SlideShare a Scribd company logo
1 of 12
Download to read offline
Loop mediated isothermal amplification
(LAMP)

BY
Dr.Pavulraj.S,
Roll No: 5246,
M.V.Sc. Scholar,
Division of Pathology,

Indian Veterinary Research Institute, Izatnagar, Bareilly,
U.P,
India
Loop mediated isothermal amplification
(LAMP)
Introduction
Nucleic acid amplification is a valuable tool for the diagnosis of infectious diseases.
Several amplification methods are available including PCR, Nucleic acid sequence based
amplification (NASBA), Self sustained sequence replication (3SR) and Strand
displacement amplification (SDA). Among these, PCR is the most widely used in various
forms such as reverse transcription PCR (RT-PCR), nested PCR and multiplex PCR.
These PCR-based methods require either high precision instruments for amplification
or elaborate methods for detection of the amplified products. They are often
cumbersome to adapt for routine clinical use especially in peripheral health care
settings and private clinics. PCR has several intrinsic disadvantages, such as the
requirement for thermal cycling and time consuming post-PCR analysis.
Loop mediated isothermal amplification (LAMP) is a powerful innovative gene
amplification technique emerging as a simple rapid diagnostic tool for early detection
and identification of microbial diseases.
The whole procedure is very simple and rapid wherein the amplification can be
completed in less than 1 hour under isothermal conditions employing a set of six
specially designed primers spanning eight distinct sequences of a target gene, by
incubating all the reagents in a single tube.
LAMP does not require a thermal cycler and can be performed simply with a
heating block or water bath.
Gene amplification can be visualized by the naked eye either as turbidity or in the
form of a color change when SYBR Green I, a fluorescent dsDNA intercalating dye is
employed. Gene amplification products can be also detected by agarose gel
electrophoresis as well as by real-time monitoring in an inexpensive turbidimeter.

LAMP as new generation of gene amplification assay
LAMP is characterized by the use of six different primers specifically designed to
recognize eight distinct regions on the target gene. The amplification proceeds at a
constant temperature using strand displacement reaction.
Amplification and detection of a gene can be completed in a single step by
incubating the mixture of samples, primers, DNA polymerase with strand displacement
activity and substrates at a constant temperature about 63OC.
Compared to PCR and real-time PCR, LAMP has the advantages of reaction simplicity
and higher amplification efficiency. The LAMP reaction yields large amounts of
byproduct, pyrophosphate ion, leading to a white precipitate of magnesium
pyrophosphate in the reaction mixture. The increase in turbidity of the reaction mixture
according to the production of precipitate correlates with the amount of DNA
synthesized, real-time monitoring of the LAMP reaction can be achieved by real-time
measurement of turbidity.

Design of LAMP primers
Design of a highly sensitive and specific primer set is crucial for performing LAMP
amplification. The target selection for primer design can be accomplished by using the
Primer Explore after considering the base composition, GC content and the formation of
secondary structures with the help of LAMP primer designing support software
program, Net laboratory, Japan, http://venus.netlaboratory. com.
The primer set for LAMP amplification includes a set of six primers comprising two
outer, two internal and two loop primers that recognize eight distinct regions on the
target sequence.
ο‚· The two outer primers were described as forward outer primer (F3) and
backward outer primer (B3) and have a role in strand displacement during the
non-cyclic step only.
ο‚· The internal primers were described as forward internal primer (FIP) and
backward internal primer (BIP) having both sense and antisense sequence in, it
helps in the formation of a loop.
ο‚· The two loop primers namely forward loop primer (FLP) and backward loop
primer (BLP) were designed to accelerate the amplification reaction by binding to
additional sites that are not accessed by internal primers.
The design of the above mentioned six types of primers are based on the following
eight distinct regions of the target gene: the F3c, F2c, F1c and FLP regions at the 3’ side
and the B1, B2, B3 and BLP regions at the 5’ side.
οƒ˜ FIP consists of the F2 region (at the 3’ end) that is complementary to the F2c
region, and the same sequence as the F1c region at the 5’ end.

οƒ˜ Forward outer primer (F3) consists of the F3 region that is complementary to
the F3c region.

οƒ˜ BIP consists of the B2 region (at the 3’ end) that is complementary to the B2c
region, and the same sequence as the B1c region at the 5’ end.

οƒ˜ Backward outer primer (B3) consists of the B3 region that is complementary
to the B3c region.

οƒ˜ FIP consists of a complementary sequence of F1 and a sense sequence of F2.
οƒ˜ BLP consists of a complementary sequence of B1 and a sense sequence of B2.

FIP and BIP were high performance liquid chromatography (HPLC) purified primers.
The FLP and BLP primers were composed of the sequences that are complementary to
the sequence between F1&F2 and B1&B2 regions respectively.

Important criteria
The following criteria needs to be considered critically for getting an ideal LAMP
primer set having excellent combination of sensitivity and specificity. The GC content of
the primers should be about 50–60% in the case of GC rich and about 40–50% for AT
rich. The primers should be designed so as not to easily form secondary structures. 3’
end sequences should not be AT rich or complementary to other primers. The distance
between 5’ end of F2 and B2 should be 120–180 bp, and the distance between F2 and
F3 as well as B2 and B3 should be 0–20 bp.
The distance for loop forming regions (5’ of F2 to 3’ of F1, 5’ of B2 to 3’ of B1) should
be 40–60 bp. The melting temperature for primer regions should be about 60–65o C in
the case of GC rich and about 55–60 o C for AT rich. If restriction enzyme sites exist on
the target sequence, except the primer regions, they can be used to confirm the
amplified products.

Principle of LAMP amplification
The chemistry of LAMP amplification is based on the principle of auto cyclic strand
displacement reaction being performed at a constant temperature using a DNA
polymerase. There are two steps of LAMP amplification comprising non-cyclic and cyclic
steps.

1. Non-cyclic step
In the non-cyclic step, there is the formation of DNA with stem-loops at each end
that serve as the starting structure for the amplification by LAMP cycling. Because
double stranded DNA is in the condition of dynamic equilibrium at the temperature
around 65 oC, one of the LAMP primers can anneal to the complimentary sequence of
double stranded target DNA, then initiates DNA synthesis using the DNA polymerase
with strand displacement activity, displacing and releasing a single stranded DNA.
In LAMP method, unlike with PCR, there is no need for heat denaturation of the
double stranded DNA into a single strand. Through the activity of DNA polymerase with
strand displacement activity, a DNA strand complementary to the template DNA is
synthesized, starting from the 3’ end of the F2 region of the FIP.
The F3 primer anneals to the F3c region, outside of FIP, on the target DNA and
initiates strand displacement DNA synthesis, releasing the FIP-linked complementary
strand. A double strand is formed from the DNA strand synthesized from the F3 primer
and the template DNA strand. The FIP-linked complementary strand is released as a
single strand because of the displacement by the DNA strand synthesized from the F3
primer.
Then, this released single strand forms a stem-loop structure at the 5’ end because
of the complementary F1c and F1 regions. This single strand DNA in turn serves as a
template for BIP-initiated DNA synthesis and subsequent B3-primed strand
displacement DNA synthesis.
The BIP anneals to the DNA strand produced by the above step. Starting from the 3’
end of the BIP, synthesis of complementary DNA takes place. Through this process, the
DNA reverts from a loop structure into a linear structure.
The B3 primer anneals to the outside of the BIP and then, through the activity of the
DNA polymerase and starting at the 3’ end, the DNA synthesized from the BIP is
displaced and released as a single strand before DNA synthesis from the B3 primer.
The BIP-linked complementary strand displaced forms a structure with stem-loops at
each end, which looks like a dumbbell structure.
This dumbbell-like DNA structure is quickly converted into a stem-loop DNA by selfprimed DNA synthesis. This structure serves as the starting structure for exponential
amplification.
Non-cyclic step

2. Cyclic amplification
In subsequent LAMP cycling one internal primer hybridizes to the loop on the
product and initiates displacement DNA synthesis, yielding the original stem-loop DNA
and a new stem-loop DNA with a stem twice as long. The FIP anneals to the single
stranded region in the stem-loop DNA and primes strand displacement DNA synthesis,
releasing the previously synthesized strand.
This released single strand forms a stem-loop structure at the 3’ end because of
complementary B1c and B1 regions. Then starting from the 3’ end of the B1 region, DNA
synthesis starts using self-structure as a template, and releases FIP-linked
complementary strand.
The released single strand then forms a dumbbell-like structure as both ends have
complementary F1–F1c and B1c–B1 regions, respectively. Furthermore, BIP anneals to
the B2c region and primes strand displacement DNA synthesis, releasing the B1-primed
DNA strand. As a result of this process, various sized structures consisting of alternately
inverted repeats of the target sequence on the same strand are formed.
The cycling reaction continues leading to accumulation of 109 copies of target in
less than an hour. The final products are stem-loop DNAs with several inverted repeats
of the target and cauliflower-like structures with multiple loops formed by annealing
between alternately inverted repeats of the target in the same strand.

Cyclic amplification

Monitoring of LAMP amplification
Naked eye visualization
In order to facilitate application of LAMP assay in the field, monitoring of
amplification can also be carried out with naked eye inspection either in the form of
visual turbidity or visual fluorescence.
Visual turbidity
The turbidity of magnesium pyrophosphate can be visually observed. Following
amplification, the tubes can be inspected for white turbidity through naked eye after a
pulse spin to deposit the precipitate in the bottom of the tube.
Visual fluorescence
The tube containing the amplified products can also be better visualized in the
presence of fluorescent intercalating dye like ethidium bromide, SYBR Green I, Calcein,
etc. by illuminating with a UV lamp.
The visual inspection for amplification is performed through observation of color
change following addition of 1 ml of SYBR Green I (a fluorescent dsDNA intercalating
dye) to the tube. In case of positive amplification, the original orange color of the dye
will change into green that can be judged under natural light as well as under UV light
(302 nm) with the help of a hand held UV torch lamp. In case there is no amplification,
the original orange color of the dye will be retained. This change of color is permanent
and thus can be kept for record purposes.

Real-time monitoring
The real-time monitoring of LAMP amplification can be accomplished through
spectrophotometric analysis with the help of loop amp real-time turbidimeter.
Agarose gel analysis
Following incubation at 63_C for 30 min, 10 ml aliquot of LAMP amplified products are
electrophoresed on 3% NuSieve 3:1 agarose gel in Tris-borate buffer followed by
staining with ethidium bromide and visualization on a UV transilluminator at 302nm.
Sensitivity and specificity of LAMP amplification
The LAMP assay was found to be 10– 100 fold more sensitive than PCR with a
detection limit of 0.01–10 pfu of virus. The specificity of the LAMP amplification is
directly attributed to the six sets of primers spanning eight distinct sequences of the
target gene that are being used for amplification. Unless all the target genes are
available, amplification will not proceed.

Advantages of LAMP amplification
The primary characteristics of the LAMP are its ability to amplify nucleic acid
under isothermal conditions in the range of 65OC, as a result it allows the use of simple
and cost effective reaction equipment.
The second characteristic is that LAMP has high specificity and high amplification
efficiency. LAMP method, the turbidity derived from the precipitate is produced
according to the progress of the reaction and thus making it ideal for easy monitoring
through naked eye. It provides high amplification efficiency, with DNA being amplified
10 9–1010 times in 15–60 min.

Applications of LAMP assay
LAMP is a gene amplification method with a variety of characteristics and
applications in a wide range of fields, including clinical diagnosis. LAMP is considered to
be effective as a gene amplification method for use in gene point-of-care testing (gPOCT).

LAMP in clinical diagnosis
LAMP assay has increasingly been adapted by researchers mostly from Japan for
the clinical diagnosis of emerging diseases.
LAMP has been successfully applied for rapid detection of both DNA and RNA
viruses. Several recently emerged human viral pathogens like Dengue, Japanese
Encephalitis, Chikungunya, West Nile, SARS, highly pathogenic avian influenza (HPAI)
H5N1, Norwalk viruses, Newcastle disease virus, Canine distemper virus, Canine
parvovirus, Foot-and-mouth disease virus, Viral haemorrhagic septicaemia virus, Herpes
simplex virus, Human herpes virus LAMP was successfully used for diagnosis.

Conclusion
Loop mediated isothermal amplification (LAMP) is a powerful innovative gene
amplification technique emerging as a simple rapid diagnostic tool for early detection
and identification of microbial diseases.
LAMP has all the characteristics required of real time assays (high sensitivity,
quantitative) along with simple operation for easy adaptability to field conditions. If
these characteristics of the LAMP method are used effectively, it should be possible to
develop simple genetic testing devices that have not been realized yet despite a strong
awareness of their necessity, in a wide range of fields, including infectious disease
testing, food inspection and environmental testing.
References
ο‚· Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res
2002; 30: 1292–1305.
ο‚· Notomi TH, Okayama H, Masubuchi T, et al. Loopmediated isothermal
amplification of DNA. Nucleic Acids Res 2000; 28(12): e63.
ο‚· Ushikubo H. Principle of LAMP methodβ€”a simple and rapid gene amplification
method. Uirus 2004; 54(1): 107–112.
ο‚· Manmohan Parida, Loop mediated isothermal amplification (LAMP): a new
generation of innovative gene amplification technique; perspectives in clinical
diagnosis of infectious diseases, Rev. Med. Virol. (2008)

More Related Content

What's hot

Characteristics of Loop Mediated Isothermal Amplification Technique
Characteristics of Loop Mediated Isothermal Amplification TechniqueCharacteristics of Loop Mediated Isothermal Amplification Technique
Characteristics of Loop Mediated Isothermal Amplification TechniqueSAEED S. ALSMANI
Β 
Emulsion pcr
Emulsion pcrEmulsion pcr
Emulsion pcrsalman jamil
Β 
Real time PCR
Real time PCRReal time PCR
Real time PCRnaren
Β 
Pyrosequencing
PyrosequencingPyrosequencing
PyrosequencingAshfaq Ahmad
Β 
PCR, Real Time PCR
PCR, Real Time PCRPCR, Real Time PCR
PCR, Real Time PCRdineshnbagr
Β 
Ligase Chain Reaction(LCR)
Ligase Chain Reaction(LCR)Ligase Chain Reaction(LCR)
Ligase Chain Reaction(LCR)HIRA Zaidi
Β 
Roche Pyrosequencing 454 ; Next generation DNA Sequencing
Roche Pyrosequencing 454 ; Next generation DNA SequencingRoche Pyrosequencing 454 ; Next generation DNA Sequencing
Roche Pyrosequencing 454 ; Next generation DNA SequencingAbhay jha
Β 
Next generation sequencing
Next generation sequencingNext generation sequencing
Next generation sequencingPALANIANANTH.S
Β 
Real-Time PCR
Real-Time PCRReal-Time PCR
Real-Time PCRAtai Rabby
Β 
Ion torrent and SOLiD Sequencing Techniques
Ion torrent and SOLiD Sequencing Techniques Ion torrent and SOLiD Sequencing Techniques
Ion torrent and SOLiD Sequencing Techniques fikrem24yahoocom6261
Β 
PCR BASED MOLECULAR MARKERS
PCR BASED MOLECULARMARKERSPCR BASED MOLECULARMARKERS
PCR BASED MOLECULAR MARKERSANANDALEKSHMIL
Β 
AFLP, RFLP & RAPD
AFLP, RFLP & RAPDAFLP, RFLP & RAPD
AFLP, RFLP & RAPDDOCTOR WHO
Β 
DNA Sequencing : Maxam Gilbert and Sanger Sequencing
DNA Sequencing : Maxam Gilbert and Sanger SequencingDNA Sequencing : Maxam Gilbert and Sanger Sequencing
DNA Sequencing : Maxam Gilbert and Sanger SequencingVeerendra Nagoria
Β 
Chromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloningChromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloningPromila Sheoran
Β 

What's hot (20)

Characteristics of Loop Mediated Isothermal Amplification Technique
Characteristics of Loop Mediated Isothermal Amplification TechniqueCharacteristics of Loop Mediated Isothermal Amplification Technique
Characteristics of Loop Mediated Isothermal Amplification Technique
Β 
qRT PCR
qRT PCRqRT PCR
qRT PCR
Β 
Emulsion pcr
Emulsion pcrEmulsion pcr
Emulsion pcr
Β 
Real time PCR
Real time PCRReal time PCR
Real time PCR
Β 
Pyrosequencing
PyrosequencingPyrosequencing
Pyrosequencing
Β 
PCR, Real Time PCR
PCR, Real Time PCRPCR, Real Time PCR
PCR, Real Time PCR
Β 
Ligase Chain Reaction(LCR)
Ligase Chain Reaction(LCR)Ligase Chain Reaction(LCR)
Ligase Chain Reaction(LCR)
Β 
High throughput sequencing
High throughput sequencingHigh throughput sequencing
High throughput sequencing
Β 
Roche Pyrosequencing 454 ; Next generation DNA Sequencing
Roche Pyrosequencing 454 ; Next generation DNA SequencingRoche Pyrosequencing 454 ; Next generation DNA Sequencing
Roche Pyrosequencing 454 ; Next generation DNA Sequencing
Β 
Next generation sequencing
Next generation sequencingNext generation sequencing
Next generation sequencing
Β 
Real-Time PCR
Real-Time PCRReal-Time PCR
Real-Time PCR
Β 
Real time pcr
Real time pcrReal time pcr
Real time pcr
Β 
Ion torrent and SOLiD Sequencing Techniques
Ion torrent and SOLiD Sequencing Techniques Ion torrent and SOLiD Sequencing Techniques
Ion torrent and SOLiD Sequencing Techniques
Β 
Pyrosequencing
PyrosequencingPyrosequencing
Pyrosequencing
Β 
Intro to illumina sequencing
Intro to illumina sequencingIntro to illumina sequencing
Intro to illumina sequencing
Β 
PCR BASED MOLECULAR MARKERS
PCR BASED MOLECULARMARKERSPCR BASED MOLECULARMARKERS
PCR BASED MOLECULAR MARKERS
Β 
AFLP, RFLP & RAPD
AFLP, RFLP & RAPDAFLP, RFLP & RAPD
AFLP, RFLP & RAPD
Β 
DNA Sequencing : Maxam Gilbert and Sanger Sequencing
DNA Sequencing : Maxam Gilbert and Sanger SequencingDNA Sequencing : Maxam Gilbert and Sanger Sequencing
DNA Sequencing : Maxam Gilbert and Sanger Sequencing
Β 
Chromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloningChromosome walking jumping transposon tagging map based cloning
Chromosome walking jumping transposon tagging map based cloning
Β 
Types of pcr
Types of pcrTypes of pcr
Types of pcr
Β 

Viewers also liked

Lamp technology seminar final
Lamp technology seminar finalLamp technology seminar final
Lamp technology seminar finalAkmal Hussain
Β 
lamp technology
lamp technologylamp technology
lamp technologyDeepa
Β 
Cryptosporidium LAMP
Cryptosporidium LAMPCryptosporidium LAMP
Cryptosporidium LAMPemwess92
Β 
Manual of clinical microbiology
Manual of clinical microbiology Manual of clinical microbiology
Manual of clinical microbiology Talia Sartori
Β 
Ugi investor day combined_v_final
Ugi investor day combined_v_finalUgi investor day combined_v_final
Ugi investor day combined_v_finalUGI_Corporation
Β 
Technical Note
Technical NoteTechnical Note
Technical NoteZim Obi
Β 
Ultraviolet Germicidal Irradiation
Ultraviolet Germicidal IrradiationUltraviolet Germicidal Irradiation
Ultraviolet Germicidal IrradiationZim Obi
Β 
Wastewater water-treatment-industrial-water-purification-alfaauv
Wastewater water-treatment-industrial-water-purification-alfaauvWastewater water-treatment-industrial-water-purification-alfaauv
Wastewater water-treatment-industrial-water-purification-alfaauvKishor Kharatmol
Β 
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...ICRISAT
Β 
Ultraviolet Water Purification by Atlantic Ultraviolet Corporation
Ultraviolet Water Purification by Atlantic Ultraviolet CorporationUltraviolet Water Purification by Atlantic Ultraviolet Corporation
Ultraviolet Water Purification by Atlantic Ultraviolet CorporationKelleen Guyer
Β 
Wi-Fi Presentation
Wi-Fi PresentationWi-Fi Presentation
Wi-Fi Presentationguestf11ad4
Β 
WiFi Secuiry: Attack & Defence
WiFi Secuiry: Attack & DefenceWiFi Secuiry: Attack & Defence
WiFi Secuiry: Attack & DefencePrakashchand Suthar
Β 
New Technologies for Water Purification, Ion Exchange(India) Limited
New Technologies for Water Purification, Ion  Exchange(India) LimitedNew Technologies for Water Purification, Ion  Exchange(India) Limited
New Technologies for Water Purification, Ion Exchange(India) LimitedIndia Water Portal
Β 

Viewers also liked (20)

Lamp technology seminar final
Lamp technology seminar finalLamp technology seminar final
Lamp technology seminar final
Β 
lamp technology
lamp technologylamp technology
lamp technology
Β 
Cryptosporidium LAMP
Cryptosporidium LAMPCryptosporidium LAMP
Cryptosporidium LAMP
Β 
Manual of clinical microbiology
Manual of clinical microbiology Manual of clinical microbiology
Manual of clinical microbiology
Β 
Ugi investor day combined_v_final
Ugi investor day combined_v_finalUgi investor day combined_v_final
Ugi investor day combined_v_final
Β 
Technical Note
Technical NoteTechnical Note
Technical Note
Β 
Domestic purification
Domestic purificationDomestic purification
Domestic purification
Β 
Technilamp presentation
Technilamp presentationTechnilamp presentation
Technilamp presentation
Β 
Ultraviolet Germicidal Irradiation
Ultraviolet Germicidal IrradiationUltraviolet Germicidal Irradiation
Ultraviolet Germicidal Irradiation
Β 
Want the best Wi-Fi signal? Get it!
Want the best Wi-Fi signal? Get it!Want the best Wi-Fi signal? Get it!
Want the best Wi-Fi signal? Get it!
Β 
Wastewater water-treatment-industrial-water-purification-alfaauv
Wastewater water-treatment-industrial-water-purification-alfaauvWastewater water-treatment-industrial-water-purification-alfaauv
Wastewater water-treatment-industrial-water-purification-alfaauv
Β 
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for Rapid...
Β 
Ultraviolet Water Purification by Atlantic Ultraviolet Corporation
Ultraviolet Water Purification by Atlantic Ultraviolet CorporationUltraviolet Water Purification by Atlantic Ultraviolet Corporation
Ultraviolet Water Purification by Atlantic Ultraviolet Corporation
Β 
R&D in Low cost water purification
R&D in Low cost water purification R&D in Low cost water purification
R&D in Low cost water purification
Β 
Lamp technology
Lamp technologyLamp technology
Lamp technology
Β 
Wi-Fi Presentation
Wi-Fi PresentationWi-Fi Presentation
Wi-Fi Presentation
Β 
Wi-fi Hacking
Wi-fi HackingWi-fi Hacking
Wi-fi Hacking
Β 
WiFi Secuiry: Attack & Defence
WiFi Secuiry: Attack & DefenceWiFi Secuiry: Attack & Defence
WiFi Secuiry: Attack & Defence
Β 
Purification of water
Purification of waterPurification of water
Purification of water
Β 
New Technologies for Water Purification, Ion Exchange(India) Limited
New Technologies for Water Purification, Ion  Exchange(India) LimitedNew Technologies for Water Purification, Ion  Exchange(India) Limited
New Technologies for Water Purification, Ion Exchange(India) Limited
Β 

Similar to Loop mediated isothermal amplification by dr.pavulraj.s

Journal club 11 06-12
Journal club 11 06-12Journal club 11 06-12
Journal club 11 06-12Rokshana Parvin
Β 
Nanobiology mid term exam (mesele)
Nanobiology mid term exam (mesele)Nanobiology mid term exam (mesele)
Nanobiology mid term exam (mesele)Mesele Tilahun
Β 
Debarko banerji sacnas ppresentation
Debarko banerji   sacnas ppresentationDebarko banerji   sacnas ppresentation
Debarko banerji sacnas ppresentationDebarko Banerji
Β 
Lectut btn-202-ppt-l29. applications of pcr-i (1)
Lectut btn-202-ppt-l29. applications of pcr-i (1)Lectut btn-202-ppt-l29. applications of pcr-i (1)
Lectut btn-202-ppt-l29. applications of pcr-i (1)Rishabh Jain
Β 
Ffpe white paper
Ffpe white paperFfpe white paper
Ffpe white paperElsa von Licy
Β 
Biochemistry transcription (RNA biosynsthesis)
Biochemistry transcription (RNA biosynsthesis)Biochemistry transcription (RNA biosynsthesis)
Biochemistry transcription (RNA biosynsthesis)Prabesh Raj Jamkatel
Β 
Types of PCR
Types of PCR Types of PCR
Types of PCR Amjad Afridi
Β 
Types of PCR
Types of PCRTypes of PCR
Types of PCRMicrobiology
Β 
Transcription (term paper) by Ganesh M
Transcription (term paper) by Ganesh MTranscription (term paper) by Ganesh M
Transcription (term paper) by Ganesh M9494458298
Β 
DNA Transcription and RNA Processing
DNA Transcription and RNA Processing DNA Transcription and RNA Processing
DNA Transcription and RNA Processing Ashok Katta
Β 
Lectut btn-202-ppt-l30. applications of pcr-ii
Lectut btn-202-ppt-l30. applications of pcr-iiLectut btn-202-ppt-l30. applications of pcr-ii
Lectut btn-202-ppt-l30. applications of pcr-iiRishabh Jain
Β 
Polymerase chain reaction
Polymerase chain reactionPolymerase chain reaction
Polymerase chain reactionRiyaJose28
Β 
Studying gene expression and function
Studying gene expression and functionStudying gene expression and function
Studying gene expression and functionMd Murad Khan
Β 
Lecture3BiologicaldataforBioinformatics.pptx
Lecture3BiologicaldataforBioinformatics.pptxLecture3BiologicaldataforBioinformatics.pptx
Lecture3BiologicaldataforBioinformatics.pptxahmadFouad24
Β 
Transcription
Transcription Transcription
Transcription ranjani n
Β 

Similar to Loop mediated isothermal amplification by dr.pavulraj.s (20)

Lamp barna
Lamp barnaLamp barna
Lamp barna
Β 
Journal club 11 06-12
Journal club 11 06-12Journal club 11 06-12
Journal club 11 06-12
Β 
AFLP.doc
AFLP.docAFLP.doc
AFLP.doc
Β 
Nanobiology mid term exam (mesele)
Nanobiology mid term exam (mesele)Nanobiology mid term exam (mesele)
Nanobiology mid term exam (mesele)
Β 
Debarko banerji sacnas ppresentation
Debarko banerji   sacnas ppresentationDebarko banerji   sacnas ppresentation
Debarko banerji sacnas ppresentation
Β 
Pcr
PcrPcr
Pcr
Β 
Lectut btn-202-ppt-l29. applications of pcr-i (1)
Lectut btn-202-ppt-l29. applications of pcr-i (1)Lectut btn-202-ppt-l29. applications of pcr-i (1)
Lectut btn-202-ppt-l29. applications of pcr-i (1)
Β 
Ffpe white paper
Ffpe white paperFfpe white paper
Ffpe white paper
Β 
Biochemistry transcription (RNA biosynsthesis)
Biochemistry transcription (RNA biosynsthesis)Biochemistry transcription (RNA biosynsthesis)
Biochemistry transcription (RNA biosynsthesis)
Β 
Types of PCR
Types of PCR Types of PCR
Types of PCR
Β 
Types of PCR
Types of PCRTypes of PCR
Types of PCR
Β 
Transcription (term paper) by Ganesh M
Transcription (term paper) by Ganesh MTranscription (term paper) by Ganesh M
Transcription (term paper) by Ganesh M
Β 
DNA Transcription and RNA Processing
DNA Transcription and RNA Processing DNA Transcription and RNA Processing
DNA Transcription and RNA Processing
Β 
Lectut btn-202-ppt-l30. applications of pcr-ii
Lectut btn-202-ppt-l30. applications of pcr-iiLectut btn-202-ppt-l30. applications of pcr-ii
Lectut btn-202-ppt-l30. applications of pcr-ii
Β 
Polymerase chain reaction
Polymerase chain reactionPolymerase chain reaction
Polymerase chain reaction
Β 
Transcription
TranscriptionTranscription
Transcription
Β 
Studying gene expression and function
Studying gene expression and functionStudying gene expression and function
Studying gene expression and function
Β 
Lecture3BiologicaldataforBioinformatics.pptx
Lecture3BiologicaldataforBioinformatics.pptxLecture3BiologicaldataforBioinformatics.pptx
Lecture3BiologicaldataforBioinformatics.pptx
Β 
Transcription in Prokaryotes.pptx
Transcription in Prokaryotes.pptxTranscription in Prokaryotes.pptx
Transcription in Prokaryotes.pptx
Β 
Transcription
Transcription Transcription
Transcription
Β 

More from Pavulraj Selvaraj

Common diseases and affections of laboratroy rabbits, quick review guide
Common diseases and affections of laboratroy rabbits, quick review guideCommon diseases and affections of laboratroy rabbits, quick review guide
Common diseases and affections of laboratroy rabbits, quick review guidePavulraj Selvaraj
Β 
Hamster, housing, breeding and management by dr.pavulraj.s
Hamster, housing, breeding and management by dr.pavulraj.sHamster, housing, breeding and management by dr.pavulraj.s
Hamster, housing, breeding and management by dr.pavulraj.sPavulraj Selvaraj
Β 
Contrast radiography of bladder and urethra by Dr. Pavulraj. S
Contrast radiography of bladder and urethra by Dr. Pavulraj. SContrast radiography of bladder and urethra by Dr. Pavulraj. S
Contrast radiography of bladder and urethra by Dr. Pavulraj. SPavulraj Selvaraj
Β 
Antiemetics by dr. pavulraj.s angels presentation
Antiemetics by dr. pavulraj.s angels presentationAntiemetics by dr. pavulraj.s angels presentation
Antiemetics by dr. pavulraj.s angels presentationPavulraj Selvaraj
Β 
Angels presenting chronic patellar luxation in cattle.by pavul
Angels presenting chronic patellar luxation in cattle.by pavulAngels presenting chronic patellar luxation in cattle.by pavul
Angels presenting chronic patellar luxation in cattle.by pavulPavulraj Selvaraj
Β 
Pavuls presentation bonemarrow aspiration techniques
Pavuls presentation bonemarrow aspiration techniquesPavuls presentation bonemarrow aspiration techniques
Pavuls presentation bonemarrow aspiration techniquesPavulraj Selvaraj
Β 
The symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologist
The symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologistThe symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologist
The symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologistPavulraj Selvaraj
Β 
Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...
Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...
Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...Pavulraj Selvaraj
Β 
Type i hypersensitivity ppt presentation mode
Type i hypersensitivity ppt presentation modeType i hypersensitivity ppt presentation mode
Type i hypersensitivity ppt presentation modePavulraj Selvaraj
Β 
Examination of cerebrospinal fluid presentation mode
Examination of cerebrospinal fluid presentation modeExamination of cerebrospinal fluid presentation mode
Examination of cerebrospinal fluid presentation modePavulraj Selvaraj
Β 

More from Pavulraj Selvaraj (11)

Common diseases and affections of laboratroy rabbits, quick review guide
Common diseases and affections of laboratroy rabbits, quick review guideCommon diseases and affections of laboratroy rabbits, quick review guide
Common diseases and affections of laboratroy rabbits, quick review guide
Β 
Hamster, housing, breeding and management by dr.pavulraj.s
Hamster, housing, breeding and management by dr.pavulraj.sHamster, housing, breeding and management by dr.pavulraj.s
Hamster, housing, breeding and management by dr.pavulraj.s
Β 
Contrast radiography of bladder and urethra by Dr. Pavulraj. S
Contrast radiography of bladder and urethra by Dr. Pavulraj. SContrast radiography of bladder and urethra by Dr. Pavulraj. S
Contrast radiography of bladder and urethra by Dr. Pavulraj. S
Β 
Antiemetics by dr. pavulraj.s angels presentation
Antiemetics by dr. pavulraj.s angels presentationAntiemetics by dr. pavulraj.s angels presentation
Antiemetics by dr. pavulraj.s angels presentation
Β 
Angels presenting chronic patellar luxation in cattle.by pavul
Angels presenting chronic patellar luxation in cattle.by pavulAngels presenting chronic patellar luxation in cattle.by pavul
Angels presenting chronic patellar luxation in cattle.by pavul
Β 
Pavuls presentation bonemarrow aspiration techniques
Pavuls presentation bonemarrow aspiration techniquesPavuls presentation bonemarrow aspiration techniques
Pavuls presentation bonemarrow aspiration techniques
Β 
Equine diseases
Equine diseasesEquine diseases
Equine diseases
Β 
The symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologist
The symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologistThe symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologist
The symphony of the ninth, Th9 cells, by Dr.Pavulraj.S, veterinary pathologist
Β 
Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...
Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...
Common cattle diseases by Dr.Pavulraj.S, M.V.Sc., Pathology scholar, IVRI (NR...
Β 
Type i hypersensitivity ppt presentation mode
Type i hypersensitivity ppt presentation modeType i hypersensitivity ppt presentation mode
Type i hypersensitivity ppt presentation mode
Β 
Examination of cerebrospinal fluid presentation mode
Examination of cerebrospinal fluid presentation modeExamination of cerebrospinal fluid presentation mode
Examination of cerebrospinal fluid presentation mode
Β 

Recently uploaded

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
Β 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
Β 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
Β 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
Β 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
Β 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
Β 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
Β 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
Β 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
Β 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
Β 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
Β 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 πŸ’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 πŸ’ž Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 πŸ’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 πŸ’ž Full Nigh...Pooja Nehwal
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
Β 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
Β 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
Β 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
Β 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
Β 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
Β 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
Β 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
Β 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
Β 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
Β 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
Β 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
Β 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
Β 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 πŸ’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 πŸ’ž Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 πŸ’ž Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 πŸ’ž Full Nigh...
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
Β 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
Β 

Loop mediated isothermal amplification by dr.pavulraj.s

  • 1. Loop mediated isothermal amplification (LAMP) BY Dr.Pavulraj.S, Roll No: 5246, M.V.Sc. Scholar, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, India
  • 2. Loop mediated isothermal amplification (LAMP) Introduction Nucleic acid amplification is a valuable tool for the diagnosis of infectious diseases. Several amplification methods are available including PCR, Nucleic acid sequence based amplification (NASBA), Self sustained sequence replication (3SR) and Strand displacement amplification (SDA). Among these, PCR is the most widely used in various forms such as reverse transcription PCR (RT-PCR), nested PCR and multiplex PCR. These PCR-based methods require either high precision instruments for amplification or elaborate methods for detection of the amplified products. They are often cumbersome to adapt for routine clinical use especially in peripheral health care settings and private clinics. PCR has several intrinsic disadvantages, such as the requirement for thermal cycling and time consuming post-PCR analysis. Loop mediated isothermal amplification (LAMP) is a powerful innovative gene amplification technique emerging as a simple rapid diagnostic tool for early detection and identification of microbial diseases. The whole procedure is very simple and rapid wherein the amplification can be completed in less than 1 hour under isothermal conditions employing a set of six specially designed primers spanning eight distinct sequences of a target gene, by incubating all the reagents in a single tube. LAMP does not require a thermal cycler and can be performed simply with a heating block or water bath. Gene amplification can be visualized by the naked eye either as turbidity or in the form of a color change when SYBR Green I, a fluorescent dsDNA intercalating dye is employed. Gene amplification products can be also detected by agarose gel electrophoresis as well as by real-time monitoring in an inexpensive turbidimeter. LAMP as new generation of gene amplification assay LAMP is characterized by the use of six different primers specifically designed to recognize eight distinct regions on the target gene. The amplification proceeds at a constant temperature using strand displacement reaction.
  • 3. Amplification and detection of a gene can be completed in a single step by incubating the mixture of samples, primers, DNA polymerase with strand displacement activity and substrates at a constant temperature about 63OC. Compared to PCR and real-time PCR, LAMP has the advantages of reaction simplicity and higher amplification efficiency. The LAMP reaction yields large amounts of byproduct, pyrophosphate ion, leading to a white precipitate of magnesium pyrophosphate in the reaction mixture. The increase in turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized, real-time monitoring of the LAMP reaction can be achieved by real-time measurement of turbidity. Design of LAMP primers Design of a highly sensitive and specific primer set is crucial for performing LAMP amplification. The target selection for primer design can be accomplished by using the Primer Explore after considering the base composition, GC content and the formation of secondary structures with the help of LAMP primer designing support software program, Net laboratory, Japan, http://venus.netlaboratory. com. The primer set for LAMP amplification includes a set of six primers comprising two outer, two internal and two loop primers that recognize eight distinct regions on the target sequence. ο‚· The two outer primers were described as forward outer primer (F3) and backward outer primer (B3) and have a role in strand displacement during the non-cyclic step only. ο‚· The internal primers were described as forward internal primer (FIP) and backward internal primer (BIP) having both sense and antisense sequence in, it helps in the formation of a loop. ο‚· The two loop primers namely forward loop primer (FLP) and backward loop primer (BLP) were designed to accelerate the amplification reaction by binding to additional sites that are not accessed by internal primers.
  • 4. The design of the above mentioned six types of primers are based on the following eight distinct regions of the target gene: the F3c, F2c, F1c and FLP regions at the 3’ side and the B1, B2, B3 and BLP regions at the 5’ side. οƒ˜ FIP consists of the F2 region (at the 3’ end) that is complementary to the F2c region, and the same sequence as the F1c region at the 5’ end. οƒ˜ Forward outer primer (F3) consists of the F3 region that is complementary to the F3c region. οƒ˜ BIP consists of the B2 region (at the 3’ end) that is complementary to the B2c region, and the same sequence as the B1c region at the 5’ end. οƒ˜ Backward outer primer (B3) consists of the B3 region that is complementary to the B3c region. οƒ˜ FIP consists of a complementary sequence of F1 and a sense sequence of F2.
  • 5. οƒ˜ BLP consists of a complementary sequence of B1 and a sense sequence of B2. FIP and BIP were high performance liquid chromatography (HPLC) purified primers. The FLP and BLP primers were composed of the sequences that are complementary to the sequence between F1&F2 and B1&B2 regions respectively. Important criteria The following criteria needs to be considered critically for getting an ideal LAMP primer set having excellent combination of sensitivity and specificity. The GC content of the primers should be about 50–60% in the case of GC rich and about 40–50% for AT rich. The primers should be designed so as not to easily form secondary structures. 3’ end sequences should not be AT rich or complementary to other primers. The distance between 5’ end of F2 and B2 should be 120–180 bp, and the distance between F2 and F3 as well as B2 and B3 should be 0–20 bp. The distance for loop forming regions (5’ of F2 to 3’ of F1, 5’ of B2 to 3’ of B1) should be 40–60 bp. The melting temperature for primer regions should be about 60–65o C in the case of GC rich and about 55–60 o C for AT rich. If restriction enzyme sites exist on the target sequence, except the primer regions, they can be used to confirm the amplified products. Principle of LAMP amplification The chemistry of LAMP amplification is based on the principle of auto cyclic strand displacement reaction being performed at a constant temperature using a DNA polymerase. There are two steps of LAMP amplification comprising non-cyclic and cyclic steps. 1. Non-cyclic step In the non-cyclic step, there is the formation of DNA with stem-loops at each end that serve as the starting structure for the amplification by LAMP cycling. Because
  • 6. double stranded DNA is in the condition of dynamic equilibrium at the temperature around 65 oC, one of the LAMP primers can anneal to the complimentary sequence of double stranded target DNA, then initiates DNA synthesis using the DNA polymerase with strand displacement activity, displacing and releasing a single stranded DNA. In LAMP method, unlike with PCR, there is no need for heat denaturation of the double stranded DNA into a single strand. Through the activity of DNA polymerase with strand displacement activity, a DNA strand complementary to the template DNA is synthesized, starting from the 3’ end of the F2 region of the FIP. The F3 primer anneals to the F3c region, outside of FIP, on the target DNA and initiates strand displacement DNA synthesis, releasing the FIP-linked complementary strand. A double strand is formed from the DNA strand synthesized from the F3 primer and the template DNA strand. The FIP-linked complementary strand is released as a single strand because of the displacement by the DNA strand synthesized from the F3 primer. Then, this released single strand forms a stem-loop structure at the 5’ end because of the complementary F1c and F1 regions. This single strand DNA in turn serves as a template for BIP-initiated DNA synthesis and subsequent B3-primed strand displacement DNA synthesis. The BIP anneals to the DNA strand produced by the above step. Starting from the 3’ end of the BIP, synthesis of complementary DNA takes place. Through this process, the DNA reverts from a loop structure into a linear structure. The B3 primer anneals to the outside of the BIP and then, through the activity of the DNA polymerase and starting at the 3’ end, the DNA synthesized from the BIP is displaced and released as a single strand before DNA synthesis from the B3 primer. The BIP-linked complementary strand displaced forms a structure with stem-loops at each end, which looks like a dumbbell structure. This dumbbell-like DNA structure is quickly converted into a stem-loop DNA by selfprimed DNA synthesis. This structure serves as the starting structure for exponential amplification.
  • 7. Non-cyclic step 2. Cyclic amplification In subsequent LAMP cycling one internal primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem-loop DNA and a new stem-loop DNA with a stem twice as long. The FIP anneals to the single stranded region in the stem-loop DNA and primes strand displacement DNA synthesis, releasing the previously synthesized strand. This released single strand forms a stem-loop structure at the 3’ end because of complementary B1c and B1 regions. Then starting from the 3’ end of the B1 region, DNA synthesis starts using self-structure as a template, and releases FIP-linked complementary strand. The released single strand then forms a dumbbell-like structure as both ends have complementary F1–F1c and B1c–B1 regions, respectively. Furthermore, BIP anneals to the B2c region and primes strand displacement DNA synthesis, releasing the B1-primed DNA strand. As a result of this process, various sized structures consisting of alternately inverted repeats of the target sequence on the same strand are formed.
  • 8. The cycling reaction continues leading to accumulation of 109 copies of target in less than an hour. The final products are stem-loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Cyclic amplification Monitoring of LAMP amplification Naked eye visualization In order to facilitate application of LAMP assay in the field, monitoring of amplification can also be carried out with naked eye inspection either in the form of visual turbidity or visual fluorescence. Visual turbidity The turbidity of magnesium pyrophosphate can be visually observed. Following amplification, the tubes can be inspected for white turbidity through naked eye after a pulse spin to deposit the precipitate in the bottom of the tube.
  • 9. Visual fluorescence The tube containing the amplified products can also be better visualized in the presence of fluorescent intercalating dye like ethidium bromide, SYBR Green I, Calcein, etc. by illuminating with a UV lamp. The visual inspection for amplification is performed through observation of color change following addition of 1 ml of SYBR Green I (a fluorescent dsDNA intercalating dye) to the tube. In case of positive amplification, the original orange color of the dye will change into green that can be judged under natural light as well as under UV light (302 nm) with the help of a hand held UV torch lamp. In case there is no amplification, the original orange color of the dye will be retained. This change of color is permanent and thus can be kept for record purposes. Real-time monitoring The real-time monitoring of LAMP amplification can be accomplished through spectrophotometric analysis with the help of loop amp real-time turbidimeter. Agarose gel analysis Following incubation at 63_C for 30 min, 10 ml aliquot of LAMP amplified products are electrophoresed on 3% NuSieve 3:1 agarose gel in Tris-borate buffer followed by staining with ethidium bromide and visualization on a UV transilluminator at 302nm.
  • 10. Sensitivity and specificity of LAMP amplification The LAMP assay was found to be 10– 100 fold more sensitive than PCR with a detection limit of 0.01–10 pfu of virus. The specificity of the LAMP amplification is directly attributed to the six sets of primers spanning eight distinct sequences of the target gene that are being used for amplification. Unless all the target genes are available, amplification will not proceed. Advantages of LAMP amplification The primary characteristics of the LAMP are its ability to amplify nucleic acid under isothermal conditions in the range of 65OC, as a result it allows the use of simple and cost effective reaction equipment. The second characteristic is that LAMP has high specificity and high amplification efficiency. LAMP method, the turbidity derived from the precipitate is produced according to the progress of the reaction and thus making it ideal for easy monitoring through naked eye. It provides high amplification efficiency, with DNA being amplified 10 9–1010 times in 15–60 min. Applications of LAMP assay LAMP is a gene amplification method with a variety of characteristics and applications in a wide range of fields, including clinical diagnosis. LAMP is considered to be effective as a gene amplification method for use in gene point-of-care testing (gPOCT). LAMP in clinical diagnosis LAMP assay has increasingly been adapted by researchers mostly from Japan for the clinical diagnosis of emerging diseases. LAMP has been successfully applied for rapid detection of both DNA and RNA viruses. Several recently emerged human viral pathogens like Dengue, Japanese Encephalitis, Chikungunya, West Nile, SARS, highly pathogenic avian influenza (HPAI) H5N1, Norwalk viruses, Newcastle disease virus, Canine distemper virus, Canine parvovirus, Foot-and-mouth disease virus, Viral haemorrhagic septicaemia virus, Herpes simplex virus, Human herpes virus LAMP was successfully used for diagnosis. Conclusion Loop mediated isothermal amplification (LAMP) is a powerful innovative gene amplification technique emerging as a simple rapid diagnostic tool for early detection and identification of microbial diseases.
  • 11. LAMP has all the characteristics required of real time assays (high sensitivity, quantitative) along with simple operation for easy adaptability to field conditions. If these characteristics of the LAMP method are used effectively, it should be possible to develop simple genetic testing devices that have not been realized yet despite a strong awareness of their necessity, in a wide range of fields, including infectious disease testing, food inspection and environmental testing.
  • 12. References ο‚· Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res 2002; 30: 1292–1305. ο‚· Notomi TH, Okayama H, Masubuchi T, et al. Loopmediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28(12): e63. ο‚· Ushikubo H. Principle of LAMP methodβ€”a simple and rapid gene amplification method. Uirus 2004; 54(1): 107–112. ο‚· Manmohan Parida, Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases, Rev. Med. Virol. (2008)