SlideShare a Scribd company logo
Makalah
FUZZY LOGIC DAN PENERAPANNYA
Disusun Oleh:
FIRMAN WAHYUDI (1255201158)
STKIP PGRI SUMENEP
SUMENEP, JATIM
2014-2015
KATA PENGANTAR
Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat dan nikmat
yang telah dilimpahkan kepada penulis, sehingga penulis dapat menyelesaikan makalah yang berjudul
”Fuzzy Logic Dan Penerapannya”.
Terselesainya makalah ini tidak lepas dari dukungan beberapa pihak yang telah memberikan
kepada penulis berupa motivasi, baik materi maupun moril. Oleh karena itu, penulis bermaksud
mengucapkan banyak terima kasih kepada seluruh pihak yang tak dapat saya sebutkan satu persatu,
semua yang telah membantu terselesaikannya makalah ini. Penulis menyadari bahwa penyusunan
makalah ini belum mencapai kesempurnaan, sehingga kritik dan saran yang bersifat membangun sangat
penulis harapkan dari berbagai pihak demi kesempurnaan makalah ini. Akhirnya penulis berharap semoga
makalah ini dapat bermanfaat bagi kita semua.
Sumenep, 29 November 2015
Firman Wahyudi
DAFTAR ISI
Halaman Depan
Kata Pengantar
Daftar Isi
BAB I : PENDAHULUAN
1.1 Latar Belakang Masalah
1.2 Rumusan Masalah
1.3 Pembatasan Masalah
1.4 Tujuan Penulisan
BAB II : PEMBAHASAN
2.1 Pengertian Fuzzy Logic Dan Sejarahnya
2.2 Derajat Kebenaran Dan Variabel Linguistik
2.3 Alasan digunakannya Fuzzy Logic
2.4 Aplikasi Fuzzy Logic
2.5 Perbedaan fuzzy logic dengan crisp logic
2.6 Atribut Dan Himpunan Fuzzy logic
2.7 Database Fuzzy logic
2.8 Contoh sistem fuzzy Logic
2.9 Fuzzyfikasi Dan Defuzzifikasi
2.10 Pemrograman dengan bahasa Assembly
BAB III : PENUTUP
3.1 Kesimpulan
3.2 Saran
Daftar Pustaka
BAB I
PENDAHULUAN
1.1 Latar Belakang Masalah
Logika Fuzzy merupakan suatu logika yang memiliki nilai kekaburan atau kesamaran
(fuzzyness) antara benar atau salah. Dalam logika klasik dinyatakan bahwa segala hal dapat
diekspresikan dalam istilah binary (0 atau 1, hitam atau putih, ya atau tidak), sedangkan logika
fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan
putih, dan dalam bentuk linguistik, konsep tidak pasti seperti "sedikit", "lumayan" dan "sangat".
Logika ini berhubungan dengan himpunan fuzzy dan teori kemungkinan. Logika fuzzy ini
diperkenalkan oleh Dr. Lotfi Zadeh dari Universitas California, Berkeley pada 1965. Logika
fuzzy dapat digunakan dalam bidang teori kontrol, teori keputusan, dan beberapa bagian dalam
managemen sains. Selain itu, kelebihan dari logika fuzzy adalah kemampuan dalam proses penalaran
secara bahasa (linguistic reasoning), sehingga dalam perancangannya tidak memerlukan persamaan
matematik dari objek yang dikendalikan. Adapun salah satu contoh aplikasi logika fuzzy dalam
kehidupan sehari-hari adalah Pada tahun 1990 pertama kali dibuat mesin cuci dengan logika fuzzy di
Jepang (Matsushita Electric Industrial Company). Sistem fuzzy digunakan untuk menentukan putaran
yang tepat secara otomatis berdasarkan jenis dan banyaknya kotoran serta jumlah yang akan dicuci.
Input yang digunakan adalah: seberapa kotor, jenis kotoran, dan banyaknya yang dicuci. Mesin ini
menggunakan sensor optik , mengeluarkan cahaya ke air dan mengukur bagaimana cahaya tersebut
sampai ke ujung lainnya. Makin kotor, maka sinar yang sampai makin redup. Disamping itu, sistem
juga dapat menentukan jenis kotoran (daki atau minyak).
1.2 Rumusan Masalah
1. Apa Pengertian Dari Fuzzy Logic?
2. Bagaimana Sejarah Fuzzy Logic?
3. Apa Perbedaan Fuzzy Logic dengan Crisp Logic?
4. Apakah Himpunan Fuzzy Logic?
5. Apa Fuzzyfikasi dan Defuzzyfikasi itu?
6. Apa Kelebihan Dan Kekurangan Menggunakan Fuzzy Logic?
1.3 Pembatasan Masalah
Adapun pembatasan masalah dalam penulisan tugas ini adalah hanya pada variabel,
keterbatasan dan kekonvekan pada himpunan fuzzy dimensi satu.
1.4 Tujuan Penulisan
a. Memahami Tentang Fuzzy Logic dan penerapannya
b. Memahami Derajat Kebenaran dan Variabel linguistik Fuzzy logic
c. Memahami atribut Fuzzy logic dan Himpunan fuzzy
d. Memahami pengertian Fuzzyfikasi dan Defuzzyfikasi
BAB II
PEMBAHASAN
2.1 Pengertian Fuzzy Logic dan Sejarahnya
Sebelumnya munculnya Teori logika fuzzy (fuzzy logic) dikenal sebuah logika tegas (crisp
Logic) yang memiliki nilai benar atau salah secara tegas. Saat logika klasik menyatakan bahwa
segala hal dapat diekspresikan dalam istilah biner (0 atau 1, hitam atau putih, ya atau tidak),
Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam
dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti "sedikit", "lumayan", dan
"sangat". Logika ini berhubungan dengan set fuzzy dan teori kemungkinan. Logika fuzzy
diperkenalkan oleh Dr. Lotfi Zadeh dari Universitas California, Berkeley pada 1965 atas usulan
dalam papernya yang monumental “Fuzzy Set”. Dalam paper tersebut dipaparkan ide dasar fuzzy
set yang meliputi inclusion, union, intersection, complement, relation dan convexity. Lotfi Zadeh
mengatakan Integrasi Logika Fuzzy kedalam sistem informasi dan rekayasa proses adalah
menghasilkan aplikasi seperti sistem kontrol, alat alat rumah tangga, dan sistem pengambil
keputusan yang lebih fleksibel, mantap, dan canggih dibandingkan dengan sistem konvensional.
Dalam hal ini kami dapat mengatakan bahwa logika fuzzy memimpin dalam pengembangan
kecerdasan mesin yang lebih tinggi ( machine Intelligency Quotient / MIQ ) Produk produk
berikut telah menggunakan logika fuzzy dalam alat alat rumah tangga seperti mesin cuci, video
dan kamera refleksi lensa tunggal, pendingin ruangan, oven microwave, dan banyak sistem
diagnosa mandiri.. Logika fuzzy telah diterapkan pada berbagai bidang, dari teori kontrol untuk
kecerdasan buatan. Logika fuzzy telah diteliti sejak tahun 1920-an, sebagai nilai yang tak
terbatas terutama logika oleh Lukasiewicz dan Tarski.
Jepang adalah negara pertama yang memanfaatkan logika fuzzy untuk aplikasi praktis. Aplikasi
penting pertama adalah di kereta kecepatan tinggi di Sendai, di mana logika fuzzy mampu
meningkatkan ekonomi, kenyamanan, dan ketepatan perjalanan. Hal ini juga telah digunakan
dalam pengakuan simbol tertulis di komputer mini sony; bantuan pesawat helikopter;
mengendalikan sistem kereta bawah tanah dalam rangka meningkatkan kenyamanan berkendara,
ketepatan menghentikan, dan ekonomi kekuasaan; konsumsi hemat energi untuk ponsel
otomatis; kontrol tunggal tombol untuk mesin cuci; kontrol motor otomatis untuk pembersih
vakum dengan pengakuan kondisi permukaan dan tingkat kekotoran; dan sistem prediksi untuk
pengakuan awal dari gempa bumi melalui Institut Seismologi Biro Metrologi, Jepang
2.2 Derajat kebenaran Dan Variabel Linguistik
Logika fuzzy dan logika probabilitas secara matematis sama - keduanya mempunyai nilai
kebenaran yang berkisar antara 0 dan 1 - namun secara konsep berbeda. Logika fuzzy berbicara
mengenai "derajat kebenaran", sedangkan logika probabilitas mengenai "probabilitas,
kecenderungan". Karena kedua hal itu berbeda, logika fuzzy dan logika probabilitas mempunyai
contoh penerapan dalam dunia nyata yang berbeda. Logika klasik hanya mengizinkan proposisi
memiliki nilai kebenaran atau kesalahan. Gagasan 1 + 1 = 2 adalah kebenaran mutlak, kekal dan
matematika. Namun, terdapat proposisi tertentu dengan jawaban variabel, seperti meminta
sebagian orang untuk mengidentifikasi warna. Gagasan kebenaran tidak jatuh di tengah jalan,
tapi lebih pada sarana yang mewakili dan penalaran lebih pengetahuan parsial ketika diberikan,
dengan menggabungkan semua hasil yang mungkin menjadi spektrum dimensi.
dua derajat kebenaran dan probabilitas berkisar antara 0 dan 1 dan karenanya mungkin tampak
serupa pada awalnya. Sebagai contoh, satu segelas 100 ml mengandung 30 ml air. Kemudian
dapat mempertimbangkan dua konsep: kosong dan penuh. Arti dari masing-masing dapat
direpresentasikan oleh himpunan fuzzy tertentu. Maka salah satu mungkin mendefinisikan kaca
sebagai 0,7 kosong dan 0,3 penuh. Perhatikan bahwa konsep kekosongan akan subjektif dengan
demikian akan tergantung pada pengamat atau desainer. Desainer lain mungkin, sama baiknya,
merancang fungsi keanggotaan set di mana kaca akan dianggap penuh untuk semua nilai 50 ml.
Sangat penting untuk menyadari bahwa logika fuzzy menggunakan derajat kebenaran sebagai
model matematika dari fenomena ketidakjelasan sementara probabilitas adalah model
matematika dari ketidaktahuan.
Sebuah dasar aplikasi mungkin memiliki berbagai ciri sub-rentang variabel kontinu. Misalnya,
pengukuran suhu untuk rem anti-lock mungkin memiliki beberapa fungsi keanggotaan terpisah,
rentang suhu tertentu yang diperlukan untuk mengendalikan rem benar. Setiap fungsi nilai suhu
yang sama untuk nilai kebenaran dalam jangkauan 0-1. Nilai kebenaran ini kemudian dapat
digunakan untuk menentukan bagaimana rem harus dikontrol.
Dalam gambar ini, arti dari ekspresi dingin, hangat, dan panas yang diwakili oleh fungsi
pemetaan skala suhu. Sebuah titik pada skala yang memiliki tiga "nilai kebenaran" - satu untuk
masing-masing dari tiga fungsi. Garis vertikal pada gambar mewakili suhu tertentu bahwa tiga
anak panah (nilai kebenaran) gauge. Karena panah merah poin ke nol, suhu ini dapat ditafsirkan
sebagai "tidak panas". Panah orange (menunjukkan 0.2) dapat menggambarkannya sebagai
"sedikit hangat" dan panah biru (menunjukkan 0,8) "cukup dingin". Dalam logika matematika,
ada beberapa sistem formal "fuzzy logic"; kebanyakan disebut t-norma logika fuzzy.
Variabel dalam matematika biasanya mengambil nilai-nilai numerik, dalam aplikasi logika
fuzzy, non-numerik sering digunakan untuk memfasilitasi aturan dan fakta.
Sebuah variabel linguistik seperti usia mungkin memiliki nilai seperti muda atau tua. Namun,
kegunaan besar variabel linguistik bahwa dapat dimodifikasi dengan membatasi linguistik yang
diterapkan untuk hal utama. pembatas nilai linguistik dapat dikaitkan dengan fungsi-fungsi
tertentu. Untuk memperluas Fuzzy logic dengan menambahkan kuantitas universal dan
eksistensial dengan cara serupa yaitu logika predikat dibuat dari logika proposisional.
Contoh:
1. Manajer pergudangan mengatakan pada manajer produksi seberapa banyak persediaan
barang pada akhir minggu ini, kemudian manajer produksi akan menetapkan jumlah
barang yang harus diproduksi esok hari.
2. Pelayan restoran memberikan pelayanan terhadap tamu, kemudian tamu akan
memberikan tip yang sesuai atas baik tidaknya pelayanan yang diberikan.
3. Penumpang taksi berkata pada sopir seberapa cepat laju kendaraan yang diinginkan, sopir
taksi akan mengatur pijakan gas taksinya.
4. Anda mengatakan pada saya seberapa sejuk ruangan yang anda inginkan,saya akan
mengatur putaran kipas yang ada pada ruangan ini.
2.3 Alasan Digunakannya Fuzzy Logic
Ada beberapa alasan mengapa orang menggunakan logika fuzzy, antara lain:
1. Konsep logika fuzzy mudah dimengerti. Konsep matematis yang mendasari penalaran
fuzzy sangat sederhana dan mudah dimengerti.
2. Logika fuzzy sangat fleksibel.
3. Logika fuzzy memiliki toleransi terhadap data-data yang tidak tepat.
4. Logika fuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks.
5. Logika fuzzy dapat membangun dan mengaplikasikan pengalaman para pakar secara
langsung tanpa harus melalui proses pelatihan.
6. Logika fuzzy dapat bekerjasama dengan teknik-teknik kendali secara konvensional.
7. Logika fuzzy didasarkan pada bahasa alami.
Sementara itu, dalam pengaplikasiannya, logika fuzzy juga memiliki beberapa kelebihan, antara
lain sebagai berikut.
1. Daya gunanya dianggap lebih baik daripada teknik kendali yang pernah ada.
2. Pengendali fuzzy terkenal karena keandalannya.
3. Mudah diperbaiki.
4. Pengendali fuzzy memberikan pengendalian yang sangat baik dibandingkan teknik lain
5. Usaha dan dana yang dibutuhkan kecil.
Selain itu, logika fuzzy juga memiliki kekurangan, terutama dalam penerapannya. Kekurangan
kekurangan tersebut antara lain:
1. Para enjiner dan ilmuwan generasi sebelumnya dan sekarang banyak yang tidak
mengenal teori kendali fuzzy, meskipun secara teknik praktis mereka memiliki
pengalaman untuk menggunakan teknologi dan perkakas kontrol yang sudah ada.
2. Belum banyak terdapat kursus/balai pendidikan dan buku-buku teks yang menjangkau
setiap tingkat pendidikan (undergraduate, postgraduate, dan on site training)
3. Hingga kini belum ada pengetahuan sistematik yang baku dan seragam tentang
metodologi pemecahan problema kendali menggunakan pengendali fuzzy.
4. Belum adanya metode umum untuk mengembangkan dan implementasi pengendali fuzzy.
2.4 Aplikasi fuzzy Logic
Beberapa aplikasi Fuzzy Logic, antara lain:
1. Pada tahun 1990 pertama kali dibuat mesin cuci dengan logika fuzzy di Jepang (Matsushita
Electric Industrial Company). Sistem fuzzy digunakan untuk menentukan putaran yang tepat
secara otomatis berdasarkan jenis dan banyaknya kotoran serta jumlah yang akan dicuci.
Input yang digunakan adalah: seberapa kotor, jenis kotoran, dan banyaknya yang dicuci.
Mesin ini menggunakan sensor optik , mengeluarkan cahaya ke air dan mengukur
bagaimana cahaya tersebut sampai ke ujung lainnya. Makin kotor, maka sinar yang sampai
makin redup. Disamping itu, sistem juga dapat menentukan jenis kotoran (daki atau
minyak).
2. Transmisi otomatis pada mobil. Mobil Nissan telah menggunakan sistem fuzzy pada
transmisi otomatis, dan mampu menghemat bensin 12 – 17%.
3. Kereta bawah tanah Sendai mengontrol pemberhentian otomatis pada area tertentu.
4. Ilmu kedokteran dan biologi, seperti sistem diagnosis yang didasarkan pada logika fuzzy,
penelitian kanker, manipulasi peralatan prostetik yang didasarkan pada logika fuzzy, dll.
5. Manajemen dan pengambilan keputusan, seperti manajemen basis data yang didasarkan
pada logika fuzzy, tata letak pabrik yang didasarkan pada logika fuzzy, sistem pembuat
keputusan di militer yang didasarkan pada logika fuzzy, pembuatan games yang didasarkan
pada logika fuzzy, dll.
6. Ekonomi, seperti pemodelan fuzzy pada sistem pemasaran yang kompleks,dll.
7. Klasifikasi dan pencocokan pola.
8. Psikologi, seperti logika fuzzy untuk menganalisis kelakuan masyarakat, pencegahan dan
investigasi kriminal, dll.
9. Ilmu-ilmu sosial, terutam untuk pemodelan informasi yang tidak pasti.
10. Ilmu lingkungan, seperti kendali kualitas air, prediksi cuaca, dll.
11. Teknik, seperti perancangan jaringan komputer, prediksi adanya gempa bumi, dll.
12. Riset operasi, seperti penjadwalan dan pemodelan, pengalokasian, dll.
13. Peningkatan kepercayaan, seperti kegagalan diagnosis, inspeksi dan monitoring produksi.
14. sebagai alat bantu pengambil keputusan seperti proses pembuatan program fuzzy logic
dalam bahasa pemrograman Java yang diaplikasikan untuk menentukan Jumlah Produk yang
dihasilkan berdasarkan kondisi Suhu, Kebisingan dan Pencahayaan.
2.5 Perbedaan Fuzzy Logic (logika Fuzzy) dengan Crisp Logic (Logika Tegas)
logika tegas memiliki nilai tidak = 0.0 dan ya = 1.0, sedangkan logika fuzzy memiliki nilai antara
0.0 hingga 1.0. Secara grafik perbedaan antara logika tegas dan logika fuzzy ditunjukkan oleh
gambar di bawah ini :
Gambar 1: Logika Tegas (Crisp Logic)
Gambar 2: Logika Fuzzy (Fuzzy Logic)
Didalam Gambar 1 Crisp Logic, apabila X lebih dari atau sama dengan 10 baru dikatakan benar
yaitu bernilai Y=1 , sebaliknya nilai X yang kurang dari 10 adalah salah yaitu Y=0, maka angka
9 atau 8 atau 7 dan seterusnya dalah dikatakan salah.
Didalam Gambar 2 Fuzzy Logic, apabila nilai X=9, atau 8 atau 7 atau antara nilai 0 dan 10
adalah dikatakan ada benarnya dan ada juga salahnya.
2.6 Atribut Dan Himpunan Fuzzy Logic
•Linguistik : yaitu nama suatu kelompok yang mewakili suatu keadaan tertentu dengan
menggunakan bahasa alami, misalnya DINGIN, SEJUK, PANAS, dsb.
•Numeris : yaitu suatu nilai yang menunjukkan ukuran dari suatu variabel, misalnya 10, 35, 40
dsb.
Contoh :
a. Variabel umur, terbagi menjadi 3 himpunan fuzzy, yaitu: MUDA, PAROBAYA, dan TUA.
b. Variabel temperatur, terbagi menjadi 5 himpunan fuzzy, yaitu: DINGIN, SEJUK, NORMAL,
HANGAT, dan PANAS.
Gambar 3. Himpunan Fuzzy Untuk variabel Umur
Dalam fuzzy logic variabel yang bersifat kabur tersebut direpresentasikan sebagai sebuah
himpunan yang anggotanya adalah suatu nilai crisp dan derajat keanggotaannya (membership
function) dalam himpunan tersebut
Proses-proses dalam fuzzy logic adalah fuzzifikasi, penalaran (reasoning), dan defuzzifikasi:
Fuzzifikasi: merupakan proses untuk mendapatkan derajat keanggotaan dari sebuah nilai
numerik masukan (crisp)
Penalaran: proses untuk mendapatkan aksi keluaran dari suatu kondisi input dengan mengikuti
aturan-aturan (IF-THEN Rules) yang telah ditetapkan yang disebut sebagai inference/reasoning.
Defuzzifikasi: proses untuk merubah hasil penalaran yang berupa derajat keanggotaan keluaran
menjadi variabel numerik kembali.
Blok diagram proses fuzzy logic ditunjukkan pada Gambar 4.
Gambar 4: Blok diagram proses dalam fuzzy logic
Himpunan fuzzy adalah pengelompokan sesuatu berdasarkan variabel bahasa (linguistik
variable), yang dinyatakan dengan fungsi keanggotaan, dalam semesta U. Keanggotaan suatu
nilai pada himpunan dinyatakan dengan derajat keanggotaan yang nilainya antara 0.0 sampai 1.0.
Himpunan fuzzy didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik
sedemikian hingga fungsi tersebut akan mencakup bilangan real pada interval [0,1]. Nilai
keanggotaannya menunjukkan bahwa suatu item tidak hanya bernilai benar atau salah. Nilai 0
menunjukkan salah, nilai 1 menunjukkan benar, dan masih ada nilai-nilai yang terletak antara
benar dan salah. Pada himpunan fuzzy, sebuah objek dapat berada pada sebuah himpunan secara
parsial. Derajat keanggotaan dalam himpunan fuzzy diukur dengan fungsi yang merupakan
generalisasi dari fungsi karakteristik yang disebut fungsi keanggotaan atau fungsi kompatibilitas.
Fungsi keanggotaan dari himpunan fuzzy Û didefinisikan sebagai Û : x → [0,1].
Contoh: Jika diketahui:
S = [1, 2, 3, 4, 5, 6] adalah semesta pembicaraan
A = [1, 2, 3], B = [3, 4, 5]
Maka dapat dikatakan:
_ Nilai keanggotaan 2 pada himpunan A, μA[2]=1, karena 2 ∈ 𝐴.
_ Nilai keanggotaan 3 pada himpunan A, μA[3]=1, karena 3 ∈ 𝐴.
_ Nilai keanggotaan 4 pada himpunan A, μA[4]=0, karena 4 ∉ 𝐴.
_ Nilai keanggotaan 2 pada himpunan B, μB[2]=0, karena 2 ∉ 𝐵.
_ Nilai keanggotaan 3 pada himpunan B, μB[3]=1, karena 3 ∉ 𝐵.
Hal – hal yang terdapat pada sistem fuzzy :
a. Variabel Fuzzy, merupakan variabel yang hendak dibahas dalam suatu sistem fuzzy, seperti
umur, temperatur, dsb
b. Himpunan Fuzzy, merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu
dalam suatu variabel fuzzy.
c. Semesta Pembicaraan, adalah keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam
suatu variabel fuzzy. Contoh:
 Semesta pembicaraan untuk variabel umur: [0 +∞)
 Semesta pembicaraan untuk variabel temperatur: [0 40]
d. Domain, adalah keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh
dioperasikan dalam suatu himpunan fuzzy. Contoh domain himpunan fuzzy: MUDA = [0 45],
TUA = [45 +∞), DINGIN = [0 20], SEJUK = [15 25], NORMAL = [20 30], HANGAT = [25
35], PANAS = [30 40]
2.7 Database Fuzzy
Setelah relationship fuzzy ditentukan, untuk mengembangkan database relasional fuzzy. Pertama
database relasional fuzzy, FRDB(fuzzy relational database) dipaparkan dalam tesis Maria
Zemankova ini. Kemudian, beberapa model lain muncul seperti model Buckles-Petry, Model
Prade-Testemale, model umano-Fukami atau model GEFRED oleh JM Medina, MA Vila dkk.
Dalam konteks database fuzzy, beberapa bahasa query fuzzy sudah ditentukan, dipaparkan SQLf
oleh P. Bosc dkk. dan FSQL oleh J. Galindo dkk. Bahasa-bahasa ini menentukan beberapa
struktur dengan tujuan untuk menyertakan aspek fuzzy dalam laporan SQL, seperti ketentuan
fuzzy, pembanding fuzzy, konstanta fuzzy, kendala fuzzy, ambang batas fuzzy, label linguistik
dan sebagainya.
2.8 Contoh Sistem Fuzzy Logic
Mari kita mempertimbangkan sistem pendingin udara dengan 5-level sistem logika fuzzy. Sistem
ini menyesuaikan suhu AC dengan membandingkan suhu kamar dan nilai suhu target.
Algoritma:
 Mendefinisikan variabel linguistik dan istilah.
 Merekonstruksi fungsi keanggotaan
 Merekonstruksi aturan dasar basis pengetahuan.
 Mengkonversi Crisp data menjadi data set fuzzy menggunakan fungsi keanggotaan.
(fuzzifikasi)
 Mengevaluasi aturan dalam aturan basis. (mesin antarmuka)
 Menggabungkan hasil dari setiap aturan. (mesin antarmuka)
 Mengkonversi data output ke nilai-nilai non-fuzzy. (defuzzifikasi)
Langkah 1: Mendefinisikan variabel linguistik dan istilah.
Variabel linguistik yang input dan output dalam bentuk kata-kata sederhana atau kalimat. Untuk
suhu kamar, dingin, hangat, panas, dll, adalah istilah linguistik.
Suhu (t) = {sangat dingin, dingin, hangat, sangat-hangat, panas}
Setiap anggota dari himpunan ini adalah istilah linguistik dan dapat menutupi beberapa bagian
dari nilai suhu keseluruhan.
Langkah 2: Merekonstruksi fungsi keanggotaan
Fungsi keanggotaan variabel suhu seperti yang ditunjukkan
Langkah 3: Merekonstruksi aturan dasar basis pengetahuan.
Membuat matriks nilai-nilai suhu kamar terhadap nilai-nilai suhu target itu sistem pendingin
udara ini diharapkan dapat memberikan:
Target Sangat
Dingin
Dingin Hangat Panas Sangat
Panas
Sangat
Dingin
Tidak ada
perubahan
Panas Panas Panas Panas
Dingin Dingin Tidak ada
perubahan
Panas Panas Panas
Hangat Dingin Dingin Tidak ada
perubahan
Panas Panas
Panas Dingin Dingin Dingin Tidak ada
perubahan
Panas
Sangat
panas
Dingin Dingin Dingin Dingin Tidak ada
perubahan
Membuat satu set aturan dalam basis pengetahuan dalam bentuk struktur IF-THEN-ELSE
Sr No Kondisi Tindakan
1 IF temperature=(Cold OR Very_Cold) AND
target=Warm THEN
Panas
2 IF temperature=(Hot OR Very_Hot) AND
target=Warm THEN
Dingin
3 IF (temperature=Warm) AND (target=Warm)
THEN
Tidak ada perubahan
Langkah 4: Mendapatkan nilai fuzzy
Operasi himpunan fuzzy melakukan mengevaluasi aturan. Operasi digunakan untuk OR dan
AND adalah masing masing Max dan Min. gabungkan semua hasil evaluasi untuk membentuk
hasil akhir. Hasil ini adalah nilai fuzzy.
Langkah 5: Lakukan defuzzifikasi
Defuzzifikasi dilakukan sesuai dengan fungsi keanggotaan untuk variabel output.
2.9 Fuzzyfikazi Dan Defuzzyfikasi
a. Fuzzyfikasi adalah pemetaan nilai input yang merupakan nilai tegas ke dalam fungsi
keanggotaan himpunan fuzzy, untuk kemudian diolah di dalam mesin penalaran.
fuzzyfikasi : x → μ(x)
b. Defuzzyfikasi merupakan kebalikan dari fuzzyfikasi, yaitu pemetaan dari himpunan fuzzy ke
himpunan tegas.Input dari proses defuzzyfikasi adalah suatu himpunan fuzzy yang diperoleh
dari komposisi aturan-aturan fuzzy. Hasil dari defuzyfikasi ini merupakan output dari sistem
kendali logika fuzzy.
Defuzzyfikasi dideskripsikan sebagai
Z* = defuzzyfier (Z) (16)
dengan
Z = hasil penalaran fuzzy
Z* = keluaran kendali logika fuzzy
deffuzyfier = fungsi defuzzyfikasi [2]
Metode defuzzyfikasi antara lain: [2]
1. Metode Maximum
Metode ini juga dikenal dengan metode puncak, yang nilai keluarannya dibatasi oleh fungsi
μc(z*)>μc 1 (z).
2. Metode titik tengah
Metode titik tengah juga disebut metode pusat area. Metode ini lazim dipakai dalam proses
defuzzyfikasi. Keluaran dari metode ini adalah titik tengah dari hasil proses penalaran.
3. Metode rata-rata
Metode ini digunakan untuk fungsi keanggotaan keluaran yang simetris. Keluaran dari metode
ini adalah nilai rata-rata dari hasil proses penalaran.
4. Metode penjumlahan titik tengah
Keluaran dari metode ini adalah penjumlahan titik tengah dari hasil proses penalaran.
5. Metode titik tengah area terbesar
Dalam metode ini, keluarannya adalah titik pusat dari area terbesar yang ada.
2.10 Pemrograman dengan bahasa Assembly
Setelah kita menemukan rumus untuk normalisasi dan denormalisasi, maka program
assembly dapat dibuat. Jika kita ingin membuat suatu fuzzy system untuk aplikasi yang lain,
tidak perlu harus sama dengan program yang telah ada, tetapi yang perlu diketahui sebelum
membuat suatu fuzzy sistem adalah bagaimana cara untuk menormalisasikan input dan
mendenormalisasikan output-nya sebelum data dapat diolah. Hal ini dilakukan agar nilai-nilai
tersebut dapat diterima oleh DT-51 PetraFuz.
Routine fuzzify dari PetraFuz terletak di alamat 0900h, untuk menjalankannya kitaa harus
menggunakan perintah LCALL 0900h. Berikut ini adalah contoh format yang digunakan dalam
menggunakan DT-51 PetraFuz.
Fuzzify EQU 0900H
Current_ins EQU 0BH
Cog_Outs EQU 0DH
Keterangan:
- Fuzzify : Routine PetraFuz
- Current_ins : Crisp Input PetraFuz
- Cog_Outs : Crisp Output PetraFuz
Jika kita mau memakai internal RAM maka kita harus memakai dengan alamat minimal 063H.
Karena 08H – 62H digunakan oleh routine PetraFuz Engine.
Contoh program perhitungan error:
MOV A, SP ; memasukkan nilai SP (kecepatan yang diminta)
MOV R0, PV ; memasukkan nilai PV (kecepatan sekarang)
SUBB A, R0
MOV ERROR, A
Contoh program perhitungan dError:
MOV A, ERROR ; Error(n)
MOV R0, ERROR-1 ; Error(n-1)
SUBB A, R0
MOV DERROR, A
Di dalam aplikasi ini yang dinormalisasikan adalah hasil dari Error dan dErrror (bukan Error dan
dError), setelah itu baru dimasukkan sebagai input ke DT-51 PetraFuz. Nilai Error yang
sesungguhnya harus disimpan ke dalam suatu register, karena Error yang belum dinormalisasi
akan digunakan dalam perhitungan denormalisasi yaitu untuk nilai Error(n-1).
Contoh program untuk memasukkan data Error dan dError ke dalam DT-51 PetraFuz, setelah itu
memanggil prosedur Fuzzify dan melihat hasilnya di register accumulator.
MOV CURRENT_INS,ERROR
MOV CURRENT_INS+1,DERROR
LCALL FUZIFY
MOV A,COG_OUTS
Hasil dari register accumulator di atas adalah nilai crisp output dan nilai tersebut harus
didenormalisasikan. Contoh di atas bukanlah contoh program secara khusus melainkan contoh
program secara garis besar. Hal ini dikarenakan tidak adanya program untuk normalisasi dan
denormalisasi. Sebelum nilai crisp input dimasukkan ke dalam DT-51 PetraFuz, nilainya harus
dinormalisasikan terlebih dahulu. Nilai crisp output yang telah diperoleh di register accumulator
pada contoh di atas juga belum didenormalisasikan.
Di dalam pembuatan suatu program assembly, kalau bisa hindari pembuatan program aritmatika
yang cukup kompleks, misalnya perkalian atau pembagian 16 x 16 bit. Hal ini dilakukan agar
proses fuzzifikasi tidak memakan banyak waktu.
Ini adalah contoh pemrograman aplikasi pengaturan kecepatan motor DC dengan sistem Fuzzy.
Proses kerjanya adalah sebagai berikut:
1. Pertama kali dilakukan proses inisialisasi de KITS SPC DC Motor dan komunikasi serial.
2. Terima data serial dari PC dan tunggu sampai karakter J dikirimkan. Lalu ambil nilai SP Low
Byte.
3. Terima data serial lagi dari PC dan tunggu sampai karakter K dikirimkan, lalu ambil nilai SP
High Byte.
4. Setelah itu baca nilai RPM sekarang dan kirimkan ke PC.
5. Hitung nilai Error dan dError, tetapi jangan lupa untuk menormalisasikan nilai tersebut.
6. Setelah normalisasi dilakukan maka masukkan kedua nilai yaitu Error dan dError ke dalam
DT-51 PetraFuz.
7. Panggil prosedur fuzzify, lalu ambil hasilnya.
8. Setelah hasil didapatkan, maka hasil itu harus didenormalisasi sehingga akan muncul nilai
crisp output yang sebenarnya.
9. Nilai crisp output kita masukkan sebagai nilai PWM untuk mengatur putaran motor DC
tersebut. Ulangi langkah 4 - 9 sampai nilai RPM yang dinginkan tercapai.
BAB III
PENUTUP
3.1 Kesimpulan
Kesimpulan-kesimpulan tersebut antara lain:
1. Logika fuzzy adalah logika yang mengandung unsur ketidakpastian.
2. Keanggotaan dalam himpunan fuzzy dinyatakan dengan derajat keanggotaan. Suatu nilai dapat
menjadi anggota dua himpunan sekaligus dengan derajat yang berbeda.
3. Kendali logika fuzzy dilakukan dengan proses fuzzyfikasi, penalaran sesuai dengan aturan, dan
defuzzyfikasi.
4. Sistem kendali logika fuzzy cukup praktis diaplikasikan dalam berbagai bidang.
5. Program fuzzy yang telah diimplementasikan dalam bahasa pemrograman Java dapat
digunakan sebagai alat bantu untuk menentukan jumlah produk yang dihasilkan berdasarkan
kondisi Suhu, Kebisingan dan Pencahayaan tertentu.
3.2 Saran
Dapat Menerapkan Himpunan Fuzzy Dan Proses Fuzzyfikasi dan Defuzzyfikasi Dalam berbagai
aplikasi.
DAFTAR PUSTAKA
[1] Rinaldi Munir, “Matematika Diskrit Dalam Fuzzy Logic”, Penerbit Informatika, 2005
[2] Jannus Maurits Nainggolan, “Logika Fuzzy (Fuzzy Logic) : Teori dan Penerapan Pada
Sistem Daya (Kajian Pengaruh Induksi Medan Magnet)”
[3] Kusumadewi,Sri.Purnomo,Hari.,”Aplikasi Logika Fuzzy untuk Pendukung
Keputusan”.Yogyakarta: GRAHA ILMU,2004
[4] Kusumadewi, Sri., Hartati, S., Harjoko, A., dan Wardoyo, R. “Fuzzy Multi-Attribute Decision
Making (FUZZY MADM).” Yogyakarta: Graha Ilmu, 2006.

More Related Content

What's hot

Logika matematika pertemuan 2 (inferensi)
Logika matematika pertemuan 2 (inferensi)Logika matematika pertemuan 2 (inferensi)
Logika matematika pertemuan 2 (inferensi)
Meycelino A. T
 
Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Dyas Arientiyya
 
metode euler
metode eulermetode euler
metode euler
Ruth Dian
 
Menyederhanakan fungsi boolean dengan menggunakan metode quin1
Menyederhanakan fungsi boolean dengan menggunakan metode quin1Menyederhanakan fungsi boolean dengan menggunakan metode quin1
Menyederhanakan fungsi boolean dengan menggunakan metode quin1BAIDILAH Baidilah
 
Integral Tak Wajar ( Kalkulus 2 )
Integral Tak Wajar ( Kalkulus 2 )Integral Tak Wajar ( Kalkulus 2 )
Integral Tak Wajar ( Kalkulus 2 )
Kelinci Coklat
 
2. galat
2. galat2. galat
ALJABAR LINEAR ELEMENTER
ALJABAR LINEAR ELEMENTERALJABAR LINEAR ELEMENTER
ALJABAR LINEAR ELEMENTER
Mella Imelda
 
Pertemuan 5 dan 6 representasi pengetahuan
Pertemuan 5 dan 6 representasi pengetahuan Pertemuan 5 dan 6 representasi pengetahuan
Pertemuan 5 dan 6 representasi pengetahuan
Topan Helmi Nicholas
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
 
Daftar Distribusi Frekuensi
Daftar Distribusi FrekuensiDaftar Distribusi Frekuensi
Daftar Distribusi Frekuensimaudya09
 
Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )
Kelinci Coklat
 
Pembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi MatriksPembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi MatriksIpit Sabrina
 
Kumpulan soal-latihan-andat-statdas-biostat-2011
Kumpulan soal-latihan-andat-statdas-biostat-2011Kumpulan soal-latihan-andat-statdas-biostat-2011
Kumpulan soal-latihan-andat-statdas-biostat-2011
Heri Setiawan
 
Kisi kisi & instrumen mahasiswa
Kisi kisi & instrumen mahasiswaKisi kisi & instrumen mahasiswa
Kisi kisi & instrumen mahasiswa
Ahdian Agus Hermawan
 
4 diagram relasi antar entitas (ERD)
4 diagram relasi antar entitas (ERD)4 diagram relasi antar entitas (ERD)
4 diagram relasi antar entitas (ERD)
Simon Patabang
 
Bab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi booleanBab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi booleanCliquerz Javaneze
 
Contoh soal dan penyelesaian metode biseksi
Contoh soal dan penyelesaian metode biseksiContoh soal dan penyelesaian metode biseksi
Contoh soal dan penyelesaian metode biseksi
muhamadaulia3
 
LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...
LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...
LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...
Uofa_Unsada
 
Modul 7 fuzzy logic
Modul 7   fuzzy logicModul 7   fuzzy logic
Modul 7 fuzzy logic
ahmad haidaroh
 
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.pptAljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.pptrahmawarni
 

What's hot (20)

Logika matematika pertemuan 2 (inferensi)
Logika matematika pertemuan 2 (inferensi)Logika matematika pertemuan 2 (inferensi)
Logika matematika pertemuan 2 (inferensi)
 
Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)
 
metode euler
metode eulermetode euler
metode euler
 
Menyederhanakan fungsi boolean dengan menggunakan metode quin1
Menyederhanakan fungsi boolean dengan menggunakan metode quin1Menyederhanakan fungsi boolean dengan menggunakan metode quin1
Menyederhanakan fungsi boolean dengan menggunakan metode quin1
 
Integral Tak Wajar ( Kalkulus 2 )
Integral Tak Wajar ( Kalkulus 2 )Integral Tak Wajar ( Kalkulus 2 )
Integral Tak Wajar ( Kalkulus 2 )
 
2. galat
2. galat2. galat
2. galat
 
ALJABAR LINEAR ELEMENTER
ALJABAR LINEAR ELEMENTERALJABAR LINEAR ELEMENTER
ALJABAR LINEAR ELEMENTER
 
Pertemuan 5 dan 6 representasi pengetahuan
Pertemuan 5 dan 6 representasi pengetahuan Pertemuan 5 dan 6 representasi pengetahuan
Pertemuan 5 dan 6 representasi pengetahuan
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
 
Daftar Distribusi Frekuensi
Daftar Distribusi FrekuensiDaftar Distribusi Frekuensi
Daftar Distribusi Frekuensi
 
Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )
 
Pembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi MatriksPembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi Matriks
 
Kumpulan soal-latihan-andat-statdas-biostat-2011
Kumpulan soal-latihan-andat-statdas-biostat-2011Kumpulan soal-latihan-andat-statdas-biostat-2011
Kumpulan soal-latihan-andat-statdas-biostat-2011
 
Kisi kisi & instrumen mahasiswa
Kisi kisi & instrumen mahasiswaKisi kisi & instrumen mahasiswa
Kisi kisi & instrumen mahasiswa
 
4 diagram relasi antar entitas (ERD)
4 diagram relasi antar entitas (ERD)4 diagram relasi antar entitas (ERD)
4 diagram relasi antar entitas (ERD)
 
Bab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi booleanBab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi boolean
 
Contoh soal dan penyelesaian metode biseksi
Contoh soal dan penyelesaian metode biseksiContoh soal dan penyelesaian metode biseksi
Contoh soal dan penyelesaian metode biseksi
 
LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...
LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...
LAPORAN TUGAS AKHIR PERANCANGAN APLIKASI KNOWLEDGE BASE SYSTEM UNTUK INSTRUKS...
 
Modul 7 fuzzy logic
Modul 7   fuzzy logicModul 7   fuzzy logic
Modul 7 fuzzy logic
 
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.pptAljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
 

Similar to Makalah Fuzzy Logic Dan Penerapannya

Fuzzy Logic-sant
Fuzzy Logic-santFuzzy Logic-sant
Fuzzy Logic-sant
MaikelPaijovka
 
Contohpeyelesaianlogikafuzzy 130409001438-phpapp01
Contohpeyelesaianlogikafuzzy 130409001438-phpapp01Contohpeyelesaianlogikafuzzy 130409001438-phpapp01
Contohpeyelesaianlogikafuzzy 130409001438-phpapp01
Khoerul Umam
 
Bab 7-logika-fuzzy
Bab 7-logika-fuzzyBab 7-logika-fuzzy
Bab 7-logika-fuzzy
Muhammad Permana
 
Fuzzy Logic (Tugas Elektro industri)
Fuzzy Logic (Tugas Elektro industri)Fuzzy Logic (Tugas Elektro industri)
Fuzzy Logic (Tugas Elektro industri)Andreas Yudika
 
Presentasi fuzzy logic (Logika Fuzzy)
Presentasi fuzzy logic (Logika Fuzzy)Presentasi fuzzy logic (Logika Fuzzy)
Presentasi fuzzy logic (Logika Fuzzy)
radar radius
 
Sistem pakar fuzzy logic
Sistem pakar fuzzy logicSistem pakar fuzzy logic
Sistem pakar fuzzy logic
IKHSAN MAHRURI
 
Simulasi Digital.pptx
Simulasi Digital.pptxSimulasi Digital.pptx
Simulasi Digital.pptx
MuhammadHamdaniHamid
 
Fuzzi its
Fuzzi itsFuzzi its
Fuzzi its
Achmad Fauzan
 
Bab 1 (1)
Bab 1 (1)Bab 1 (1)
Bab 1 (1)
The Viking Dead
 
Artikel 2
Artikel 2Artikel 2
Artikel 2
Yudi Kurniawan
 
Jurnal_TA_Ronal Lengkong
Jurnal_TA_Ronal LengkongJurnal_TA_Ronal Lengkong
Jurnal_TA_Ronal LengkongRonal Lengkong
 
Pertemuan 1 - Algoritma - Tri Lux
Pertemuan 1 - Algoritma - Tri LuxPertemuan 1 - Algoritma - Tri Lux
Pertemuan 1 - Algoritma - Tri Lux
tri lux
 
1404505075 fuzzy logic mss(b)
1404505075 fuzzy logic mss(b)1404505075 fuzzy logic mss(b)
1404505075 fuzzy logic mss(b)
Pande Narendra
 
2 - Logika Fuzzy.pptx
2 - Logika Fuzzy.pptx2 - Logika Fuzzy.pptx
2 - Logika Fuzzy.pptx
EdyKurniawan53
 
Bab 1 dasar dasar logika ta 2019
Bab 1 dasar dasar logika ta 2019Bab 1 dasar dasar logika ta 2019
Bab 1 dasar dasar logika ta 2019
Sukma Puspitorini
 
20101029 pengantar logika_informatika
20101029 pengantar logika_informatika20101029 pengantar logika_informatika
20101029 pengantar logika_informatikaMUBAROK_ZAKI
 
Pengantar Sistem Cerdas.pptx
Pengantar Sistem Cerdas.pptxPengantar Sistem Cerdas.pptx
Pengantar Sistem Cerdas.pptx
fachruddin07003
 
INFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptx
INFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptxINFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptx
INFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptx
AzlinManurung
 
Jaringan syaraf tiruan uas docs
Jaringan syaraf tiruan uas docsJaringan syaraf tiruan uas docs
Jaringan syaraf tiruan uas docs
ause labella
 

Similar to Makalah Fuzzy Logic Dan Penerapannya (20)

Fuzzy Logic-sant
Fuzzy Logic-santFuzzy Logic-sant
Fuzzy Logic-sant
 
Contohpeyelesaianlogikafuzzy 130409001438-phpapp01
Contohpeyelesaianlogikafuzzy 130409001438-phpapp01Contohpeyelesaianlogikafuzzy 130409001438-phpapp01
Contohpeyelesaianlogikafuzzy 130409001438-phpapp01
 
Bab 7-logika-fuzzy
Bab 7-logika-fuzzyBab 7-logika-fuzzy
Bab 7-logika-fuzzy
 
Fuzzy Logic (Tugas Elektro industri)
Fuzzy Logic (Tugas Elektro industri)Fuzzy Logic (Tugas Elektro industri)
Fuzzy Logic (Tugas Elektro industri)
 
Presentasi fuzzy logic (Logika Fuzzy)
Presentasi fuzzy logic (Logika Fuzzy)Presentasi fuzzy logic (Logika Fuzzy)
Presentasi fuzzy logic (Logika Fuzzy)
 
Sistem pakar fuzzy logic
Sistem pakar fuzzy logicSistem pakar fuzzy logic
Sistem pakar fuzzy logic
 
Simulasi Digital.pptx
Simulasi Digital.pptxSimulasi Digital.pptx
Simulasi Digital.pptx
 
Fuzzi its
Fuzzi itsFuzzi its
Fuzzi its
 
Bab 1 (1)
Bab 1 (1)Bab 1 (1)
Bab 1 (1)
 
Artikel 2
Artikel 2Artikel 2
Artikel 2
 
Jurnal_TA_Ronal Lengkong
Jurnal_TA_Ronal LengkongJurnal_TA_Ronal Lengkong
Jurnal_TA_Ronal Lengkong
 
Pertemuan 1 - Algoritma - Tri Lux
Pertemuan 1 - Algoritma - Tri LuxPertemuan 1 - Algoritma - Tri Lux
Pertemuan 1 - Algoritma - Tri Lux
 
1404505075 fuzzy logic mss(b)
1404505075 fuzzy logic mss(b)1404505075 fuzzy logic mss(b)
1404505075 fuzzy logic mss(b)
 
2 - Logika Fuzzy.pptx
2 - Logika Fuzzy.pptx2 - Logika Fuzzy.pptx
2 - Logika Fuzzy.pptx
 
Bab 1 dasar dasar logika ta 2019
Bab 1 dasar dasar logika ta 2019Bab 1 dasar dasar logika ta 2019
Bab 1 dasar dasar logika ta 2019
 
20101029 pengantar logika_informatika
20101029 pengantar logika_informatika20101029 pengantar logika_informatika
20101029 pengantar logika_informatika
 
Bab iv
Bab ivBab iv
Bab iv
 
Pengantar Sistem Cerdas.pptx
Pengantar Sistem Cerdas.pptxPengantar Sistem Cerdas.pptx
Pengantar Sistem Cerdas.pptx
 
INFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptx
INFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptxINFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptx
INFORMATIKA Rumpun Teknologi_Bab 1 Berpikir Komputasional.pptx
 
Jaringan syaraf tiruan uas docs
Jaringan syaraf tiruan uas docsJaringan syaraf tiruan uas docs
Jaringan syaraf tiruan uas docs
 

More from radar radius

Gas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docx
Gas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docxGas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docx
Gas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docx
radar radius
 
IPA SMP_KK C.pdf
IPA SMP_KK C.pdfIPA SMP_KK C.pdf
IPA SMP_KK C.pdf
radar radius
 
IPA SMP_KK B.pdf
IPA SMP_KK B.pdfIPA SMP_KK B.pdf
IPA SMP_KK B.pdf
radar radius
 
الإيمان
الإيمانالإيمان
الإيمان
radar radius
 
Wahyu
WahyuWahyu
Urutan peristiwa kiamat besar
Urutan peristiwa kiamat besarUrutan peristiwa kiamat besar
Urutan peristiwa kiamat besar
radar radius
 
Toleransi
ToleransiToleransi
Toleransi
radar radius
 
Toleransi (hadis)
Toleransi (hadis)Toleransi (hadis)
Toleransi (hadis)
radar radius
 
Tauhid dalam konsep islam
Tauhid dalam konsep islamTauhid dalam konsep islam
Tauhid dalam konsep islam
radar radius
 
Tajwid (mad)
Tajwid (mad)Tajwid (mad)
Tajwid (mad)
radar radius
 
Qurdis 7 1
Qurdis 7 1Qurdis 7 1
Qurdis 7 1
radar radius
 
Qurban
QurbanQurban
Qurban
radar radius
 
Problematika dakwah
Problematika dakwahProblematika dakwah
Problematika dakwah
radar radius
 
Melestarikan alam (hadis)
Melestarikan alam (hadis)Melestarikan alam (hadis)
Melestarikan alam (hadis)
radar radius
 
Materi qurdis IX 2
Materi qurdis IX 2Materi qurdis IX 2
Materi qurdis IX 2
radar radius
 
Materi Quran Hadits VIII 2
Materi Quran Hadits VIII 2Materi Quran Hadits VIII 2
Materi Quran Hadits VIII 2
radar radius
 
Fenomena alam kiamat
Fenomena alam kiamatFenomena alam kiamat
Fenomena alam kiamat
radar radius
 
Materi Quran Hadist IX 2
Materi Quran Hadist IX 2Materi Quran Hadist IX 2
Materi Quran Hadist IX 2
radar radius
 
Doa nur buwwah lengkap
Doa nur buwwah lengkapDoa nur buwwah lengkap
Doa nur buwwah lengkap
radar radius
 
Gerak pada Tumbuhan dan Hewan
Gerak pada Tumbuhan dan HewanGerak pada Tumbuhan dan Hewan
Gerak pada Tumbuhan dan Hewan
radar radius
 

More from radar radius (20)

Gas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docx
Gas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docxGas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docx
Gas Air Mata: Zat Kimia, Metode Penyebaran, dan Efek.docx
 
IPA SMP_KK C.pdf
IPA SMP_KK C.pdfIPA SMP_KK C.pdf
IPA SMP_KK C.pdf
 
IPA SMP_KK B.pdf
IPA SMP_KK B.pdfIPA SMP_KK B.pdf
IPA SMP_KK B.pdf
 
الإيمان
الإيمانالإيمان
الإيمان
 
Wahyu
WahyuWahyu
Wahyu
 
Urutan peristiwa kiamat besar
Urutan peristiwa kiamat besarUrutan peristiwa kiamat besar
Urutan peristiwa kiamat besar
 
Toleransi
ToleransiToleransi
Toleransi
 
Toleransi (hadis)
Toleransi (hadis)Toleransi (hadis)
Toleransi (hadis)
 
Tauhid dalam konsep islam
Tauhid dalam konsep islamTauhid dalam konsep islam
Tauhid dalam konsep islam
 
Tajwid (mad)
Tajwid (mad)Tajwid (mad)
Tajwid (mad)
 
Qurdis 7 1
Qurdis 7 1Qurdis 7 1
Qurdis 7 1
 
Qurban
QurbanQurban
Qurban
 
Problematika dakwah
Problematika dakwahProblematika dakwah
Problematika dakwah
 
Melestarikan alam (hadis)
Melestarikan alam (hadis)Melestarikan alam (hadis)
Melestarikan alam (hadis)
 
Materi qurdis IX 2
Materi qurdis IX 2Materi qurdis IX 2
Materi qurdis IX 2
 
Materi Quran Hadits VIII 2
Materi Quran Hadits VIII 2Materi Quran Hadits VIII 2
Materi Quran Hadits VIII 2
 
Fenomena alam kiamat
Fenomena alam kiamatFenomena alam kiamat
Fenomena alam kiamat
 
Materi Quran Hadist IX 2
Materi Quran Hadist IX 2Materi Quran Hadist IX 2
Materi Quran Hadist IX 2
 
Doa nur buwwah lengkap
Doa nur buwwah lengkapDoa nur buwwah lengkap
Doa nur buwwah lengkap
 
Gerak pada Tumbuhan dan Hewan
Gerak pada Tumbuhan dan HewanGerak pada Tumbuhan dan Hewan
Gerak pada Tumbuhan dan Hewan
 

Recently uploaded

tugas modul 1.4 Koneksi Antar Materi (1).pptx
tugas  modul 1.4 Koneksi Antar Materi (1).pptxtugas  modul 1.4 Koneksi Antar Materi (1).pptx
tugas modul 1.4 Koneksi Antar Materi (1).pptx
d2spdpnd9185
 
Patofisiologi Sistem Endokrin hormon pada sistem endokrin
Patofisiologi Sistem Endokrin hormon pada sistem endokrinPatofisiologi Sistem Endokrin hormon pada sistem endokrin
Patofisiologi Sistem Endokrin hormon pada sistem endokrin
rohman85
 
Laporan pembina seni tari - www.kherysuryawan.id.pdf
Laporan pembina seni tari - www.kherysuryawan.id.pdfLaporan pembina seni tari - www.kherysuryawan.id.pdf
Laporan pembina seni tari - www.kherysuryawan.id.pdf
heridawesty4
 
INDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdf
INDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdfINDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdf
INDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdf
NurSriWidyastuti1
 
Modul Projek - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...
Modul Projek  - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...Modul Projek  - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...
Modul Projek - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...
MirnasariMutmainna1
 
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.pptKOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
Dedi Dwitagama
 
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdfPaparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
SEMUELSAMBOKARAENG
 
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptxSOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
astridamalia20
 
Permainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaanPermainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaan
DEVI390643
 
Form B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docx
Form B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docxForm B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docx
Form B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docx
EkoPutuKromo
 
Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024
SABDA
 
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docxINSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
lindaagina84
 
Pi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagja
Pi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagjaPi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagja
Pi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagja
agusmulyadi08
 
Laporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdfLaporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdf
gloriosaesy
 
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
widyakusuma99
 
Tugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdf
Tugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdfTugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdf
Tugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdf
muhammadRifai732845
 
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
haryonospdsd011
 
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
AgusRahmat39
 
Modul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum Merdeka
Modul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum MerdekaModul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum Merdeka
Modul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum Merdeka
Fathan Emran
 
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogortugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
WILDANREYkun
 

Recently uploaded (20)

tugas modul 1.4 Koneksi Antar Materi (1).pptx
tugas  modul 1.4 Koneksi Antar Materi (1).pptxtugas  modul 1.4 Koneksi Antar Materi (1).pptx
tugas modul 1.4 Koneksi Antar Materi (1).pptx
 
Patofisiologi Sistem Endokrin hormon pada sistem endokrin
Patofisiologi Sistem Endokrin hormon pada sistem endokrinPatofisiologi Sistem Endokrin hormon pada sistem endokrin
Patofisiologi Sistem Endokrin hormon pada sistem endokrin
 
Laporan pembina seni tari - www.kherysuryawan.id.pdf
Laporan pembina seni tari - www.kherysuryawan.id.pdfLaporan pembina seni tari - www.kherysuryawan.id.pdf
Laporan pembina seni tari - www.kherysuryawan.id.pdf
 
INDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdf
INDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdfINDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdf
INDIKATOR KINERJA DAN FOKUS PERILAKU KS.pdf
 
Modul Projek - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...
Modul Projek  - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...Modul Projek  - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...
Modul Projek - Modul P5 Kearifan Lokal _Menampilkan Tarian Daerah Nusantara_...
 
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.pptKOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
 
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdfPaparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
 
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptxSOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
 
Permainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaanPermainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaan
 
Form B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docx
Form B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docxForm B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docx
Form B8 Rubrik Refleksi Program Pengembangan Kompetensi Guru -1.docx
 
Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024
 
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docxINSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
 
Pi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagja
Pi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagjaPi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagja
Pi-2 AGUS MULYADI. S.Pd (3).pptx visi giru penggerak dan prakrsa perubahan bagja
 
Laporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdfLaporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdf
 
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
 
Tugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdf
Tugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdfTugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdf
Tugas Mandiri 1.4.a.4.3 Keyakinan Kelas.pdf
 
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
 
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
 
Modul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum Merdeka
Modul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum MerdekaModul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum Merdeka
Modul Ajar PAI dan Budi Pekerti Kelas 2 Fase A Kurikulum Merdeka
 
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogortugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
 

Makalah Fuzzy Logic Dan Penerapannya

  • 1. Makalah FUZZY LOGIC DAN PENERAPANNYA Disusun Oleh: FIRMAN WAHYUDI (1255201158) STKIP PGRI SUMENEP SUMENEP, JATIM 2014-2015
  • 2. KATA PENGANTAR Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat dan nikmat yang telah dilimpahkan kepada penulis, sehingga penulis dapat menyelesaikan makalah yang berjudul ”Fuzzy Logic Dan Penerapannya”. Terselesainya makalah ini tidak lepas dari dukungan beberapa pihak yang telah memberikan kepada penulis berupa motivasi, baik materi maupun moril. Oleh karena itu, penulis bermaksud mengucapkan banyak terima kasih kepada seluruh pihak yang tak dapat saya sebutkan satu persatu, semua yang telah membantu terselesaikannya makalah ini. Penulis menyadari bahwa penyusunan makalah ini belum mencapai kesempurnaan, sehingga kritik dan saran yang bersifat membangun sangat penulis harapkan dari berbagai pihak demi kesempurnaan makalah ini. Akhirnya penulis berharap semoga makalah ini dapat bermanfaat bagi kita semua. Sumenep, 29 November 2015 Firman Wahyudi
  • 3. DAFTAR ISI Halaman Depan Kata Pengantar Daftar Isi BAB I : PENDAHULUAN 1.1 Latar Belakang Masalah 1.2 Rumusan Masalah 1.3 Pembatasan Masalah 1.4 Tujuan Penulisan BAB II : PEMBAHASAN 2.1 Pengertian Fuzzy Logic Dan Sejarahnya 2.2 Derajat Kebenaran Dan Variabel Linguistik 2.3 Alasan digunakannya Fuzzy Logic 2.4 Aplikasi Fuzzy Logic 2.5 Perbedaan fuzzy logic dengan crisp logic 2.6 Atribut Dan Himpunan Fuzzy logic 2.7 Database Fuzzy logic 2.8 Contoh sistem fuzzy Logic 2.9 Fuzzyfikasi Dan Defuzzifikasi 2.10 Pemrograman dengan bahasa Assembly BAB III : PENUTUP 3.1 Kesimpulan 3.2 Saran Daftar Pustaka
  • 4. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Logika Fuzzy merupakan suatu logika yang memiliki nilai kekaburan atau kesamaran (fuzzyness) antara benar atau salah. Dalam logika klasik dinyatakan bahwa segala hal dapat diekspresikan dalam istilah binary (0 atau 1, hitam atau putih, ya atau tidak), sedangkan logika fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti "sedikit", "lumayan" dan "sangat". Logika ini berhubungan dengan himpunan fuzzy dan teori kemungkinan. Logika fuzzy ini diperkenalkan oleh Dr. Lotfi Zadeh dari Universitas California, Berkeley pada 1965. Logika fuzzy dapat digunakan dalam bidang teori kontrol, teori keputusan, dan beberapa bagian dalam managemen sains. Selain itu, kelebihan dari logika fuzzy adalah kemampuan dalam proses penalaran secara bahasa (linguistic reasoning), sehingga dalam perancangannya tidak memerlukan persamaan matematik dari objek yang dikendalikan. Adapun salah satu contoh aplikasi logika fuzzy dalam kehidupan sehari-hari adalah Pada tahun 1990 pertama kali dibuat mesin cuci dengan logika fuzzy di Jepang (Matsushita Electric Industrial Company). Sistem fuzzy digunakan untuk menentukan putaran yang tepat secara otomatis berdasarkan jenis dan banyaknya kotoran serta jumlah yang akan dicuci. Input yang digunakan adalah: seberapa kotor, jenis kotoran, dan banyaknya yang dicuci. Mesin ini menggunakan sensor optik , mengeluarkan cahaya ke air dan mengukur bagaimana cahaya tersebut sampai ke ujung lainnya. Makin kotor, maka sinar yang sampai makin redup. Disamping itu, sistem juga dapat menentukan jenis kotoran (daki atau minyak). 1.2 Rumusan Masalah 1. Apa Pengertian Dari Fuzzy Logic? 2. Bagaimana Sejarah Fuzzy Logic? 3. Apa Perbedaan Fuzzy Logic dengan Crisp Logic? 4. Apakah Himpunan Fuzzy Logic? 5. Apa Fuzzyfikasi dan Defuzzyfikasi itu? 6. Apa Kelebihan Dan Kekurangan Menggunakan Fuzzy Logic? 1.3 Pembatasan Masalah Adapun pembatasan masalah dalam penulisan tugas ini adalah hanya pada variabel, keterbatasan dan kekonvekan pada himpunan fuzzy dimensi satu. 1.4 Tujuan Penulisan a. Memahami Tentang Fuzzy Logic dan penerapannya b. Memahami Derajat Kebenaran dan Variabel linguistik Fuzzy logic c. Memahami atribut Fuzzy logic dan Himpunan fuzzy d. Memahami pengertian Fuzzyfikasi dan Defuzzyfikasi
  • 5. BAB II PEMBAHASAN 2.1 Pengertian Fuzzy Logic dan Sejarahnya Sebelumnya munculnya Teori logika fuzzy (fuzzy logic) dikenal sebuah logika tegas (crisp Logic) yang memiliki nilai benar atau salah secara tegas. Saat logika klasik menyatakan bahwa segala hal dapat diekspresikan dalam istilah biner (0 atau 1, hitam atau putih, ya atau tidak), Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti "sedikit", "lumayan", dan "sangat". Logika ini berhubungan dengan set fuzzy dan teori kemungkinan. Logika fuzzy diperkenalkan oleh Dr. Lotfi Zadeh dari Universitas California, Berkeley pada 1965 atas usulan dalam papernya yang monumental “Fuzzy Set”. Dalam paper tersebut dipaparkan ide dasar fuzzy set yang meliputi inclusion, union, intersection, complement, relation dan convexity. Lotfi Zadeh mengatakan Integrasi Logika Fuzzy kedalam sistem informasi dan rekayasa proses adalah menghasilkan aplikasi seperti sistem kontrol, alat alat rumah tangga, dan sistem pengambil keputusan yang lebih fleksibel, mantap, dan canggih dibandingkan dengan sistem konvensional. Dalam hal ini kami dapat mengatakan bahwa logika fuzzy memimpin dalam pengembangan kecerdasan mesin yang lebih tinggi ( machine Intelligency Quotient / MIQ ) Produk produk berikut telah menggunakan logika fuzzy dalam alat alat rumah tangga seperti mesin cuci, video dan kamera refleksi lensa tunggal, pendingin ruangan, oven microwave, dan banyak sistem diagnosa mandiri.. Logika fuzzy telah diterapkan pada berbagai bidang, dari teori kontrol untuk kecerdasan buatan. Logika fuzzy telah diteliti sejak tahun 1920-an, sebagai nilai yang tak terbatas terutama logika oleh Lukasiewicz dan Tarski. Jepang adalah negara pertama yang memanfaatkan logika fuzzy untuk aplikasi praktis. Aplikasi penting pertama adalah di kereta kecepatan tinggi di Sendai, di mana logika fuzzy mampu meningkatkan ekonomi, kenyamanan, dan ketepatan perjalanan. Hal ini juga telah digunakan dalam pengakuan simbol tertulis di komputer mini sony; bantuan pesawat helikopter; mengendalikan sistem kereta bawah tanah dalam rangka meningkatkan kenyamanan berkendara, ketepatan menghentikan, dan ekonomi kekuasaan; konsumsi hemat energi untuk ponsel otomatis; kontrol tunggal tombol untuk mesin cuci; kontrol motor otomatis untuk pembersih vakum dengan pengakuan kondisi permukaan dan tingkat kekotoran; dan sistem prediksi untuk pengakuan awal dari gempa bumi melalui Institut Seismologi Biro Metrologi, Jepang 2.2 Derajat kebenaran Dan Variabel Linguistik Logika fuzzy dan logika probabilitas secara matematis sama - keduanya mempunyai nilai kebenaran yang berkisar antara 0 dan 1 - namun secara konsep berbeda. Logika fuzzy berbicara mengenai "derajat kebenaran", sedangkan logika probabilitas mengenai "probabilitas, kecenderungan". Karena kedua hal itu berbeda, logika fuzzy dan logika probabilitas mempunyai
  • 6. contoh penerapan dalam dunia nyata yang berbeda. Logika klasik hanya mengizinkan proposisi memiliki nilai kebenaran atau kesalahan. Gagasan 1 + 1 = 2 adalah kebenaran mutlak, kekal dan matematika. Namun, terdapat proposisi tertentu dengan jawaban variabel, seperti meminta sebagian orang untuk mengidentifikasi warna. Gagasan kebenaran tidak jatuh di tengah jalan, tapi lebih pada sarana yang mewakili dan penalaran lebih pengetahuan parsial ketika diberikan, dengan menggabungkan semua hasil yang mungkin menjadi spektrum dimensi. dua derajat kebenaran dan probabilitas berkisar antara 0 dan 1 dan karenanya mungkin tampak serupa pada awalnya. Sebagai contoh, satu segelas 100 ml mengandung 30 ml air. Kemudian dapat mempertimbangkan dua konsep: kosong dan penuh. Arti dari masing-masing dapat direpresentasikan oleh himpunan fuzzy tertentu. Maka salah satu mungkin mendefinisikan kaca sebagai 0,7 kosong dan 0,3 penuh. Perhatikan bahwa konsep kekosongan akan subjektif dengan demikian akan tergantung pada pengamat atau desainer. Desainer lain mungkin, sama baiknya, merancang fungsi keanggotaan set di mana kaca akan dianggap penuh untuk semua nilai 50 ml. Sangat penting untuk menyadari bahwa logika fuzzy menggunakan derajat kebenaran sebagai model matematika dari fenomena ketidakjelasan sementara probabilitas adalah model matematika dari ketidaktahuan. Sebuah dasar aplikasi mungkin memiliki berbagai ciri sub-rentang variabel kontinu. Misalnya, pengukuran suhu untuk rem anti-lock mungkin memiliki beberapa fungsi keanggotaan terpisah, rentang suhu tertentu yang diperlukan untuk mengendalikan rem benar. Setiap fungsi nilai suhu yang sama untuk nilai kebenaran dalam jangkauan 0-1. Nilai kebenaran ini kemudian dapat digunakan untuk menentukan bagaimana rem harus dikontrol. Dalam gambar ini, arti dari ekspresi dingin, hangat, dan panas yang diwakili oleh fungsi pemetaan skala suhu. Sebuah titik pada skala yang memiliki tiga "nilai kebenaran" - satu untuk masing-masing dari tiga fungsi. Garis vertikal pada gambar mewakili suhu tertentu bahwa tiga anak panah (nilai kebenaran) gauge. Karena panah merah poin ke nol, suhu ini dapat ditafsirkan sebagai "tidak panas". Panah orange (menunjukkan 0.2) dapat menggambarkannya sebagai "sedikit hangat" dan panah biru (menunjukkan 0,8) "cukup dingin". Dalam logika matematika, ada beberapa sistem formal "fuzzy logic"; kebanyakan disebut t-norma logika fuzzy. Variabel dalam matematika biasanya mengambil nilai-nilai numerik, dalam aplikasi logika fuzzy, non-numerik sering digunakan untuk memfasilitasi aturan dan fakta. Sebuah variabel linguistik seperti usia mungkin memiliki nilai seperti muda atau tua. Namun,
  • 7. kegunaan besar variabel linguistik bahwa dapat dimodifikasi dengan membatasi linguistik yang diterapkan untuk hal utama. pembatas nilai linguistik dapat dikaitkan dengan fungsi-fungsi tertentu. Untuk memperluas Fuzzy logic dengan menambahkan kuantitas universal dan eksistensial dengan cara serupa yaitu logika predikat dibuat dari logika proposisional. Contoh: 1. Manajer pergudangan mengatakan pada manajer produksi seberapa banyak persediaan barang pada akhir minggu ini, kemudian manajer produksi akan menetapkan jumlah barang yang harus diproduksi esok hari. 2. Pelayan restoran memberikan pelayanan terhadap tamu, kemudian tamu akan memberikan tip yang sesuai atas baik tidaknya pelayanan yang diberikan. 3. Penumpang taksi berkata pada sopir seberapa cepat laju kendaraan yang diinginkan, sopir taksi akan mengatur pijakan gas taksinya. 4. Anda mengatakan pada saya seberapa sejuk ruangan yang anda inginkan,saya akan mengatur putaran kipas yang ada pada ruangan ini. 2.3 Alasan Digunakannya Fuzzy Logic Ada beberapa alasan mengapa orang menggunakan logika fuzzy, antara lain: 1. Konsep logika fuzzy mudah dimengerti. Konsep matematis yang mendasari penalaran fuzzy sangat sederhana dan mudah dimengerti. 2. Logika fuzzy sangat fleksibel. 3. Logika fuzzy memiliki toleransi terhadap data-data yang tidak tepat. 4. Logika fuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks. 5. Logika fuzzy dapat membangun dan mengaplikasikan pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan. 6. Logika fuzzy dapat bekerjasama dengan teknik-teknik kendali secara konvensional. 7. Logika fuzzy didasarkan pada bahasa alami. Sementara itu, dalam pengaplikasiannya, logika fuzzy juga memiliki beberapa kelebihan, antara lain sebagai berikut. 1. Daya gunanya dianggap lebih baik daripada teknik kendali yang pernah ada. 2. Pengendali fuzzy terkenal karena keandalannya. 3. Mudah diperbaiki. 4. Pengendali fuzzy memberikan pengendalian yang sangat baik dibandingkan teknik lain 5. Usaha dan dana yang dibutuhkan kecil. Selain itu, logika fuzzy juga memiliki kekurangan, terutama dalam penerapannya. Kekurangan kekurangan tersebut antara lain: 1. Para enjiner dan ilmuwan generasi sebelumnya dan sekarang banyak yang tidak mengenal teori kendali fuzzy, meskipun secara teknik praktis mereka memiliki pengalaman untuk menggunakan teknologi dan perkakas kontrol yang sudah ada.
  • 8. 2. Belum banyak terdapat kursus/balai pendidikan dan buku-buku teks yang menjangkau setiap tingkat pendidikan (undergraduate, postgraduate, dan on site training) 3. Hingga kini belum ada pengetahuan sistematik yang baku dan seragam tentang metodologi pemecahan problema kendali menggunakan pengendali fuzzy. 4. Belum adanya metode umum untuk mengembangkan dan implementasi pengendali fuzzy. 2.4 Aplikasi fuzzy Logic Beberapa aplikasi Fuzzy Logic, antara lain: 1. Pada tahun 1990 pertama kali dibuat mesin cuci dengan logika fuzzy di Jepang (Matsushita Electric Industrial Company). Sistem fuzzy digunakan untuk menentukan putaran yang tepat secara otomatis berdasarkan jenis dan banyaknya kotoran serta jumlah yang akan dicuci. Input yang digunakan adalah: seberapa kotor, jenis kotoran, dan banyaknya yang dicuci. Mesin ini menggunakan sensor optik , mengeluarkan cahaya ke air dan mengukur bagaimana cahaya tersebut sampai ke ujung lainnya. Makin kotor, maka sinar yang sampai makin redup. Disamping itu, sistem juga dapat menentukan jenis kotoran (daki atau minyak). 2. Transmisi otomatis pada mobil. Mobil Nissan telah menggunakan sistem fuzzy pada transmisi otomatis, dan mampu menghemat bensin 12 – 17%. 3. Kereta bawah tanah Sendai mengontrol pemberhentian otomatis pada area tertentu. 4. Ilmu kedokteran dan biologi, seperti sistem diagnosis yang didasarkan pada logika fuzzy, penelitian kanker, manipulasi peralatan prostetik yang didasarkan pada logika fuzzy, dll. 5. Manajemen dan pengambilan keputusan, seperti manajemen basis data yang didasarkan pada logika fuzzy, tata letak pabrik yang didasarkan pada logika fuzzy, sistem pembuat keputusan di militer yang didasarkan pada logika fuzzy, pembuatan games yang didasarkan pada logika fuzzy, dll. 6. Ekonomi, seperti pemodelan fuzzy pada sistem pemasaran yang kompleks,dll. 7. Klasifikasi dan pencocokan pola. 8. Psikologi, seperti logika fuzzy untuk menganalisis kelakuan masyarakat, pencegahan dan investigasi kriminal, dll. 9. Ilmu-ilmu sosial, terutam untuk pemodelan informasi yang tidak pasti. 10. Ilmu lingkungan, seperti kendali kualitas air, prediksi cuaca, dll. 11. Teknik, seperti perancangan jaringan komputer, prediksi adanya gempa bumi, dll. 12. Riset operasi, seperti penjadwalan dan pemodelan, pengalokasian, dll. 13. Peningkatan kepercayaan, seperti kegagalan diagnosis, inspeksi dan monitoring produksi. 14. sebagai alat bantu pengambil keputusan seperti proses pembuatan program fuzzy logic dalam bahasa pemrograman Java yang diaplikasikan untuk menentukan Jumlah Produk yang dihasilkan berdasarkan kondisi Suhu, Kebisingan dan Pencahayaan. 2.5 Perbedaan Fuzzy Logic (logika Fuzzy) dengan Crisp Logic (Logika Tegas)
  • 9. logika tegas memiliki nilai tidak = 0.0 dan ya = 1.0, sedangkan logika fuzzy memiliki nilai antara 0.0 hingga 1.0. Secara grafik perbedaan antara logika tegas dan logika fuzzy ditunjukkan oleh gambar di bawah ini : Gambar 1: Logika Tegas (Crisp Logic) Gambar 2: Logika Fuzzy (Fuzzy Logic) Didalam Gambar 1 Crisp Logic, apabila X lebih dari atau sama dengan 10 baru dikatakan benar yaitu bernilai Y=1 , sebaliknya nilai X yang kurang dari 10 adalah salah yaitu Y=0, maka angka 9 atau 8 atau 7 dan seterusnya dalah dikatakan salah. Didalam Gambar 2 Fuzzy Logic, apabila nilai X=9, atau 8 atau 7 atau antara nilai 0 dan 10 adalah dikatakan ada benarnya dan ada juga salahnya. 2.6 Atribut Dan Himpunan Fuzzy Logic •Linguistik : yaitu nama suatu kelompok yang mewakili suatu keadaan tertentu dengan menggunakan bahasa alami, misalnya DINGIN, SEJUK, PANAS, dsb.
  • 10. •Numeris : yaitu suatu nilai yang menunjukkan ukuran dari suatu variabel, misalnya 10, 35, 40 dsb. Contoh : a. Variabel umur, terbagi menjadi 3 himpunan fuzzy, yaitu: MUDA, PAROBAYA, dan TUA. b. Variabel temperatur, terbagi menjadi 5 himpunan fuzzy, yaitu: DINGIN, SEJUK, NORMAL, HANGAT, dan PANAS. Gambar 3. Himpunan Fuzzy Untuk variabel Umur Dalam fuzzy logic variabel yang bersifat kabur tersebut direpresentasikan sebagai sebuah himpunan yang anggotanya adalah suatu nilai crisp dan derajat keanggotaannya (membership function) dalam himpunan tersebut Proses-proses dalam fuzzy logic adalah fuzzifikasi, penalaran (reasoning), dan defuzzifikasi: Fuzzifikasi: merupakan proses untuk mendapatkan derajat keanggotaan dari sebuah nilai numerik masukan (crisp) Penalaran: proses untuk mendapatkan aksi keluaran dari suatu kondisi input dengan mengikuti aturan-aturan (IF-THEN Rules) yang telah ditetapkan yang disebut sebagai inference/reasoning. Defuzzifikasi: proses untuk merubah hasil penalaran yang berupa derajat keanggotaan keluaran menjadi variabel numerik kembali. Blok diagram proses fuzzy logic ditunjukkan pada Gambar 4. Gambar 4: Blok diagram proses dalam fuzzy logic
  • 11. Himpunan fuzzy adalah pengelompokan sesuatu berdasarkan variabel bahasa (linguistik variable), yang dinyatakan dengan fungsi keanggotaan, dalam semesta U. Keanggotaan suatu nilai pada himpunan dinyatakan dengan derajat keanggotaan yang nilainya antara 0.0 sampai 1.0. Himpunan fuzzy didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik sedemikian hingga fungsi tersebut akan mencakup bilangan real pada interval [0,1]. Nilai keanggotaannya menunjukkan bahwa suatu item tidak hanya bernilai benar atau salah. Nilai 0 menunjukkan salah, nilai 1 menunjukkan benar, dan masih ada nilai-nilai yang terletak antara benar dan salah. Pada himpunan fuzzy, sebuah objek dapat berada pada sebuah himpunan secara parsial. Derajat keanggotaan dalam himpunan fuzzy diukur dengan fungsi yang merupakan generalisasi dari fungsi karakteristik yang disebut fungsi keanggotaan atau fungsi kompatibilitas. Fungsi keanggotaan dari himpunan fuzzy Û didefinisikan sebagai Û : x → [0,1]. Contoh: Jika diketahui: S = [1, 2, 3, 4, 5, 6] adalah semesta pembicaraan A = [1, 2, 3], B = [3, 4, 5] Maka dapat dikatakan: _ Nilai keanggotaan 2 pada himpunan A, μA[2]=1, karena 2 ∈ 𝐴. _ Nilai keanggotaan 3 pada himpunan A, μA[3]=1, karena 3 ∈ 𝐴. _ Nilai keanggotaan 4 pada himpunan A, μA[4]=0, karena 4 ∉ 𝐴. _ Nilai keanggotaan 2 pada himpunan B, μB[2]=0, karena 2 ∉ 𝐵. _ Nilai keanggotaan 3 pada himpunan B, μB[3]=1, karena 3 ∉ 𝐵. Hal – hal yang terdapat pada sistem fuzzy : a. Variabel Fuzzy, merupakan variabel yang hendak dibahas dalam suatu sistem fuzzy, seperti umur, temperatur, dsb b. Himpunan Fuzzy, merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy. c. Semesta Pembicaraan, adalah keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel fuzzy. Contoh:  Semesta pembicaraan untuk variabel umur: [0 +∞)  Semesta pembicaraan untuk variabel temperatur: [0 40] d. Domain, adalah keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy. Contoh domain himpunan fuzzy: MUDA = [0 45], TUA = [45 +∞), DINGIN = [0 20], SEJUK = [15 25], NORMAL = [20 30], HANGAT = [25 35], PANAS = [30 40] 2.7 Database Fuzzy Setelah relationship fuzzy ditentukan, untuk mengembangkan database relasional fuzzy. Pertama database relasional fuzzy, FRDB(fuzzy relational database) dipaparkan dalam tesis Maria Zemankova ini. Kemudian, beberapa model lain muncul seperti model Buckles-Petry, Model Prade-Testemale, model umano-Fukami atau model GEFRED oleh JM Medina, MA Vila dkk. Dalam konteks database fuzzy, beberapa bahasa query fuzzy sudah ditentukan, dipaparkan SQLf
  • 12. oleh P. Bosc dkk. dan FSQL oleh J. Galindo dkk. Bahasa-bahasa ini menentukan beberapa struktur dengan tujuan untuk menyertakan aspek fuzzy dalam laporan SQL, seperti ketentuan fuzzy, pembanding fuzzy, konstanta fuzzy, kendala fuzzy, ambang batas fuzzy, label linguistik dan sebagainya. 2.8 Contoh Sistem Fuzzy Logic Mari kita mempertimbangkan sistem pendingin udara dengan 5-level sistem logika fuzzy. Sistem ini menyesuaikan suhu AC dengan membandingkan suhu kamar dan nilai suhu target. Algoritma:  Mendefinisikan variabel linguistik dan istilah.  Merekonstruksi fungsi keanggotaan  Merekonstruksi aturan dasar basis pengetahuan.  Mengkonversi Crisp data menjadi data set fuzzy menggunakan fungsi keanggotaan. (fuzzifikasi)  Mengevaluasi aturan dalam aturan basis. (mesin antarmuka)  Menggabungkan hasil dari setiap aturan. (mesin antarmuka)  Mengkonversi data output ke nilai-nilai non-fuzzy. (defuzzifikasi) Langkah 1: Mendefinisikan variabel linguistik dan istilah. Variabel linguistik yang input dan output dalam bentuk kata-kata sederhana atau kalimat. Untuk suhu kamar, dingin, hangat, panas, dll, adalah istilah linguistik. Suhu (t) = {sangat dingin, dingin, hangat, sangat-hangat, panas} Setiap anggota dari himpunan ini adalah istilah linguistik dan dapat menutupi beberapa bagian dari nilai suhu keseluruhan. Langkah 2: Merekonstruksi fungsi keanggotaan Fungsi keanggotaan variabel suhu seperti yang ditunjukkan
  • 13. Langkah 3: Merekonstruksi aturan dasar basis pengetahuan. Membuat matriks nilai-nilai suhu kamar terhadap nilai-nilai suhu target itu sistem pendingin udara ini diharapkan dapat memberikan: Target Sangat Dingin Dingin Hangat Panas Sangat Panas Sangat Dingin Tidak ada perubahan Panas Panas Panas Panas Dingin Dingin Tidak ada perubahan Panas Panas Panas Hangat Dingin Dingin Tidak ada perubahan Panas Panas Panas Dingin Dingin Dingin Tidak ada perubahan Panas Sangat panas Dingin Dingin Dingin Dingin Tidak ada perubahan Membuat satu set aturan dalam basis pengetahuan dalam bentuk struktur IF-THEN-ELSE Sr No Kondisi Tindakan 1 IF temperature=(Cold OR Very_Cold) AND target=Warm THEN Panas 2 IF temperature=(Hot OR Very_Hot) AND target=Warm THEN Dingin 3 IF (temperature=Warm) AND (target=Warm) THEN Tidak ada perubahan Langkah 4: Mendapatkan nilai fuzzy Operasi himpunan fuzzy melakukan mengevaluasi aturan. Operasi digunakan untuk OR dan AND adalah masing masing Max dan Min. gabungkan semua hasil evaluasi untuk membentuk hasil akhir. Hasil ini adalah nilai fuzzy. Langkah 5: Lakukan defuzzifikasi Defuzzifikasi dilakukan sesuai dengan fungsi keanggotaan untuk variabel output.
  • 14. 2.9 Fuzzyfikazi Dan Defuzzyfikasi a. Fuzzyfikasi adalah pemetaan nilai input yang merupakan nilai tegas ke dalam fungsi keanggotaan himpunan fuzzy, untuk kemudian diolah di dalam mesin penalaran. fuzzyfikasi : x → μ(x) b. Defuzzyfikasi merupakan kebalikan dari fuzzyfikasi, yaitu pemetaan dari himpunan fuzzy ke himpunan tegas.Input dari proses defuzzyfikasi adalah suatu himpunan fuzzy yang diperoleh dari komposisi aturan-aturan fuzzy. Hasil dari defuzyfikasi ini merupakan output dari sistem kendali logika fuzzy. Defuzzyfikasi dideskripsikan sebagai Z* = defuzzyfier (Z) (16) dengan Z = hasil penalaran fuzzy Z* = keluaran kendali logika fuzzy deffuzyfier = fungsi defuzzyfikasi [2] Metode defuzzyfikasi antara lain: [2] 1. Metode Maximum Metode ini juga dikenal dengan metode puncak, yang nilai keluarannya dibatasi oleh fungsi μc(z*)>μc 1 (z). 2. Metode titik tengah Metode titik tengah juga disebut metode pusat area. Metode ini lazim dipakai dalam proses defuzzyfikasi. Keluaran dari metode ini adalah titik tengah dari hasil proses penalaran. 3. Metode rata-rata Metode ini digunakan untuk fungsi keanggotaan keluaran yang simetris. Keluaran dari metode ini adalah nilai rata-rata dari hasil proses penalaran. 4. Metode penjumlahan titik tengah Keluaran dari metode ini adalah penjumlahan titik tengah dari hasil proses penalaran. 5. Metode titik tengah area terbesar Dalam metode ini, keluarannya adalah titik pusat dari area terbesar yang ada. 2.10 Pemrograman dengan bahasa Assembly Setelah kita menemukan rumus untuk normalisasi dan denormalisasi, maka program assembly dapat dibuat. Jika kita ingin membuat suatu fuzzy system untuk aplikasi yang lain,
  • 15. tidak perlu harus sama dengan program yang telah ada, tetapi yang perlu diketahui sebelum membuat suatu fuzzy sistem adalah bagaimana cara untuk menormalisasikan input dan mendenormalisasikan output-nya sebelum data dapat diolah. Hal ini dilakukan agar nilai-nilai tersebut dapat diterima oleh DT-51 PetraFuz. Routine fuzzify dari PetraFuz terletak di alamat 0900h, untuk menjalankannya kitaa harus menggunakan perintah LCALL 0900h. Berikut ini adalah contoh format yang digunakan dalam menggunakan DT-51 PetraFuz. Fuzzify EQU 0900H Current_ins EQU 0BH Cog_Outs EQU 0DH Keterangan: - Fuzzify : Routine PetraFuz - Current_ins : Crisp Input PetraFuz - Cog_Outs : Crisp Output PetraFuz Jika kita mau memakai internal RAM maka kita harus memakai dengan alamat minimal 063H. Karena 08H – 62H digunakan oleh routine PetraFuz Engine. Contoh program perhitungan error: MOV A, SP ; memasukkan nilai SP (kecepatan yang diminta) MOV R0, PV ; memasukkan nilai PV (kecepatan sekarang) SUBB A, R0 MOV ERROR, A Contoh program perhitungan dError: MOV A, ERROR ; Error(n) MOV R0, ERROR-1 ; Error(n-1) SUBB A, R0 MOV DERROR, A Di dalam aplikasi ini yang dinormalisasikan adalah hasil dari Error dan dErrror (bukan Error dan dError), setelah itu baru dimasukkan sebagai input ke DT-51 PetraFuz. Nilai Error yang sesungguhnya harus disimpan ke dalam suatu register, karena Error yang belum dinormalisasi akan digunakan dalam perhitungan denormalisasi yaitu untuk nilai Error(n-1). Contoh program untuk memasukkan data Error dan dError ke dalam DT-51 PetraFuz, setelah itu memanggil prosedur Fuzzify dan melihat hasilnya di register accumulator. MOV CURRENT_INS,ERROR MOV CURRENT_INS+1,DERROR LCALL FUZIFY
  • 16. MOV A,COG_OUTS Hasil dari register accumulator di atas adalah nilai crisp output dan nilai tersebut harus didenormalisasikan. Contoh di atas bukanlah contoh program secara khusus melainkan contoh program secara garis besar. Hal ini dikarenakan tidak adanya program untuk normalisasi dan denormalisasi. Sebelum nilai crisp input dimasukkan ke dalam DT-51 PetraFuz, nilainya harus dinormalisasikan terlebih dahulu. Nilai crisp output yang telah diperoleh di register accumulator pada contoh di atas juga belum didenormalisasikan. Di dalam pembuatan suatu program assembly, kalau bisa hindari pembuatan program aritmatika yang cukup kompleks, misalnya perkalian atau pembagian 16 x 16 bit. Hal ini dilakukan agar proses fuzzifikasi tidak memakan banyak waktu. Ini adalah contoh pemrograman aplikasi pengaturan kecepatan motor DC dengan sistem Fuzzy. Proses kerjanya adalah sebagai berikut: 1. Pertama kali dilakukan proses inisialisasi de KITS SPC DC Motor dan komunikasi serial. 2. Terima data serial dari PC dan tunggu sampai karakter J dikirimkan. Lalu ambil nilai SP Low Byte. 3. Terima data serial lagi dari PC dan tunggu sampai karakter K dikirimkan, lalu ambil nilai SP High Byte. 4. Setelah itu baca nilai RPM sekarang dan kirimkan ke PC. 5. Hitung nilai Error dan dError, tetapi jangan lupa untuk menormalisasikan nilai tersebut. 6. Setelah normalisasi dilakukan maka masukkan kedua nilai yaitu Error dan dError ke dalam DT-51 PetraFuz. 7. Panggil prosedur fuzzify, lalu ambil hasilnya. 8. Setelah hasil didapatkan, maka hasil itu harus didenormalisasi sehingga akan muncul nilai crisp output yang sebenarnya. 9. Nilai crisp output kita masukkan sebagai nilai PWM untuk mengatur putaran motor DC tersebut. Ulangi langkah 4 - 9 sampai nilai RPM yang dinginkan tercapai.
  • 17. BAB III PENUTUP 3.1 Kesimpulan Kesimpulan-kesimpulan tersebut antara lain: 1. Logika fuzzy adalah logika yang mengandung unsur ketidakpastian. 2. Keanggotaan dalam himpunan fuzzy dinyatakan dengan derajat keanggotaan. Suatu nilai dapat menjadi anggota dua himpunan sekaligus dengan derajat yang berbeda. 3. Kendali logika fuzzy dilakukan dengan proses fuzzyfikasi, penalaran sesuai dengan aturan, dan defuzzyfikasi. 4. Sistem kendali logika fuzzy cukup praktis diaplikasikan dalam berbagai bidang. 5. Program fuzzy yang telah diimplementasikan dalam bahasa pemrograman Java dapat digunakan sebagai alat bantu untuk menentukan jumlah produk yang dihasilkan berdasarkan kondisi Suhu, Kebisingan dan Pencahayaan tertentu. 3.2 Saran Dapat Menerapkan Himpunan Fuzzy Dan Proses Fuzzyfikasi dan Defuzzyfikasi Dalam berbagai aplikasi.
  • 18. DAFTAR PUSTAKA [1] Rinaldi Munir, “Matematika Diskrit Dalam Fuzzy Logic”, Penerbit Informatika, 2005 [2] Jannus Maurits Nainggolan, “Logika Fuzzy (Fuzzy Logic) : Teori dan Penerapan Pada Sistem Daya (Kajian Pengaruh Induksi Medan Magnet)” [3] Kusumadewi,Sri.Purnomo,Hari.,”Aplikasi Logika Fuzzy untuk Pendukung Keputusan”.Yogyakarta: GRAHA ILMU,2004 [4] Kusumadewi, Sri., Hartati, S., Harjoko, A., dan Wardoyo, R. “Fuzzy Multi-Attribute Decision Making (FUZZY MADM).” Yogyakarta: Graha Ilmu, 2006.