ( N ) Make random square matrix like magic (N)
N : number of row or column
pascal (3) = 1 1 1
1 2 3
1 3 6
diag ( A ) It is main diagonal elements of matrix
A = [ 1 2 5 ; 0 1 7 ; 6 2 3 ]
diag ( A ) = 1
1
3
Remember trace ( A ) get the sum of diag ( A ) = 5
GRAPHICS FUNDAMENTALS
(2D PLOTTING)
X = [ 0 pi/4 pi/2 pi ] Y = sin ( X )
plot ( A , B ) Drawing F(A) horizontal axis and F (B) Vertical axis
plot ( X , Y )
The problem is low
number of data points
no figure .
X vector is 4 points only.
So on Y function.
The solution by increase input data points in X vector by :
X = [ 0 : 0.01 : pi ] ; Y = sin ( X ) ;
plot ( X , Y )
In X vector increase point .Start form 1
to pi using steps 0.01 that data points
( increase accuracy ).
You can put ; after X and Y to don't
print the vector again
X = [ 0 : 1 : 360 ] ; Y = cosd ( X ) ;
plot ( X , Y )
Print sin function start from 0 degree
To 360 degree using 1 degree step.
plot ( X , Y ) = plot ( X , Y ) ;
If you put ; after plot ( X ,Y ) or
don't put the same.
X = [ 0 : 1 : 360 ] ; Y = cosd ( X ) ;
To change color of figure
plot ( X , Y , 'r')
Black ‘k'
Yellow ‘y'
Magenta ‘m'
Cyan ‘c'
Red 'r'
Green ‘g'
Blue ‘b'
X = [ 0 : 1 : 360 ] ; Y = cosd ( X ) ;
To draw grid on figure:
grid on
To turn of the grid:
grid off
Line marking:
Change line to be . + * o >
Put after color in the ‘ '
plot ( X , Y , 'r+')
+ plus sign
o circle
* asterisk
. Point
x cross
s square
d diamond
^ upward pointing triangle
v downward pointing triangle
> right pointing triangle
< left pointing triangle
p five-pointed star (pentagram)
h six-pointed star (hexagram)
Line Styles:
- solid line (default)
-- dashed line
: dotted line
-. dash-dot line
plot ( X , Y , '- - ' )
You can use line style or line mark
without color and can use them together
plot ( X , Y , '* - -' )
Multiple plot:
To plot multiple plots on the same
figure use the command:
hold on
X = [ 0 : . 01 : 10 ] ;
Y = X . ^ 2;
A = 3 * X ;
plot ( X , Y , 'r - -' )
hold on
plot ( X , A , 'c ' )
Multiple plot:
To plot multiple plots on the same
figure use the command:
plot (X,Y,A ,B)
grid on
X = [ 0 : . 01 : 10 ] ;
Y = X . ^ 2 ;
A = 3 * X ;
plot ( X , Y, 'b', X ,A , 'k ')
Adding Titles and Axes Labels :
title xlabel ylabel
grid on
A = [ 0 : . 01 : 10 ] ;
B = A . ^ 3;
plot ( A , B, 'c ')
title (' Two functions ')
xlabel (' A axis ' )
ylabel (' B axis ' )
Don't forget ' ' around text
Legend:
Legend is used when dealing
with multiple plots.
A = [ 0 : . 01 : 10 ] ;
B = A . ^ 2;
C = sqrt ( A ) ;
plot(A ,B, 'r ',A , C , 'g --') ;
legend ( 'square', 'root') ;
Square : first plot < A , B >
Root : second plot < A , C >
legend
subplot ( A , B , C ):
Divide the MATLAB plot window into sub-plot windows
A : number of rows.
B : number of columns.
C : wanted plot to drawing.
X = [ 0:0.01: 2*pi];
Y = sin (X );
s u bplot(1 , 2,1)
p l ot( X ,Y, 'r')
Z = X .^ 3;
s u bplot(1 , 2,2)
p l ot( X ,Z, 'k')
linewidth:
Change line style or line mark line size by :
plot(x,y,'linewidth',2)
plot(X,Y,'g-','linewidth',3)
fontsize:
Change title , xlabel or ylabel font size by :
title ( ' Sample Plot ' ,'fontsize', 14 ) ;
xlabel ( ' X values ' , ' fontsize ' , 14 ) ;
ylabel ( ' Y values ' , ' fontsize ' , 14 ) ;
FUNCTION PLOT
Function plot:
fplot ( @X , [ A Z ] , 'r--+')
X : standard function to drawing
( sin exp sind acos sqrt log )
A : start substitution
Z : end substitution
fplot ( @sin , [ 0 2*pi ] , 'm--')
Function plot:
You can use:
fplot ( 'X' , [ A Z ] , 'r--+')
But will get warning
fplot ( 'sin' , [ 0 2*pi ] , 'm--')
Function plot:
Draw without period
fplot ( @X ,'r--+')
fplot ( 'X' ,'r--+')
fplot ( @exp , 'm')
fplot ( 'exp' , 'm')
Multi-Function plot:
fplot ( @(X)f(X)+g(X) ,[A Z],'r --+')
fplot ( 'f(X)+g(X)' ,[A Z],'r--+')
fplot (@(x)exp(x)-x-2,[-3 3])
fplot ('exp(x)-x-2',[-3 3])
Multi-Function plot:
fplot ( @(X)f(X).*g(X) ,[A Z],'r --+')
fplot ( '(X)f(X)*g(X)' ,[A Z],'r--+')
fplot (@(x)exp(-x).*sin(x),[0 pi])
fplot ('exp(-x)*sin(x)',[0 pi])
Multi-Function plot:
fplot ( @(X)f(X).*g(X) ,[A Z],'r --+')
fplot ( '(X)f(X)*g(X)' ,[A Z],'r--+')
fplot ( @(X)X^+2*X+1 ,[0 20],'r--')
figure : This command make new figure to draw new plot.
X=[ 0 : 1 : 360 ];
Y = sind (X);
Z = cosd (X);
plot(X,Y)
grid on
figure
plot(X,Z)
grid on
Figure 1 Figure 2
GRAPHICS FUNDAMENTALS
(3D PLOTTING)
plot3 (A,B,C,'r--')
t = 0 : .01 : 1;
x = t + 2 ;
y = t - 2 ;
z = t ;
plot3 (x,y,z,'r--')
Plot 3D :
t = -pi:0.01:pi;
X = ones ( length (t) );
Y =5*cos(t);
Z =5*sin(t);
plot3 (X,Y,Z, 'r.')
grid on
Plot 3D :
t= 0 : 0.01 : 10*pi ;
X = cos (t) ;
Y = sin (t) ;
Z = t ;
plot3 (X,Y,Z, 'g','linewidth',3)
grid on
Plot 3D :
X = 0:0.01:3*pi ;
Y1 = zeros (size(X));
Y2 = ones (size(X));
Z1 = sin(X) ;
Z2 = cos(X) ;
plot3 ( X, Y1 , Z1 , 'r' , X ,Y2 , Z2 , 'g' )
grid on
GRAPHICS FUNDAMENTALS
(MESH - SURFACE)
meshgrid ( A , B )
A = -10 : .01 : 10;
B = -10 : .01 : 10;
[ X , Y ] =meshgrid (A ,B);
C = X.^2 + Y.^2;
mesh ( X , Y , C )
grid on
PROGRAMMING
M - FILE
To make m-file press N + ctrl or select New then script .
First rule in programming end every command with ;
X = input (' Text ') ; To receive value form user
X = input (' Text ' , 's') ; To receive text form user
X : The variable that the input will be saved in it.
Text : Told user what to enter.
X = input (' Enter the temperature ') ; Enter 2023
X = input (' Enter your name ' , 's') ; Enter Ahmed
Print text or print variable:
disp ( X ); Print the saved value in variable X
disp ( 'X' ); Print X letter
Area = 2 * pi * 10;
disp ( area ); Print 62.831853
disp ( 'area' ); Print area
You can not print variable and text together
Commands:
%
Any thing will be writhen after % called comment and will not read from matlab
% Matlab is big program
n Get new line (should put it every display command)
disp ( 'area n of circle' ); Print area
of circle
Area = 62.831853 length= 20
If you print integer number use %d else if float number use %f
fprintf ('the area of circle = %f - %d n' , Area, length);
the area of circle = 62.831853 , 20
fprintf ('% 12.3 f ' , Area);
12 Present on space in printing
.3 Present number of fractions after . In float numbers
fprintf ('the area of circle = %0.2f n' , Area);
the area of circle = 62.83
If statement:
if condition
Statement;
elseif condition
Statement;
else
Statement;
end
Result
Price=input('Enter the price=n');
if Price == 2000
Discount = .5;
elseif Price >1000
Discount = .3;
else
Discount = .1;
end
Price = Price – Price * Discount;
price == 2000 used to check equal
for statement:
for variable = condition
Statement;
end
condition : initial value : increment : end value
Result = 1; Factorial command
for X = 1 : 5
Result = Result * X;
end
i =input('Enter number of rows=n');
j =input('Enter number of columns=n');
for A = 1 : i
for B = 1 : j
X( A , B )=input('Enter the value =n');
end
end
disp(X)
while statement:
while condition
Statement;
end
N=input('Enter the number =n'); Result = 1; Factorial command
while N > 1
Result = Result *N;
N=N-1;
end
disp ( Result ) -> 120 if N = 5
switch statement:
switch condition
case 1
Statement;
case 2
Statement;
otherwise
Statement;
end
X=input(‘Enter the case number =n’);
switch X
case 1
disp (' one ');
case 2
disp (' two ');
otherwise
disp (' error ');
end
X=input('Enter the case letter =n','s');
switch X
case 'A'
disp (' a letter ');
case 'B'
disp (' B letter ');
otherwise
disp (‘ error ');
end
Break:
Use break to exit the loop ( for , while ).
for i = 1 : 360
X = sind(i);
if(X==1)
break;
end
end
fprintf (' X = %d n Angle = %d degree n', X , i );
To make function-file select New then function.
function [outputArg1,outputArg2] = untitled (inputArg1,inputArg2)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
outputArg1 = inputArg1;
outputArg2 = inputArg2;
end
First look when open function file
untitled title of function
outputArg1,outputArg2 Outputs
inputArg1,inputArg2 Inputs
function [Area_of_circle] = Area(Diameter)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
format long
Area_of_circle = (Diameter^2)*.25 * pi;
end
Function called Area calculate area of circle by one input Diameter and one output
Area_of_circle
Area (10) Calling in command
ans = 78.539816339744831
function [Area , Distance] = Circle(Diameter)
% Area of circle Function calculate Area and Circumference
% Distance : Circumference of circle
Area = (Diameter ^ 2 )*.25*pi;
Distance = Diameter*pi;
end
Use next expression when have two or more outputs
[ Area Distance ] = Circle (10)
Area =
78.5398
Distance =
31.4159
Symbols in matlab:
syms X Y Z T Define symbols
A = X^2 – 2*X +1
B = X^2 - 16
C = X^3 + X^2 + 2*X +1
solve ( Equation == 0 ) Solving equations for all degrees
But must define symbols at first syms X
solve ( X - 1 == 0) >>> X = 1
solve (X^2 - 10*X + 16 == 0) >>> X= 2 8
Solving equations together:
Define symbols then put the unknown symbols in [ ] then equal it to
solve (equations in one side equal to zero )
Solve A = X - Y = 6 , B = X + Y = -2
syms X Y
[ X Y ] = solve ( X - Y - 6 , X + Y + 2 )
X = 2 Y = - 4
Differentiation:
Define symbols then diff ( Equation )
syms x
Y = x^3 + x^2 + 2*x +1
diff ( Y )
Answer = 3*x^2 + 2*x + 2
By default matlab differentiate for x ( small letter )
Differentiation for any symbol and more than one:
syms X
Y = X^3 + X^2 + 2*X +1
diff ( Y , X ) Differentiate for X symbol
Answer = 3*X^2 + 2*X + 2
diff ( Y , 2 ) or diff ( diff ( Y ) ) Differentiate twice
Answer = 6*X + 2
Substitution in Differentiation:
subs ( Answer , [ A B X ] , [ 1 2 3] )
syms X A B
Y = A*X^3 + B*X^2 + 2*X +1
Answer = diff ( Y , X )
Answer = 3*A*X^2 + 2*B*X + 2
subs ( Answer , [ A B X ] , [ 1 2 3] )
ans = 41
Simple in Differentiation:
simplify ( Answer ) Simple the answer of differentiation
syms X
Y = X^3 * exp ( - X^2) * sin ( X )
Answer = diff ( Y , X )
Answer = X^3*exp (-X^2)*cos(X) + 3*X^2*exp (-X^2)*sin(X) - 2*X^4*exp(-
X^2)*sin(X)
simplify ( Answer )
ans = X^2*exp(-X^2)*(3*sin(X) + X*cos (X) - 2*X^2*sin(X))
Expand in Differentiation:
expand ( Answer ) Expand the answer of differentiation
Answer = X^2*exp(-X^2)*(3*sin(X) + X*cos (X) - 2*X^2*sin(X))
expand ( Answer )
Answer = X^3*exp (-X^2)*cos(X) + 3*X^2*exp (-X^2)*sin(X) - 2*X^4*exp(-
X^2)*sin(X)
Integration:
Define symbols then int ( Equation )
syms x
Y = x^3 + x^2 + 2*x +1
int ( Y )
Answer = x^4/4 + x^3/3 + x^2 + x
By default matlab integrate for x ( small letter )
Integration for any variable :
int ( Equation , Integration for )
syms X Y
F = Y*X^3 + + Y^2+X^2 + 2*Y^3*X +1
int ( F , Y )
Answer = (X*Y^4)/2 + Y^3/3 + Y*(X^2 + 1) + (X^3*Y^2)/2
For integration more than one time:
int ( int ( F ) )
Answer = (X^5*Y)/20 + X^2*(Y^2/2 + 1/2) + X^4/12 + (X^3*Y^3)/3
Substitution in integration :
int ( Equation , Integration for , Star , End )
syms X
Y = 3*X^2 + 2*X + 1
int ( Y , X , 0 , 1 )
Answer = 3
You can use command subs ( ) :
subs ( Answer , [ X ] , [ 1 ] ) - subs ( Answer , [ X ] , [ 0 ] )
Integration for X then for Y and substitution:
syms X Y
F = Y*X^3 + Y^2 + X^2 + 2*Y^3*X +1
int ( int ( F , X , 0 , 1 ) , Y , 0 , 2 )
Answer = 59/6
Wil integrate F for X and substitution form 0 to 1 then integrate answer for Y
and substitution form 0 to 2
Limits:
Define symbols then limit ( Equation , limit by , limit to )
syms X
Y = sin ( X ) / X
limit ( Y , X , 0 )
Answer = 1
By default matlab do limits without define ( limit by ) if there are one symbol
in equation only ( Equation has X or Y not X and Y )
limit ( Y , 0 )
Partial fraction for numerical:
[ C , D , E ] = residue ( A , B )
A = [ - 4 8 ];
B = [ 1 6 8 ];
[ C D E ] = residue ( A , B )
C = - 12 8 D = - 4 - 2 E = []
You can change A,B,C,D and E with any symbols but the arrangement
required the first is numerator and the second is maqam.
[ r p k ] = residue ( b , a ) == [ C D E ] = residue ( A , B )
When define A and B must arrange power and if power missed equal zero
Y = (x^2+5)/(x^3+2*x)
A = [ 1 0 1 ] ;
B = [ 1 0 2 0 ] ;
[C D E] = residue ( A , B )
C = 0.2500 0.2500 0.5000
D = 0.0000 + 1.4142i 0.0000 - 1.4142i 0.0000 + 0.0000i
E = [ ]
The unification of the stations:
[ A , B ] = residue ( C , D , E )
Must C and D vertical matrix (one column))
C = [ - 12 ; 8 ];
D = [ - 4 ; - 2 ];
E = [];
[ A B ] = residue (C , D , E )
A = - 4 8 B = 1 6 8
Partial fraction for symbols:
syms X
A = - 4*X+8 ;
B = X^2+6*X+8 ;
diff ( int ( A / B ) )
Answer = 8/(X + 2) - 12/(X + 4)
More better diff ( int ( A / B , X ) , X )
Differential equation:
dsolve ('equation')
y’’ + 5* y’ + 8* y =10
D2y+6*Dy+8*y=10
dsolve ('D2y+6*Dy+8*y=10')
Answer = C2*exp(-2*t) + C1*exp (-4*t) + 5/4
Substitution in differential equation:
dsolve (' Equation ','y(0)=0')
y’’ + 5* y’ + 8* y =10
D2y+6*Dy+8*y=10
dsolve ('D2y+6*Dy+8*y=10',‘y(0)=0',‘y(1)=1')
Answer = 5/4 - (exp(-4*t)*(5*exp(2) - exp(4)))/(4*(exp(2) - 1)) - (exp(-
2*t)*(exp(4) - 5))/(4*(exp(2) - 1))

Matlab level 1.pptx

  • 1.
  • 2.
    inf infinity pi Ratioof circle exp ( degree ) Exponential sin (radian) cos (radian) tan (radian) sind (degree) cosd(degree) tand (degree) X = 3 + 4i real ( X ) = 3 imag ( X ) = 4 abd ( X ) = 5 angle ( X ) = 0.9273 Angle in radian conj ( X ) = 3.0000 - 4.0000i
  • 3.
    asin (Value) Inversesin acos (Value) Inverse cos atan (Value) Inverse tan sec cosec cot sinh cosh tanh sech cosech coth Can add ( d ) to use in degree or add ( a ) in first to get inverse sqrt ( Value ) Root log ( Value ) Ln log10 ( Value ) factorial ( Value ) round ( Value ) Closest number for value
  • 4.
    Format long increaseaccuracy of number Format short decrease accuracy of number round ( Value ) Round nearest integer  .5 fix ( Value ) Round toward zero ceil ( Value ) Round toward infinity floor ( Value ) Round toward minus infinity rem ( X , Y ) Returns the remainder sign ( X ) sign function. [ X>0 -> 1 , X<0 -> -1 , X=0 -> 0 ]
  • 5.
    clc Clean commandwindow clear Delete all variable clear all Delete all variable clear A Delete variable A only who Show all variables & = and ( x , y ) And ~ = not( x ) Not | = or( x , y ) Or xor ( x, y ) Xor
  • 6.
  • 7.
    Vector = [a(1) a(2) a(3) a(4) a(5) ] Define vector by elements X = [ 12 8 2 34 0 ] X = [ A : B : C ] Define vector by steps A : first element B : steps of counter C : last element X = [ 1 : 2 : 5 ] X = 1 3 5 X = [ 1 : 5 ] Define with one step by default X = 1 2 3 4 5
  • 8.
    If you writeX = [ 12 8 2 34 0 ] on command window without ; (semi Colom) Matlab will print it . X = [ 12 8 2 34 0 ] X = 12 8 2 34 0 But if write X = [ 12 8 2 34 0 ] ; ( with semi Colom ) the matlab will not print it. X = [ 12 8 2 34 0 ] ;
  • 9.
    Print vector X =[ 0 1 2 3 4 ] answer = X ( 1 ) print element a( 1 ) = 0 answer = X ( 1 : 4 ) print from elements from 0 to 3 answer = X ( 1 : end ) print from elements from 0 to 4 answer = X ( 1 : end - 1 ) print from elements from 0 to 3
  • 10.
  • 11.
    X = [1 2 3 ] Y = [ 4 5 6 ] prod ( X ) Product all elements of vector Answer = prod ( X ) = 1 * 2 * 3 * 4 = 24 dot ( X , Y ) Dot product of two vectors Answer = 1*4 + 2*5 + 3*6 = 32 cross ( X , Y ) Cross product of two vectors Answer = -3 6 -3 Sum (X) To sum all elements in matrix Answer = 6
  • 12.
    linspace ( A, B , C ) generates C points between A and B A : first element B : last element C : number of elements X = linspace ( 0 , 1 , 5 ) = 0 0.2500 0.5000 0.7500 1.0000 X = linspace ( 0 , 1 , 6 ) = 0 0.2000 0.4000 0.6000 0.8000 1.0000
  • 13.
    Define matrix X =[ A B C ; D E F ] or X = [ A , B , C ; D , E , F ] X = A B C Semi Colom to make new row D E F X = [ 1 : 0.5 : 2 ; 2 : -0.5 : 1 ] Different way to define X = 1 1.5 2 2 1.5 1
  • 14.
    Print matrix X =[ 1 2 5 ; 0 1 7 ; 2 3 4 ] X (1 , 3) = X ( A ( 1 ) , B ( 3 ) ) = 5 X (end - 1 , end - 2 ) = X ( A ( 2 ) , B ( 1 ) ) = 0 X (end , end) = X ( A ( 3 ) , B ( 3 ) ) = 4
  • 15.
    X = [1 2 5 ; 0 1 7 ; 2 3 4 ] X (1 , 1 : 3 ) = X (1 , : ) = 1 2 5 X (1 , [ 1 3 ] ) = X ( A( 1 ) , B( 1 ) X ( A( 1 ) , B( 3 ) ) = 1 5 X ([ 1 3 ] , [ 1 3 ] ) = 1 5 2 4
  • 16.
    Delete Elements Define byindex number for row or column then equal with [] X = [ 1 2 5 8 ; 0 1 7 2 ; 6 2 3 4 ] X = X (1 , : ) =[] Delete first row = 0 1 7 2 6 2 3 4 X ( : , [ 1 3 ] ) = [] Delete first and third column = 2 8 1 2 2 4
  • 17.
    Add Elements Define byindex number for row or column then equal with elements X = [ 1 2 5 ; 0 1 7 ; 6 2 3 ] X = X ( 4 , : ) = [ 0 0 0 ] Adding row in last = 1 2 5 0 1 7 6 2 3 0 0 0
  • 18.
    Operations on matrix X= [ 1 2 : 3 4 ] Addition on matrix Answer = X + 5 Answer = 6 7 8 9 rand ( A , B ) Make matrix with random values A : Number of rows B : Number of columns X = prod ( 2 , 3 ) 0.8147 0.1270 0.6324 0.9058 0.9134 0.0975
  • 19.
    E–notation E – 1= 0.1 E – 2 = 0.01 9E - 1 = .9 4E - 2 = .04 X = [ 5E-1 7E-2 9e-4] = 0.5000 0.0700 0.0009 It can be e or E
  • 20.
    Complex Numbers •Both iand j are allowed •Don’t write I nor J •Write 3i and don’t write i3 •You can write 3*i or i*3 X = [ 1 + 3i ; 5 - 1i ; 4 + 3j ] 1.0000 + 3.0000i 5.0000 - 1.0000i 4.0000 + 3.0000i
  • 21.
  • 22.
    zeros ( Raw, Column ) Elements of matrix are zeros only X= zeros ( 2 , 3 ) = 0 0 0 0 0 0 ones ( Raw , Column ) Elements of matrix are ones only X= ones ( 1 , 4 ) = 1 1 1 1
  • 23.
    eye( N )Square matrix ( Identity matrix ) X= eye ( 3 ) = 1 0 0 0 1 0 0 0 1 inv ( X ) = X^-1 Inverse the matrix X=[ 1 2 ; 1 6 ] answer= inv ( X ) = 1.5000 -0.5000 -0.2500 0.2500
  • 24.
    magic ( N) Make square matrix with random values X= magic ( 2 ) N : number of raw or column = 1 3 4 2 reshape ( A , B , C ) Reshape the size of matrix A : Name of matrix B : Row of new matrix C : Column of new matrix answer= reshape ( X , 2 ,3 ) // X = [ 1 2 ; 3 4 ; 5 6 ] = 1 5 4 3 2 6
  • 25.
    X = [1 2 3 ; 4 5 6 ] max ( X ) Maximum element in matrix = 6 min ( X ) Minimum element in matrix = 1 size ( X ) Size of matrix = 2 3 2 is raw , 3 is column length ( X ) Number of columns in matrix = 3
  • 26.
    X = [1 2 3 ; 4 5 6 ] fliplr ( X ) Replace columns from left to right = 3 2 1 6 5 4 flipud ( X ) Replace rows from up to down = 4 5 6 1 2 3
  • 27.
    X = [1 2 3 ; 4 5 6 ] transpose ( X ) = X ' Make rows to columns = 1 4 2 5 3 6 rot90 ( X ) Rotate matrix 90 degree anti-clockwise = 3 6 2 5 1 4
  • 28.
    X = [1 2 ; 4 5 ] Y = [ 6 7 ; 8 9 ] Product matrix element by element (square element) Answer = X . * Y = 6 1 4 3 2 4 5 Division in matrix element by element Answer = X . / Y = 0.1667 0.2857 0.5000 0.5556
  • 29.
    X = [1 2 ; 4 5 ] Product and matrix ( cross product ) X*X = X^2 = 7 1 0 1 5 2 2 Product matrix by number Answer = X * 2 = 2 4 6 8
  • 30.
    X = [1 2 ; 4 5 ] Division in matrix by number (using / ) Answer = X / 2 = 0.5000 1.0000 1.5000 2.0000 Division in matrix to solve equations (using ) By invers matrix ( power -1 ) x + y = 2 x - y = 0
  • 31.
    A ^ -1 * B = inv( A ) * B = A B is up of enter key B * A ^ - 1 = B * inv( A ) = B A A X B A = [ 1 1 ; 1 -1 ] B = [ 2 ; 0 ] X = A B = inv (A) * B answer = 1 x=1 y=1 1
  • 32.
    X = [1 2 3 ; 4 5 6 ] Power in matrix power elements Answer = X.^2 = 1 4 9 16 25 36 Power to product in matrix ( cross product ) Answer = X^2 = X*X Must dimension allow = Error
  • 33.
    A = [1 2 ; 3 4 ] B = [ 1 -1 ; 2 -2 ] Power in matrix by matrix Answer = A.^B = 1.0000 0.5000 9.0000 0.0625 The determinant in matrix ( | ‫المحددة‬ | ) det (A) = -2 det (B) = 0
  • 34.
    A = [1 2 ; 3 4 ] Matrix B = [ 10 -1 2 -2 ] Vector sum ( Matrix ) Sum elements in each column sum ( A ) = 4 6 But in vector the sum for row sum ( B ) = 9
  • 35.
    A = [1 2 5 ; 0 1 7 ; 2 3 4 ] rank ( Matrix ) provides an estimate of the number of linearly independent rows or columns of matrix. rank ( A ) = 3 trace ( Matrix ) Sum of the diagonal elements trace ( A ) = 6
  • 36.
    pascal ( N) Make random square matrix like magic (N) N : number of row or column pascal (3) = 1 1 1 1 2 3 1 3 6 diag ( A ) It is main diagonal elements of matrix A = [ 1 2 5 ; 0 1 7 ; 6 2 3 ] diag ( A ) = 1 1 3 Remember trace ( A ) get the sum of diag ( A ) = 5
  • 37.
  • 38.
    X = [0 pi/4 pi/2 pi ] Y = sin ( X ) plot ( A , B ) Drawing F(A) horizontal axis and F (B) Vertical axis plot ( X , Y ) The problem is low number of data points no figure . X vector is 4 points only. So on Y function.
  • 39.
    The solution byincrease input data points in X vector by : X = [ 0 : 0.01 : pi ] ; Y = sin ( X ) ; plot ( X , Y ) In X vector increase point .Start form 1 to pi using steps 0.01 that data points ( increase accuracy ). You can put ; after X and Y to don't print the vector again
  • 40.
    X = [0 : 1 : 360 ] ; Y = cosd ( X ) ; plot ( X , Y ) Print sin function start from 0 degree To 360 degree using 1 degree step. plot ( X , Y ) = plot ( X , Y ) ; If you put ; after plot ( X ,Y ) or don't put the same.
  • 41.
    X = [0 : 1 : 360 ] ; Y = cosd ( X ) ; To change color of figure plot ( X , Y , 'r') Black ‘k' Yellow ‘y' Magenta ‘m' Cyan ‘c' Red 'r' Green ‘g' Blue ‘b'
  • 42.
    X = [0 : 1 : 360 ] ; Y = cosd ( X ) ; To draw grid on figure: grid on To turn of the grid: grid off Line marking: Change line to be . + * o > Put after color in the ‘ ' plot ( X , Y , 'r+')
  • 43.
    + plus sign ocircle * asterisk . Point x cross s square d diamond ^ upward pointing triangle v downward pointing triangle > right pointing triangle < left pointing triangle p five-pointed star (pentagram) h six-pointed star (hexagram)
  • 44.
    Line Styles: - solidline (default) -- dashed line : dotted line -. dash-dot line plot ( X , Y , '- - ' ) You can use line style or line mark without color and can use them together plot ( X , Y , '* - -' )
  • 45.
    Multiple plot: To plotmultiple plots on the same figure use the command: hold on X = [ 0 : . 01 : 10 ] ; Y = X . ^ 2; A = 3 * X ; plot ( X , Y , 'r - -' ) hold on plot ( X , A , 'c ' )
  • 46.
    Multiple plot: To plotmultiple plots on the same figure use the command: plot (X,Y,A ,B) grid on X = [ 0 : . 01 : 10 ] ; Y = X . ^ 2 ; A = 3 * X ; plot ( X , Y, 'b', X ,A , 'k ')
  • 47.
    Adding Titles andAxes Labels : title xlabel ylabel grid on A = [ 0 : . 01 : 10 ] ; B = A . ^ 3; plot ( A , B, 'c ') title (' Two functions ') xlabel (' A axis ' ) ylabel (' B axis ' ) Don't forget ' ' around text
  • 48.
    Legend: Legend is usedwhen dealing with multiple plots. A = [ 0 : . 01 : 10 ] ; B = A . ^ 2; C = sqrt ( A ) ; plot(A ,B, 'r ',A , C , 'g --') ; legend ( 'square', 'root') ; Square : first plot < A , B > Root : second plot < A , C > legend
  • 49.
    subplot ( A, B , C ): Divide the MATLAB plot window into sub-plot windows A : number of rows. B : number of columns. C : wanted plot to drawing. X = [ 0:0.01: 2*pi]; Y = sin (X ); s u bplot(1 , 2,1) p l ot( X ,Y, 'r') Z = X .^ 3; s u bplot(1 , 2,2) p l ot( X ,Z, 'k')
  • 50.
    linewidth: Change line styleor line mark line size by : plot(x,y,'linewidth',2) plot(X,Y,'g-','linewidth',3) fontsize: Change title , xlabel or ylabel font size by : title ( ' Sample Plot ' ,'fontsize', 14 ) ; xlabel ( ' X values ' , ' fontsize ' , 14 ) ; ylabel ( ' Y values ' , ' fontsize ' , 14 ) ;
  • 51.
  • 52.
    Function plot: fplot (@X , [ A Z ] , 'r--+') X : standard function to drawing ( sin exp sind acos sqrt log ) A : start substitution Z : end substitution fplot ( @sin , [ 0 2*pi ] , 'm--')
  • 53.
    Function plot: You canuse: fplot ( 'X' , [ A Z ] , 'r--+') But will get warning fplot ( 'sin' , [ 0 2*pi ] , 'm--')
  • 54.
    Function plot: Draw withoutperiod fplot ( @X ,'r--+') fplot ( 'X' ,'r--+') fplot ( @exp , 'm') fplot ( 'exp' , 'm')
  • 55.
    Multi-Function plot: fplot (@(X)f(X)+g(X) ,[A Z],'r --+') fplot ( 'f(X)+g(X)' ,[A Z],'r--+') fplot (@(x)exp(x)-x-2,[-3 3]) fplot ('exp(x)-x-2',[-3 3])
  • 56.
    Multi-Function plot: fplot (@(X)f(X).*g(X) ,[A Z],'r --+') fplot ( '(X)f(X)*g(X)' ,[A Z],'r--+') fplot (@(x)exp(-x).*sin(x),[0 pi]) fplot ('exp(-x)*sin(x)',[0 pi])
  • 57.
    Multi-Function plot: fplot (@(X)f(X).*g(X) ,[A Z],'r --+') fplot ( '(X)f(X)*g(X)' ,[A Z],'r--+') fplot ( @(X)X^+2*X+1 ,[0 20],'r--')
  • 58.
    figure : Thiscommand make new figure to draw new plot. X=[ 0 : 1 : 360 ]; Y = sind (X); Z = cosd (X); plot(X,Y) grid on figure plot(X,Z) grid on Figure 1 Figure 2
  • 59.
  • 60.
    plot3 (A,B,C,'r--') t =0 : .01 : 1; x = t + 2 ; y = t - 2 ; z = t ; plot3 (x,y,z,'r--')
  • 61.
    Plot 3D : t= -pi:0.01:pi; X = ones ( length (t) ); Y =5*cos(t); Z =5*sin(t); plot3 (X,Y,Z, 'r.') grid on
  • 62.
    Plot 3D : t=0 : 0.01 : 10*pi ; X = cos (t) ; Y = sin (t) ; Z = t ; plot3 (X,Y,Z, 'g','linewidth',3) grid on
  • 63.
    Plot 3D : X= 0:0.01:3*pi ; Y1 = zeros (size(X)); Y2 = ones (size(X)); Z1 = sin(X) ; Z2 = cos(X) ; plot3 ( X, Y1 , Z1 , 'r' , X ,Y2 , Z2 , 'g' ) grid on
  • 64.
  • 65.
    meshgrid ( A, B ) A = -10 : .01 : 10; B = -10 : .01 : 10; [ X , Y ] =meshgrid (A ,B); C = X.^2 + Y.^2; mesh ( X , Y , C ) grid on
  • 66.
  • 67.
    To make m-filepress N + ctrl or select New then script . First rule in programming end every command with ; X = input (' Text ') ; To receive value form user X = input (' Text ' , 's') ; To receive text form user X : The variable that the input will be saved in it. Text : Told user what to enter. X = input (' Enter the temperature ') ; Enter 2023 X = input (' Enter your name ' , 's') ; Enter Ahmed
  • 68.
    Print text orprint variable: disp ( X ); Print the saved value in variable X disp ( 'X' ); Print X letter Area = 2 * pi * 10; disp ( area ); Print 62.831853 disp ( 'area' ); Print area You can not print variable and text together
  • 69.
    Commands: % Any thing willbe writhen after % called comment and will not read from matlab % Matlab is big program n Get new line (should put it every display command) disp ( 'area n of circle' ); Print area of circle
  • 70.
    Area = 62.831853length= 20 If you print integer number use %d else if float number use %f fprintf ('the area of circle = %f - %d n' , Area, length); the area of circle = 62.831853 , 20 fprintf ('% 12.3 f ' , Area); 12 Present on space in printing .3 Present number of fractions after . In float numbers fprintf ('the area of circle = %0.2f n' , Area); the area of circle = 62.83
  • 71.
    If statement: if condition Statement; elseifcondition Statement; else Statement; end Result
  • 72.
    Price=input('Enter the price=n'); ifPrice == 2000 Discount = .5; elseif Price >1000 Discount = .3; else Discount = .1; end Price = Price – Price * Discount; price == 2000 used to check equal
  • 73.
    for statement: for variable= condition Statement; end condition : initial value : increment : end value Result = 1; Factorial command for X = 1 : 5 Result = Result * X; end
  • 74.
    i =input('Enter numberof rows=n'); j =input('Enter number of columns=n'); for A = 1 : i for B = 1 : j X( A , B )=input('Enter the value =n'); end end disp(X)
  • 75.
    while statement: while condition Statement; end N=input('Enterthe number =n'); Result = 1; Factorial command while N > 1 Result = Result *N; N=N-1; end disp ( Result ) -> 120 if N = 5
  • 76.
    switch statement: switch condition case1 Statement; case 2 Statement; otherwise Statement; end
  • 77.
    X=input(‘Enter the casenumber =n’); switch X case 1 disp (' one '); case 2 disp (' two '); otherwise disp (' error '); end
  • 78.
    X=input('Enter the caseletter =n','s'); switch X case 'A' disp (' a letter '); case 'B' disp (' B letter '); otherwise disp (‘ error '); end
  • 79.
    Break: Use break toexit the loop ( for , while ). for i = 1 : 360 X = sind(i); if(X==1) break; end end fprintf (' X = %d n Angle = %d degree n', X , i );
  • 80.
    To make function-fileselect New then function. function [outputArg1,outputArg2] = untitled (inputArg1,inputArg2) %UNTITLED Summary of this function goes here % Detailed explanation goes here outputArg1 = inputArg1; outputArg2 = inputArg2; end First look when open function file untitled title of function outputArg1,outputArg2 Outputs inputArg1,inputArg2 Inputs
  • 81.
    function [Area_of_circle] =Area(Diameter) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here format long Area_of_circle = (Diameter^2)*.25 * pi; end Function called Area calculate area of circle by one input Diameter and one output Area_of_circle Area (10) Calling in command ans = 78.539816339744831
  • 82.
    function [Area ,Distance] = Circle(Diameter) % Area of circle Function calculate Area and Circumference % Distance : Circumference of circle Area = (Diameter ^ 2 )*.25*pi; Distance = Diameter*pi; end Use next expression when have two or more outputs [ Area Distance ] = Circle (10) Area = 78.5398 Distance = 31.4159
  • 83.
    Symbols in matlab: symsX Y Z T Define symbols A = X^2 – 2*X +1 B = X^2 - 16 C = X^3 + X^2 + 2*X +1 solve ( Equation == 0 ) Solving equations for all degrees But must define symbols at first syms X solve ( X - 1 == 0) >>> X = 1 solve (X^2 - 10*X + 16 == 0) >>> X= 2 8
  • 84.
    Solving equations together: Definesymbols then put the unknown symbols in [ ] then equal it to solve (equations in one side equal to zero ) Solve A = X - Y = 6 , B = X + Y = -2 syms X Y [ X Y ] = solve ( X - Y - 6 , X + Y + 2 ) X = 2 Y = - 4
  • 85.
    Differentiation: Define symbols thendiff ( Equation ) syms x Y = x^3 + x^2 + 2*x +1 diff ( Y ) Answer = 3*x^2 + 2*x + 2 By default matlab differentiate for x ( small letter )
  • 86.
    Differentiation for anysymbol and more than one: syms X Y = X^3 + X^2 + 2*X +1 diff ( Y , X ) Differentiate for X symbol Answer = 3*X^2 + 2*X + 2 diff ( Y , 2 ) or diff ( diff ( Y ) ) Differentiate twice Answer = 6*X + 2
  • 87.
    Substitution in Differentiation: subs( Answer , [ A B X ] , [ 1 2 3] ) syms X A B Y = A*X^3 + B*X^2 + 2*X +1 Answer = diff ( Y , X ) Answer = 3*A*X^2 + 2*B*X + 2 subs ( Answer , [ A B X ] , [ 1 2 3] ) ans = 41
  • 88.
    Simple in Differentiation: simplify( Answer ) Simple the answer of differentiation syms X Y = X^3 * exp ( - X^2) * sin ( X ) Answer = diff ( Y , X ) Answer = X^3*exp (-X^2)*cos(X) + 3*X^2*exp (-X^2)*sin(X) - 2*X^4*exp(- X^2)*sin(X) simplify ( Answer ) ans = X^2*exp(-X^2)*(3*sin(X) + X*cos (X) - 2*X^2*sin(X))
  • 89.
    Expand in Differentiation: expand( Answer ) Expand the answer of differentiation Answer = X^2*exp(-X^2)*(3*sin(X) + X*cos (X) - 2*X^2*sin(X)) expand ( Answer ) Answer = X^3*exp (-X^2)*cos(X) + 3*X^2*exp (-X^2)*sin(X) - 2*X^4*exp(- X^2)*sin(X)
  • 90.
    Integration: Define symbols thenint ( Equation ) syms x Y = x^3 + x^2 + 2*x +1 int ( Y ) Answer = x^4/4 + x^3/3 + x^2 + x By default matlab integrate for x ( small letter )
  • 91.
    Integration for anyvariable : int ( Equation , Integration for ) syms X Y F = Y*X^3 + + Y^2+X^2 + 2*Y^3*X +1 int ( F , Y ) Answer = (X*Y^4)/2 + Y^3/3 + Y*(X^2 + 1) + (X^3*Y^2)/2 For integration more than one time: int ( int ( F ) ) Answer = (X^5*Y)/20 + X^2*(Y^2/2 + 1/2) + X^4/12 + (X^3*Y^3)/3
  • 92.
    Substitution in integration: int ( Equation , Integration for , Star , End ) syms X Y = 3*X^2 + 2*X + 1 int ( Y , X , 0 , 1 ) Answer = 3 You can use command subs ( ) : subs ( Answer , [ X ] , [ 1 ] ) - subs ( Answer , [ X ] , [ 0 ] )
  • 93.
    Integration for Xthen for Y and substitution: syms X Y F = Y*X^3 + Y^2 + X^2 + 2*Y^3*X +1 int ( int ( F , X , 0 , 1 ) , Y , 0 , 2 ) Answer = 59/6 Wil integrate F for X and substitution form 0 to 1 then integrate answer for Y and substitution form 0 to 2
  • 94.
    Limits: Define symbols thenlimit ( Equation , limit by , limit to ) syms X Y = sin ( X ) / X limit ( Y , X , 0 ) Answer = 1 By default matlab do limits without define ( limit by ) if there are one symbol in equation only ( Equation has X or Y not X and Y ) limit ( Y , 0 )
  • 95.
    Partial fraction fornumerical: [ C , D , E ] = residue ( A , B ) A = [ - 4 8 ]; B = [ 1 6 8 ]; [ C D E ] = residue ( A , B ) C = - 12 8 D = - 4 - 2 E = [] You can change A,B,C,D and E with any symbols but the arrangement required the first is numerator and the second is maqam. [ r p k ] = residue ( b , a ) == [ C D E ] = residue ( A , B )
  • 96.
    When define Aand B must arrange power and if power missed equal zero Y = (x^2+5)/(x^3+2*x) A = [ 1 0 1 ] ; B = [ 1 0 2 0 ] ; [C D E] = residue ( A , B ) C = 0.2500 0.2500 0.5000 D = 0.0000 + 1.4142i 0.0000 - 1.4142i 0.0000 + 0.0000i E = [ ]
  • 97.
    The unification ofthe stations: [ A , B ] = residue ( C , D , E ) Must C and D vertical matrix (one column)) C = [ - 12 ; 8 ]; D = [ - 4 ; - 2 ]; E = []; [ A B ] = residue (C , D , E ) A = - 4 8 B = 1 6 8
  • 98.
    Partial fraction forsymbols: syms X A = - 4*X+8 ; B = X^2+6*X+8 ; diff ( int ( A / B ) ) Answer = 8/(X + 2) - 12/(X + 4) More better diff ( int ( A / B , X ) , X )
  • 99.
    Differential equation: dsolve ('equation') y’’+ 5* y’ + 8* y =10 D2y+6*Dy+8*y=10 dsolve ('D2y+6*Dy+8*y=10') Answer = C2*exp(-2*t) + C1*exp (-4*t) + 5/4
  • 100.
    Substitution in differentialequation: dsolve (' Equation ','y(0)=0') y’’ + 5* y’ + 8* y =10 D2y+6*Dy+8*y=10 dsolve ('D2y+6*Dy+8*y=10',‘y(0)=0',‘y(1)=1') Answer = 5/4 - (exp(-4*t)*(5*exp(2) - exp(4)))/(4*(exp(2) - 1)) - (exp(- 2*t)*(exp(4) - 5))/(4*(exp(2) - 1))