SlideShare a Scribd company logo
 
 
Πανεπιστήμιο Πειραιά,  
Μεταπτυχιακό Ναυτιλίας 15​ος​
 κύκλος 
Μάθημα: Λιμάνια και Αναπτυξιακές Πολιτικές 
Professor: Dr. Aggeliki Pardali 
 
Student’s Name​: ​Anastasia Kiritsi 
 
The potentials of the Liquefied Natural 
Gas (LNG) to be the main fuel for the 
Shipping Sector 
 
(An analysis for making the Piraeus Port the LNG 
Bunkering Hub of Mediterranean and Adriatic Region, 
by developing a network of LNG supply and bunkering 
facilities for ships) 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
Contents  
1. Executive Summary  3 
PART A 3 
2. Environmental Regulations Affecting the Shipping Industry 3-4 
PART B 5 
3. LNG Description as an Energy Source  5 
3.1. How does LNG work?  5 
3.2. What’s LNG?  5 
3.3. A typical LNG process 6 
3.4. LNG Transportation 7 
3.5. LNG Storage 7 
3.6. LNG Regasification Terminals 7 
3.7. The Benefits of LNG as Opposed to Gas Transported by Pipelines 7 
PART C 8 
4. LNG Demand from Shipping at the Port of Piraeus 8 
4.1. Basic shipping characteristics at the Port of Piraeus 8 
PART D 9 
5. Analysis of Ship Traffic Data at the Port of Piraeus 9-14 
PART E 15 
6. LNG as Marine Fuel; the Ship Owners View 15-17 
PART F 18 
7. Expected LNG Demand at other Regional Satellite Ports 18-20 
8. Concussions  21 
9. Comments and Recommendations:  22 
10. References 23-25 
   
2 
 
1. Executive Summary 
The current assignment is following the new challenges for Liquefied Natural Gas                       
(LNG) in Shipping Industry as the mail fuel after the latest developments on energy                           
security along with environmental issues.  
Today is the right time for a decisive move towards the LNG as the main fuel for the                                   
shipping industry. This will serve not only the need for security of supply but also met                               
the future demand for LNG as marine fuel as expected in the forthcoming years. The                             
alternative fuel infrastructure directive 2013/0012(COD), foresees an increased use of                   
LNG for sea and inland waterborne. More specific, all core marine and inland ports                           
(139) will have to be able to provide LNG as marine fuel from 2020 and 2025                               
respectively.  
The directive 2012/33/EC mandates the use of marine fuel with max 0.1%. Sulphur in                           
EU ports and while at berth or equivalent method to achieve the required emission                           
standards. The limits for sulphur content in marine fuels in EU Member States territorial                           
Seas outside the designated Emission Control Ares (ECAs) are 3.5% from 1/1/2012 and                         
0,5% from 1/1/2020. Limits for sulphur content in marine fuels used by passenger ship                           
in EU Member States territorial Seas outside ECAs are 1,5% until 31/12/2019 and 0,1                           
from 1/1/2020. Additional Greece and Italy expect the EU Macro-regional Strategy on                       
Adriatic and Ionian region, which more likely will set strict emissions limits. ​(Buhaug,                         
2019) 
The Port of Piraeus is the largest Terminal in the Mediterranean Sea in terms of Short                               
Sea and Deep Sea services. Actually it is expected that the Port of Piraeus will play the                                 
leading role similarly to the one that the Port of Rotterdam has in the Baltic Region. The                                 
Baltic model of a major leading hub and a set of satellite ports will be applied in the                                   
case of Piraeus. The initial design is that Rotterdam as a hub utilizes big storage tanks                               
and with the use of LNG feeder vessels distributes LNG in satellite ports such as                             
Goteborg. Following the same scheme, Port of Piraeus will require major infrastructure                       
facilities ​(Theodoropoulos, 2009).  
According to the Market experts LNG will play the role of the future Marine fuel able to                                 
meet emission limits and additionally under the right price policy provide financial                       
benefits to the ship-owners. Analysis depicts that a ship-owner shifting to LNG will                         
exhibit an attractive payback period and significant operational and financial benefits. 
 
PART A 
2. Environmental Regulations Affecting the Shipping Industry 
Increased emphasis is placed both globally and locally in relation to environmental                       
issues. This coupled with the growing awareness of the actual burden of pollution from                           
shipping has led to intense development of regulations at both the international and                         
national levels. The introduction at the global level of Emission Control Areas (ECA's) is                           
an attempt to address this issue and reduce the environmental footprint of the                         
maritime industry. 
Thus abatement of air pollution in maritime transport is high on the world and on the                               
European agenda. As far as shipping is concerned, agreements and contracts at an                         
3 
 
international level and on a regional basis as well as various organizations are involved                           
in different ways in different places in the world. One of the oldest and most important                               
international bodies governing the shipping industry is the International Maritime                   
Organization (IMO), which is based in London, UK. IMO is responsible for improving                         
maritime safety, for safeguarding the environment, for addressing maritime security                   
and for developing of international rules to be followed by all shipping member nations.                           
(Rather, 2013) 
The Convention MARPOL 73/78 of the IMO is the main International Convention for the                           
Prevention of Pollution from Ships. Air pollution is regulated in Annex VI "Regulations for                           
the Prevention of Air Pollution from Ships" (since 2005). More stringent measures                       
adopted by the IMO in relation to SO​X and NO​X emissions are introduced with the                             
revised Annex VI to MARPOL. ​(Lloyd’s, 2012) 
On the other hand, the EU has set a target to reduce greenhouse gas emissions by at                                 
least 40% by 2050 (compared to 2005) for the maritime sector. EU​’​s White Paper on                             
Transport also states that the shipping industry should additionally contribute to the                       
reduction of local and global emissions. EU legislation aligned with IMO requirements                       
with Directive 2012/33/EU, which amends Directive 1999/32/EC on the sulfur content                     
of shipping fuels. Although the Directive does not contain provisions that regulate ship                         
emissions for NO​x or Particulate Matter (PM), it introduces, inter alia, stricter sulfur limits                           
for marine fuels and in marine areas outside Sulfur Emission Control Areas (SECA​’​s).                         
(Nilsson, 2011) 
In Figure 1 we observe the sulfur limits and the corresponding dates of required                           
compliance both in SECA's and at a global level.​ (EU report, 2013) 
 
Figure1. Regulations imposing sulfur limits and the corresponding deadlines in accordance with Annex VI by 
MARPOL 
(Source:​ ​Lloyd​’​s Register, 2012, LNG-fuelled deep sea shipping ​– ​the outlook for LNG bunker and 
LNG-fuelled newbuild demand up to 2025) 
PART B 
4 
 
3. LNG Description as an Energy Source  
In our days, Liquefied Natural Gas (LNG) seems to be one of the most favorable energy                               
sources mainly for the power and electricity sector across the globe. Qatar is the                           
world’s biggest producer of liquefied natural gas and it cut exports of the fuel for the                               
first time since at least 2006 as Australia and the U.S. prepare to erode the Middle                               
Eastern nation’s dominant position. The Qatari volumes dropped 2.1 percent from a                       
year earlier in 2014 after at least eight years of gains. The nation’s share of global LNG                                 
imports shrank to 31.9 percent from a peak of 32.9 percent in 2013. The industry is                               
waiting for the wave of new exports from the U.S. and from Australia, who will likely top                                 
the producers’ list by 2020. Qatar, whose North Field is part of the world’s biggest gas                               
reservoir, dominates the market with output from its 14 LNG plants, known as trains.                           
The nation has capacity to produce 77 million metric tons a year of the fuel, or 26                                 
percent of the world’s total. That is being challenged by Australia and the U.S., which                             
are building a total of 99 million tons of annual capacity. ​(Theodoropoulos, 2009) 
 
3.1. How does LNG work?  
Liquefied natural gas (LNG) is natural gas (predominantly methane, CH4) that has                       
been converted to liquid form for ease of storage or transport. It takes up about                             
1/600th the volume of natural gas in the gaseous state ​(Algel, 2012). 
 
3.2. What’s LNG? ​LNG is natural gas that is cooled into liquid form at -160 degrees                               
Centigrade, reducing it to one-six-hundredth of its original size. It is stored and                         
transported in insulated tankers which minimize vaporization resulting from heat                   
ingress. The LNG is transported by tankers to different destinations. On arrival, it is                           
converted back into a gaseous form for delivery to users such as power stations,                           
industries, commercial buildings and domestic. LNG is composed of a mixture of                       
hydrocarbon gases that occur with petroleum deposits, principally methane together                   
with varying quantities of ethane, propane, butane, and other gases, and is used as                           
fuel and in the manufacture of organic compounds.” Liquefied natural gas or LNG is                           
natural gas (predominantly methane, CH4) that has been converted temporarily to                     
liquid form for ease of storage or transport. Liquefied natural gas takes up about                           
1/600th the volume of natural gas in the gaseous state. It is odorless, colorless,                           
non-toxic and non-corrosive. Hazards include flammability, freezing and asphyxia. 
5 
 
 
Illustration A.​ The Energy Process – LNG Value Chain 
 
3.3. A typical LNG process 
The gas is first extracted and transported to a processing plant where it is purified by                               
removing any condensates such as water, oil, mud, as well as other gases like CO2                             
and H2S and sometimes solids as mercury. The gas is then cooled down in stages until                               
it is liquefied. LNG is finally stored in storage tanks and can be loaded and shipped. The                                 
liquefication process involves removal of certain components, such as dust, acid                     
gases, helium, water, and heavy hydrocarbons, which could cause difficulty                   
downstream. The natural gas is then condensed into a liquid at close to atmospheric                           
pressure (maximum transport pressure set at around 25 kPa/3.6 psi) by cooling it to                           
approximately −162 °C (−260 °F). The reduction in volume makes it much more cost                           
efficient to transport over long distances where pipelines do not exist. Where moving                         
natural gas by pipelines is not possible or economical, it can be transported by                           
specially designed cryogenic sea vessels (LNG carriers) or cryogenic road tankers. The                       
energy density of LNG is 60% of that of diesel fuel. ​(Maffii, 2007) 
The gas is first extracted and transported to a processing plant where it is purified by                               
removing any condensates such as water, oil, mud, as well as other gases like CO2                             
and H2S and sometimes solids as mercury. The gas is then cooled down in stages until                               
it is liquefied. LNG is finally stored in storage tanks and can be loaded and shipped.                               
(Theodoropoulos, 2011) 
 
6 
 
3.4. LNG Transportation 
An LNG carrier is a tank ship designed for transporting liquefied natural gas (LNG). As                             
the LNG market grows rapidly, the fleet of LNG carriers continues to experience                         
tremendous growth. ​(Consuegra, 2010) 
3.5. LNG Storage 
A liquefied natural gas storage tank or LNG storage tank is a specialized type of                             
storage tank used for the storage of Liquefied Natural Gas. LNG storage tanks can be                             
found in ground, above ground or in LNG carriers. The common characteristic of LNG                           
Storage tanks is the ability to store LNG at the very low temperature of -162 °C (-260                                 
°F). LNG storage tanks have double containers, where the inner contains LNG and the                           
outer container contains insulation materials. The most common tank type is the full                         
containment tank. Tanks are roughly 55 m (180 ft) high and 75 m (250 ft) in diameter                                 
(=250 000 m³). In LNG storage tanks if LNG vapours are not released, the pressure and                               
temperature within the tank will continue to rise. LNG is a cryogen, and is kept in its                                 
liquid state at very low temperatures. The temperature within the tank will remain                         
constant if the pressure is kept constant by allowing the boil off gas to escape from the                                 
tank. This is known as auto-refrigeration. ​(Bengtsson, 2011) 
3.6. LNG Regasification Terminals 
LNG regasification terminals are the keys to unlocking markets. In regasification                     
terminals, the ultimate destination of LNG carriers, the liquefied natural gas is returned                         
to its initial, gaseous state, then fed into transmission and distribution networks. 
­ Onshore regasification terminal – Land facility for receiving, unloading, storing                   
and re-gasifying LNG, usually including breakwaters, tanker berthing and other                   
marine facilities. ​(Levander, 2008) 
­ Offshore regasification terminal – Offshore facility for receiving, unloading,                 
storing and re-gasifying LNG. ​(Sipila, 2008) 
 
3.7. The Benefits of LNG as Opposed to Gas Transported by Pipelines 
The biggest advantage of having access to the LNG market and being able to import                             
it, is the proof of the existence of alternative sources of LNG supply, which is necessary                               
both for the safety of the total company supply so as to meet the needs of its clients, as                                     
well as for the correction of the Load Factor of its consumers-clients for whom the                             
imported LNG is intended for. Furthermore, the supply and import of LNG also                         
contributes to the overall security of gas supply of SE Europe, since the supply of LNG                               
is not affected by geopolitical or other financially problems that may occasionally                       
occur in transit countries from which the gas supply pipelines go through. In terms of                             
price, changing conditions in the world natural gas market in the last 3 years have                             
affirmed LNG as being a much more competitive commodity to pipeline gas, due to the                             
collapse of prices on the world’s largest market, the U.S., brought on by the                           
development of indigenous shale gas (nonconventional gas).  
PART C 
4. LNG Demand from Shipping at the Port of Piraeus 
7 
 
The use of liquefied natural gas as marine fuel is not a science fiction vision today as                                 
the number of ships that choose this type of fuel is constantly rising. But to be able to                                   
adopt widespread use there should be a development of the global network                       
infrastructure and an efficient logistics chain. These two parameters are currently at                       
an early stage in most parts of Europe as companies supply natural gas and fuel                             
suppliers are reluctant to invest in creating the necessary infrastructure until there is                         
sufficient commercial demand from the shipping industry. On the other hand,                     
ship-owners are reluctant to invest in new construction or retrofit ships and although                         
they would like to use LNG even prior to the compulsory phase (2020) the initial                             
investment cost is a great obstacle. 
In the frame of this study, the feasibility of creating a terminal supplying LNG as marine                               
fuel in the port of Piraeus is determined. At first, the description of a profile of the                                 
shipping industry serving this port is drawn, and then an appropriate methodology                       
assesses the annual demand for LNG as presented in more detail below. The cases,                           
on which this method was based, were designed to provide reliable results. 
 
4.1. Basic shipping characteristics at the Port of Piraeus 
The strategic geographical position occupied by Greece renders it an obvious                     
gateway for ships to dock in the East, with a focus on developing countries of Eastern                               
Europe and the Black Sea and to the European Union member states.​(Consuegra,                       
2010) 
Piraeus, the first in size and handling capacity port in the country and one of the                               
largest in the Mediterranean, is an important driver of development for international                       
trade and for the local and national economies. It constitutes the hub of the country for                               
the supply and export of raw materials and finished products. It serves both passenger                           
and tourist traffic. Being an international transshipment center and located at the                       
intersection of waterways linking the Mediterranean to Northern Europe via the                     
Suez-Gibraltar axis, it serves vessels of any type and size. The port has an LNG                             
bunkering potential covering a wide range of activities such as container operations,                       
movement of vehicles and conventional cargo, costal routes and the cruise industry.                       
(Bengtsson, 2011)  
 
 
 
 
 
 
 
PART D 
5. Analysis of Ship Traffic Data at the Port of Piraeus 
8 
 
With a view to reliable study, I outlined the profile of the maritime industry in this port,                                 
by creating a database, which includes all the ships that visited the port in 2013. Then I                                 
made a detailed description for each ship collecting data on the basis of data from                             
Lloyd​’​s Register/Fairplay SEAWEB database. 
Key features of each ship are: 
▪ Type of ship 
▪ Dimensions hull 
▪ Capacity (e.g DWT, TEU capacity, CEU, berths etc.) 
▪ Age 
▪ Total installed power 
▪ Service speed 
▪ Number of arrivals in the port 
Based on this data, I conducted a series of groupings. The main objective of groupings                             
is the categorization of total arrivals based on specific characteristics for each ship.                         
The classification of ships helps me approach the estimated number of refuelings                       
using LNG from the port in the coming years as well as the estimated quantity of LNG                                 
required. (Lloyd’s, 2012)​. More specifically, the initial grouping was based on the type of                           
ship, identifying these categories: coastal ships, cruise ships, container ships, and                     
tankers. This grouping helps us draw conclusions on the routes the vessels serve and                           
thus the geographical areas in which they operate. To be able to better understand                           
the importance of the initial grouping, it is sufficient to consider the discrepancies                         
between the different types of ships. For example, coastal vessels operating in specific                         
geographic regions covering the needs of passenger traffic have a totally different                       
operational profile compared to the container vessels. ​(Man, 2013) 
Having categorized all vessels based on their type, we conducted a further grouping to                           
allow a detailed description of each category in the port. For costal ships, a second                             
grouping was performed according to the geographical areas of routes served during                       
the year 2013, their service speed and age, while for other classes of ships a grouping                               
was performed according to the capacity and age. ​(MGFL report, 2008) 
At the text below there are some details about the type of vessels which have the                               
majority of the port call. 
➢ Container Ships 
In 2013, at the Piraeus Container terminal handled a total of about 2.398 arrivals from                             
302 ships. As we mentioned, TEU transshipment is a major activity of the port. The                             
majority of ships visiting the port have small capacity, designed to feed either large                           
ships served in Piraeus either neighboring ports which do not have high demand from                           
large ships or do not have the required infrastructure to service them. 
9 
 
 
Figure 2. Frequency of Container Ships that visited the port of Piraeus by age 
In Figure 2 we can observe the ages of the TEU ships that visited Piraeus in 2013. The                                   
set is relatively young with an average value of 12, 27 years. To be able to make a                                   
better approximation for the profile of the ships that visited the port in 2013, I grouped                               
separate the ships according to the capacity in TEU. 
 
Figure 3. Frequency of Container Ships visiting Piraeus by capacity. 
In Figure 3 we can see the frequency of ships according to capacity. We observe that                               
the number of ships that visited the port of Piraeus is concentrated in four main                             
ranges. The first covers ships with a capacity of less than 2.000 TEU, the second those                               
with a capacity of 2.000 to 5.000 TEU, the third those from 5.000 and 10.000 TEU and                                 
the fourth those with a capacity exceeding 10.000 TEU. These four areas have                         
constituted the main grouping of the study: 
▪ Class A (0 -1.999 TEU) 
▪ Class B (2.000 - 4.999 TEU) 
▪ Class C (5.000 ​– ​9.999 TEU) 
10 
 
▪ Class D (10.000 + TEU) 
➢ Vehicle Carriers 
In 2013 the port of Piraeus had 716 arrivals from 202 Ro-Ro Carriers. In Figure 7 we                                 
observe the ages of Ro-Ro Carriers. The mean age was 9.3 years. 
 
Figure 4. Frequency of Vehicle Carriers that visited the port of Piraeus by age. 
As we mentioned, the transshipment of vehicles is the main activity of the port. In                             
Figure 5 we observe the frequency of ships by capacity. 
 
Figure 5. Frequency of Vehicle Carriers visiting Piraeus by capacity. 
We observe that the size of ships that visited the port of Piraeus was relatively large,                               
mainly ships capacity over 4000 ceu. For this reason we divided the ships arriving at                             
the port in two main categories: 
▪ Class A (​≤ ​3.999 ceu) 
▪ Class B (​≥ ​4.000 ceu) 
The number of ships of Class B is about six times the ships of Class A, but made fewer                                     
arrivals than Class A. They made 319 and 394 arrivals respectively. 
11 
 
 
 
➢ Cruise Ship 
The global cruise industry has grown rapidly over the last 15 years and is expected to                               
continue to grow at even higher pace. In 2013 the port of Piraeus had 770 arrivals from                                 
109 Cruise Ships. In Figure 6 we observe the frequency of the Cruise ships by age. The                                 
average age was close to 17,62 years.  
 
Figure 6.​ ​Frequency of Cruise Ships by age 
In Figure 7 we can see the frequency of Cruise Ships by berths. 
 
Figure 7.​ ​Frequency of Cruise Ships by capacity 
We observe that the size of ships that visited the port of Piraeus is divided into two                                 
main categories, ships which have below 1.000 berths and ships over 1.000 berths. For                           
this reason we split ships that arrived at the port in two basic classes: 
▪ Class A (​≤ ​999 berths) 
12 
 
▪ Class B (​≥ ​1.000 berths) 
The number of ships of Class B is a slightly larger than the number of ships of Class A.                                     
However, larger cruise ships have made more arrivals than smaller cruise ships: 478                         
Class B arrivals, as compared to 292 Class A arrivals. 
➢ Costal Vessels 
Ships of this class are coastal vessels and exhibited the largest number of arrivals at                             
the port of Piraeus, with large seasonal fluctuations. Indeed, these ships are                       
considered ideal for LNG use as they spend their entire time cruising emission control                           
areas. We must emphasize that ferries to the islands of the Saronic Gulf will not be                               
studied in the context of this work, since their fleet is much older. 
❖ Vessels Serving Cyclades 
In this paragraph we will deal with the description of the geographical area of the                             
Cyclades. This market segment was based on the assumption mentioned above about                       
the service speed. In Table 1 we can observe the main features of each category, i.e.                               
the number of arrivals, the total installed capacity, the service speed and age. 
Table 1. Characteristics of ships arriving from Cycladic islands. 
“​Small Ro-Ro/Pax​”  “​Large Ro-Ro/Pax​” 
Number of Arrivals  1132  756 
Average Total installed power [kW]  12.735,6  29.090,4 
Average Service speed [knots]  22,2  36,0 
Average age  20,4  10,2 
The "Small Ro-Ro/Pax" made 1132 arrivals, 74% of which by ships whose age was                           
below 15 years. In the third quarter, there were 327 arrivals by "Small Ro-Ro/Pax" by                             
527 "Large Ro-Ro/Pax". 
❖ Vessels Serving Crete 
In this paragraph we will deal with the arrivals of passenger vessels from ports of                             
Crete.  In Table 2 we can observe the basic characteristics of each category. 
Table​ ​2. Characteristics of ships having arrived from Crete 
“​Small Ro-Ro/Pax​”  “​Large Ro-Ro/Pax​” 
Number of Arrivals  664  708 
Average Total installed power [kW]  19.946,1  58.200,0 
Average Service speed [knots]  21,2  29,4 
Average Age  29,0  12,25 
 
Regarding the "Small Ro-Ro/Pax" segment, all arrivals were conducted by ships whose                       
age was more than 15 years, in contrast to the "Big Ro-Ro/Pax" whose age was below                               
15 years. 
In the third quarter there were 236 arrivals from "Small Ro-Ro/Pax" and 237 "Large                           
Ro-Ro/Pax". 
13 
 
❖ Vessels Serving Northern Aegean 
In this paragraph we will deal with the analysis of arrivals from the ports of Northern                               
Aegean. In Table 3 we can observe the basic characteristics of each category. 
 
Table 3. Characteristics of ships arriving from the North Aegean islands. 
“​Small Ro-Ro/Pax​”  “​Large Ro-Ro/Pax​” 
Number of Arrivals  116  408 
Average Total installed power [kW]  14.594,5  31.209,5 
Average Service speed [knots]  18,75  26,08 
Average age  39,00  13,50 
All "Small Ro-Ro/Pax" arrivals were by ships whose age was over 25 years, in contrast                             
to the "Big Ro-Ro/Pax", whose age was below 10 years. In the third quarter there were                               
46 arrivals from "Small Ro-Ro/Pax" and 179 from "Large Ro-Ro/Pax". 
❖ Vessels Serving the Dodecanese 
In this paragraph we will deal with the description of arrivals from the islands of the                               
Dodecanese.  
In Table 4 we can observe the basic characteristics of each category. 
Table 4. Ship statistics of arrivals from Dodecanese 
“​Small Ro-Ro/Pax​” “​Large Ro-Ro/Pax​”
Number of Arrivals 238  274 
Average Total installed power [kW]  10.815,5  44.480,00 
Average Service speed [knots] 21,0  20,0 
Average age 30,0  13,0 
All "Small Ro-Ro/Pax" arrivals were by ships whose age was over 25 years, in contrast                             
to the "Big Ro-Ro/Pax", whose age was below 10 years. 
In the third quarter were 64 arrivals from "Small Ro-Ro/Pax" and 88 "Large Ro-Ro/Pax​”​. 
PART 
6. LNG as Marine Fuel; Ship Owners View 
The engines using LNG as fuel have proven to be a reliable solution as well as the LNG                                   
is an environmentally friendly fuel with low sulfur content. The exhaust emissions, such                         
as SO​X and PM using LNG are negligible. The NO​X emissions can be reduced by about                               
80-90% for four-stroke Otto and 10-20% for two-stroke engines. Still LNG contains less                         
carbon than the other fuels, reducing CO​2 emissions by approximately 20%. In Figure 8                           
we can see the significant environmental advantages of the LNG fuel as compared to                           
other alternatives. Finally, and this is usually forgotten, due to the nature of the                           
combustion and the more balanced movements of the mechanical parts, engines are                       
significantly more quiet when using LNG. ​(Palsson, 2011) 
14 
 
 
Figure 8.​ ​Comparison of NO​X​, SO​2​, CO​2​, PM emissions for alternative fuel oil types 
(Source: TRI-ZEN International, 2012, LNG Markets Perspective) 
According to the final Working Paper of the European Commission, ​“​Actions towards a                         
comprehensive EU framework on LNG for shipping​”​, Brussels, 24.1.2013 SWD(2013) 4                     
final, the use of LNG as a marine fuel is the most promising alternative for both the                                 
short and medium term, at least for short sea shipping and sea- activities other than                             
transport, e.g. fishing and offshore services. 
The use of LNG as marine fuel mainly depends on the LNG Spread over Heavy Fuel Oil                                 
(HFO) and Marine Gas Oil (MGO). Furthermore, the financial feasibility of LNG-as-fuel                       
projects will affect the trend of retrofitting existing ships and new buildings for using                           
LNG. Ship owners also usually base their investment decisions on payback times, i.e.                         
they compare how many years are needed for the respective investments to generate                         
revenues (or cost savings) that add up to the same amount as the investment. 
The most important parameter for determining payback time is the relation between                       
fuel use and installed engine power. ​(Belkin, 2013) 
In the forthcoming years, as a proper infrastructure and an efficient supply chain will                           
be developed, the amount of the ships that use LNG as marine fuel will increase                             
significantly. ​(Levander, 2008) 
Figure 9 shows the estimated number of ships that will do their bunkering with LNG as                               
marine fuel in the port of Piraeus. 
15 
 
 
Figure 9​ ​The number of ships, except Costal Ship that will do their bunkering in the port of Piraeus. 
Figure 10 shows the estimated number of Costal Vessels that will do their bunkering                           
with LNG as marine fuel in the port of Piraeus 
Figure 10.​ ​The number of Costal Ship that will do their bunkering in the port of Piraeus. 
Figure 11 at left vertical axis we can see the total demand of LNG as marine fuel at                                   
Port of Piraeus and at right axis we observe the number of LNG fuelled vessel 
   
16 
 
 
 
Figure 11. ​The demand estimation for LNG as marine fuel and number of ships that will do their bunkering in                                       
the port of Pirae  
 
The LNG demand for 2025 is estimated at 2.042 million cm. I observe that the                             
"Ro-Ro/Pax" serving routes including Crete and the large cruise ships will be the two                           
classes that will show the largest annual LNG demand reaching 1.439 million cm and                           
224.000 cm respectively. The annual demand for LNG from other classes of ships of                           
coastal ranges from 20.000 cm to 230.000 cm.  
 
The middle container ships will exhibit a significant LNG demand with approximately                       
233.000 cm annually. The smallest annual LNG demand will come from small vehicle                         
vessels and small cruise ships with 25.000 cm and 28.000 cm respectively.  
 
Generally, the Coastal Vessels are expected to largely determine the demand for LNG                         
fuel shipping in Piraeus. They are expected to consume more than 50% of the total                             
annual demand (2.04 million cm of LNG, 2025). This is reasonable since coastal vessels                           
call at the largest number of ports as compared to any other ship class. They are                               
expected to refuel in the port of Piraeus. ​(Maritime GasFL report , 2008) 
   
17 
 
PART 
7. Expected LNG Demand at other Regional Satellite Ports 
The EU in the White Paper on Transport has set a target to reduce greenhouse gas                               
emissions at least 40% by 2050 (compared to 2005) in the maritime sector. It also                             
states that the shipping industry should also contribute to the reduction of local and                           
global emissions. EU legislation aligned with IMO requirements with Directive                   
2012/33/EU, which amends Directive 1999/32/EC on the sulfur content of shipping                     
fuels. ​(DNV report, 2012) 
The European Commission has planned a strategy to shift to cleaner fuels and                         
proposes installing LNG fueling stations at a total of 139 marine and inland ports                           
(generally around 10% of all ports in Europe) for the TEN-T (Trans European Core                           
Network) from 2020 and 2025 respectively. These stations are not based on large gas                           
terminals, but are either fixed or mobile refueling stations covering all major ports of                           
the EU. ​(EU Com. Report, 2013) 
The strategic geographical position of FSRU offer a great opportunity to supply with                         
LNG the Ports considered in the study. A sample of these ports is shown in Table 5. 
 
Table 5. Distance between FSRU and Various Satellite port. 
Distance between ports 
Port of Patrai 305  nm 
Port of Thessaloniki 251  nm 
 Port of Volos 186  nm 
 Port of Brindisi [Italy] 540  nm 
 Port of Bari[Italy] 598  nm 
Port of Limassol [Cyprus] 532  nm 
Port of Malta [Malta] 534  nm 
Port of Marmara [Turkey] 290  nm 
 
 
 
   
18 
 
 
Figure 12.​ ​Potential Regional Satellite Ports in East Mediterranean. 
 
 
Figure13. ​Timeline of potential expected demand of LNG as Marine Fuel at Piraeus & regional Satellite Port in                                   
East Mediterranean Sea  
   
19 
 
 
Figure 14 shows the timeline of infrastructure, bunkering facilities, annual demand and                       
number of LNG ships at FSRU LNG terminal in the port of Piraeus. 
 
 
 
Figure14.​ ​Timeline of infrastructure and bunkering shipping faciliti 
   
20 
 
8. Conclusions 
The use of LNG as fuel for the shipping sector and the developments of Piraeus Port as                                 
an LNG bunkering hub along with other satellite Ports, seems a very good concept                           
which fulfills the obligations of directive 2012/33/EC mandates the use of marine fuel                         
with max 0.1%. sulphur in EU ports. ​(Ratner, 2013) 
Today is the right time for a decisive move towards the LNG as the main fuel for the                                   
shipping industry. This will serve not only the need for security of supply but also met                               
the future demand for LNG as marine fuel as expected in the forthcoming years. The                             
alternative fuel infrastructure directive 2013/0012(COD), foresees an increased use of                   
LNG, NG and CNG for sea and inland waterborne and mainland transportation.                       
(Wartsila report, 2012) 
More specific, all core marine and inland ports (139) will have to be able to provide LNG                                 
as marine fuel from 2020 and 2025 respectively. The directive 2012/33/EC mandates                       
the use of marine fuel with max 0.1%. Sulphur in EU ports and while at berth or                                 
equivalent method to achieve the required emission standards.  
The limits for sulphur content in marine fuels in EU Member States territorial Seas                           
outside the designated Emission Control Ares (ECAs) are 3.5% from 1/1/2012 and 0,5%                         
from 1/1/2020. Limits for sulphur content in marine fuels used by passenger ship in EU                             
Member States territorial Seas outside ECAs are 1,5% until 31/12/2019 and 0,1 from                         
1/1/2020. ​(EU Com. report, 2014) 
 
The Port of Piraeus is the largest Terminal in the Mediterranean Sea in terms of Short                               
Sea and Deep Sea services. This justifies the proposal for installing LNG bunkering                         
facilities in the port along with many operational, business and financial benefits for all                           
involved parties. ​(Theodoropoulos, 20 
   
21 
 
 
9. Comments and Recommendations: 
The current assignment shows that there are many challenges regarding the LNG fuel                         
for the shipping industry. Bellow we can place some basic comments and                       
recommendations, as follows: 
­ LNG seems that it will play a crucial role in terms of energy security, mainly,                             
across SE Europe, which mainly depends on Russian natural gas; 
­ along with energy security issues, LNG shows main environmental benefits                   
especially for the shipping sector, as all core marine and inland ports (139) will                           
have to be able to provide LNG as marine fuel from 2020 and 2025 respectively; 
­ addition, Greece and Italy expect the EU Macro-regional Strategy on Adriatic                     
and Ionian region, which more likely will set strict emissions limits; 
­ The Port of Piraeus, as the largest Terminal in the Mediterranean Sea in terms                           
of Short Sea and Deep Sea services, has all the potentials to be the HUB of LNG                                 
BUNKERING across the region, supporting other satellite ports; 
­ Piraeus port will require major infrastructure facilities in order to provide                     
services to ships 
­ The analysis shows that a ship-owner shifting to LNG will exhibit an attractive                         
payback period and significant operational and financial benefits; 
­ A detailed financial model is needed in order to take into consideration all                         
financial aspects; 
­ Analysis of LNG prices VS HFO prices is requested; 
­ Analysis of the LNG supply-chain and LNG sources sustainability is requested; 
­ The costs of retrofitting the existing vessels and build new LNG fuelled ships                         
should be requested; 
­ Port licenses and regulation framework should be examined and further                   
reviewed; 
­ Environmental issues should be discussed and communicated with the local                   
community. 
 
 
 
 
 
 
 
 
10. References 
22 
 
1. Algel J., Bakosch A., Forsman B., December 2012. Feasibility Study on LNG 
Fuelled Short Sea and Coastal Shipping in the Wider Caribbean Region. 
SSPA SWEDEN AB, pp: 2, 5, 19, 34. 
2. Ashworth J., January 2012. The Genesis of LNG Bunkers, LNG Markets 
Perspective. TRI-ZEN International, pp: 7, 45. 
3. Buhaug, ​Ø​., Corbett J.J, Endresen, O., Eyring, V., Faber J., Hanayama, S., Lee, 
D., Lindstad, H., Mjelde, A., Palsson, C., Wanquing, W., Winebrake, J.J., 
Yoshida, K., April 2009. Second IMO Greenhouse Gas Study. International 
Maritime Organization, London, , pp:  6, 23, 34, 125. 
4. BP Group, June 2013, Statistical Review of World Energy,  pp: 127, 134. 
5. Consuegra, S. C. & Paalvast, M.S. M., November 2010. Sustainability in Inland 
Shipping-The use of LNG as Marine Fuel. Delft University of Technology, 
Delft,  pp: 122, 234, 237. 
6. Det Norske Veritas, 2012. Shipping 2020 DNV, pp: 18, 23. 
7. European Commission, January 2013. SWD (2013) 4 final: Actions towards a 
comprehensive EU framework on LNG for shipping, Brussels, pp: 19, 34. 
8. European Commission, 2013. Quarterly Report Energy on European Gas 
Markets: Market Observatory for Energy. DG Energy Volume 5, issue 4, pp: 5, 
8, 123, 125, 234, 267. 
9. Groenendijk W., March 2013. LNG in transport: The views of the European 
LNG terminal operators. Gas LNG Europe, Hamburg, pp: 12, 23, 45. 
10. Levander O. & Sipil​ä ​T., February 2008. LNG auxiliary power in port for 
container vessels, pp: 19, 34, 67. 
11. Lloyd​’​s Register, August 2012. LNG-fuelled deep sea shipping: The outlook 
for LNG bunker and LNG-fuelled newbuild demand up to 2025, pp: 19, 34, 89. 
12. Lloyd​’​s Register, June 2012. Understanding exhaust gas treatment systems: 
Guidance for shipowners and operators, pp: 34, 46, 234, 
13. Maffii F., Molocchi A., Chiffi C., June 2007. External Costs of Maritime 
Transport. European Parliament, Policy Department B: Structural and 
Cohesion Policies: Transport and Tourism, Brussels , pp: 7, 17, 34. 
14. MAN Diesel & Turbo, Propulsion Trends in Container Vessels, Copenhagen, 
pp: 123, 236, 238 
15. Maritime Gas Fuel Logistics, December 2008. Developing LNG as a clean 
fuel for ships in the Baltic and North Seas, pp: 34, 76. 
16. Nilsson L., Bengtsson N., P​å​lsson C., July 2011. Ships Visiting European Ports. 
IHS Fairplay, Gothenburg, pp: 34, 63. 
17. Ratner M., Belkin P., Nickol J., Woehrel S., March 2013. Europe​’​s Energy 
Security: Options and Challenges to Natural Gas Supply Diversification. 
Congressional Research Service,  pp: 123, 344.  
18. Swedish Marine Technology Forum, LNG bunkering Ship to Ship procedure, 
pp: 2, 66. 
23 
 
19. Swedish Marine Technology Forum, May 2011. LNG supply chain definition. 
CNSS WP4 Activity 2, Action D, pp: 22, 34, 77   
20. The Danish Maritime Authority March 2012. Appendices, North European 
LNG Infrastructure Project-A feasibility study for an LNG filling station 
infrastructure. DMA, Copenhagen, pp: 6, 56, 78.  
21. Theodore Theodoropoulos, 2009, ‘’The Secret World of Energy’’, 3​rd​
 Edition, 
pp:12, 23, 25, 60, 70, 72, 106, 134, 230, 260 
22. Theodore Theodoropoulos, 2011, ‘’Future Energy’’, 2​nd​
 Edition, pp: 11, 18, 23, 
60, 126, 236, 238, 266.  
23. The Danish Maritime Authority, October 2011. Baseline Report, North 
European LNG Infrastructure Project-A feasibility study for an LNG filling 
station infrastructure, DMA, Copenhagen, pp: 34, 36, 38, 123. 
24. The Danish Maritime Authority March 2012. Full Report, North European LNG 
Infrastructure Project-A feasibility study for an LNG filling station 
infrastructure, DMA Copenhagen, pp: 77, 123, 343. 
25. W​ä​rtsil​ä​, December 2012, W​Ä​RTSIL​Ä ​50DF Product Guide, pp: 2, 5, 19, 34 
26. W​ä​rtsil​ä​, June 2012, W​Ä​RTSIL​Ä ​34DF Product Guide, pp: 12, 34, 126. 
 
Internet Links: 
http://www.onthemosway.eu/poseidon-med-lng-european-project/ 
http://inea.ec.europa.eu/en/cef/cef_transport/apply_for_funding/cef_transport_call_for_proposal
s_2014.htm 
http://blogs.dnv.com/ 
http://ec.europa.eu/​ - http://tentea.ec.europa.eu/ 
http://wpci.iaphworldports.org/ 
http://www.aga.com/ 
http://www.emsa.europa.eu/ 
http://www.imo.org/ 
http://www.mandieselturbo.com/ 
http://www.olp.gr/ 
http://www.portofrotterdam.com/ 
http://www.rae.gr/ 
http://www.whitesmoke.se/ 
http://www.qp.com.qa/​ - ​http://www.rasgas.com 
ANNEX 
Figures:  
Figure1. Regulations imposing sulfur limits and the corresponding deadlines in accordance with 
Annex VI by MARPOL 4 
Figure 2. Frequency of Container Ships that visited the port of Piraeus by age 10 
24 
 
Figure 3. Frequency of Container Ships visiting Piraeus by capacity 10 
Figure 4. Frequency of Vehicle Carriers that visited the port of Piraeus by age 11 
Figure 5. Frequency of Vehicle Carriers visiting Piraeus by capacity 11 
Figure 6. Frequency of Cruise Ships by age 12 
Figure 7. Frequency of Cruise Ships by capacity 12 
Figure 8. Comparison of NOX, SO2, CO2, PM emissions for alternative fuel oil types 15 
Figure 9. The number of ships, except Costal Ship that will do their bunkering in the port of Piraeus
16 
Figure 10. The number of Costal Ship that will do their bunkering in the port of Piraeus 16 
Figure11. The demand estimation for LNG as marine fuel and number of ships that will do their 
bunkering in the port of Piraeus  17 
Figure12. Potential Regional Satellite Ports in East Mediterranean 19 
Figure13. Timeline of potential expected demand of LNG as Marine Fuel at Piraeus & regional 
Satellite Port in East Mediterranean Sea  19 
Figure14. Timeline of infrastructure and bunkering shipping facilities 20 
 
Tables: 
Table 1. Characteristics of ships arriving from Cycladic islands  13 
Table 2. Characteristics of ships having arrived from Crete 13 
Table 3. Characteristics of ships arriving from the North Aegean islands  14 
Table 4. Ship statistics of arrivals from Dodecanese 14 
Table 5. Distance between FSRU and Various Satellite port 18 
 
Illustrations: 
Illustration A. The Energy Process – LNG Value Chain  6 
 
 
   
25 
 
Interviews  
Piraeus Port Authority- Ship-owners - Industry Experts 
 
-  ​H.E. Sheikh Ali Al-Thani,​ CEO of MILAHA 
 
- ​Giannis Papagiannopoulos​, General Manager of Piraeus Port Authority 
 
- ​Vassilis Terzis,​ Ship-owner, Queensway Navigation Company 
 
- David Liner,​ LNG fleet Manager & Director of Business Development of NAKILAT 
 
- Richard Gilmore,​ MARAN GAS LNG Fleet Director 
 
-​Theodore Theodoropoulos,​ Aegean Gas CEO 
 
 
 
 
 
  
   
26 
 
 
.  
   
27 
 
 
 
 
 
 
 
28 

More Related Content

What's hot

Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017
Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017
Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017
Samantha Pettigrew
 
Kyoto protocol (Pre/Post)
Kyoto protocol (Pre/Post)Kyoto protocol (Pre/Post)
Kyoto protocol (Pre/Post)
anuj4849
 
Heavy Fuel Oil in the Arctic, 2015
Heavy Fuel Oil in the Arctic, 2015Heavy Fuel Oil in the Arctic, 2015
Heavy Fuel Oil in the Arctic, 2015
International Council on Clean Transportation
 
12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...
12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...
12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...
Global CCS Institute
 
Montreal protocol 1
Montreal protocol 1Montreal protocol 1
Montreal protocol 1
Stuart Wright
 
List of all appendices, Team Finland Future Watch Report, October 2015
List of all appendices, Team Finland Future Watch Report, October 2015List of all appendices, Team Finland Future Watch Report, October 2015
List of all appendices, Team Finland Future Watch Report, October 2015
Team Finland Future Watch
 
Copenhagen Climate Summit
Copenhagen Climate SummitCopenhagen Climate Summit
Copenhagen Climate Summit
SHASHIKANT KULKARNI
 
Convention on Long Range Transboundary air pollution
Convention on Long Range Transboundary air pollution Convention on Long Range Transboundary air pollution
Convention on Long Range Transboundary air pollution
sonalidalal4
 
Andrew Whitehead, BOC Hydrogen Refuelling
Andrew Whitehead, BOC Hydrogen RefuellingAndrew Whitehead, BOC Hydrogen Refuelling
Andrew Whitehead, BOC Hydrogen Refuelling
InfluenceSwindon
 
Kyoto Protocol to The UNFCCC by Md Sohrab Hossain
Kyoto Protocol to The UNFCCC by Md Sohrab HossainKyoto Protocol to The UNFCCC by Md Sohrab Hossain
Kyoto Protocol to The UNFCCC by Md Sohrab Hossain
Md Sohrab Hossain
 
Global Environmental Governance: Copenhagen Accord
Global Environmental Governance: Copenhagen AccordGlobal Environmental Governance: Copenhagen Accord
Global Environmental Governance: Copenhagen Accord
Bobur Nazarmuhamedov
 
The Kyoto Protocol
The Kyoto ProtocolThe Kyoto Protocol
The Kyoto ProtocolMaria Foster
 
Shippings bermuda triangle-5
Shippings bermuda triangle-5Shippings bermuda triangle-5
Shippings bermuda triangle-5
www.thiiink.com
 
Kyoto Protocol (Article explanation)
Kyoto Protocol (Article explanation)Kyoto Protocol (Article explanation)
Kyoto Protocol (Article explanation)
ShifatAlam2
 

What's hot (17)

Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017
Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017
Heavy Fuel Oil and Black Carbon in the Arctic, 2015 to 2017
 
Kyoto protocol (Pre/Post)
Kyoto protocol (Pre/Post)Kyoto protocol (Pre/Post)
Kyoto protocol (Pre/Post)
 
20081124 unctad fdi-cdm
20081124 unctad fdi-cdm20081124 unctad fdi-cdm
20081124 unctad fdi-cdm
 
Heavy Fuel Oil in the Arctic, 2015
Heavy Fuel Oil in the Arctic, 2015Heavy Fuel Oil in the Arctic, 2015
Heavy Fuel Oil in the Arctic, 2015
 
12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...
12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...
12 months, 5 sites, 1 billion tonnes of co2 storage by 2030. the eti introduc...
 
Montreal protocol 1
Montreal protocol 1Montreal protocol 1
Montreal protocol 1
 
List of all appendices, Team Finland Future Watch Report, October 2015
List of all appendices, Team Finland Future Watch Report, October 2015List of all appendices, Team Finland Future Watch Report, October 2015
List of all appendices, Team Finland Future Watch Report, October 2015
 
Copenhagen Climate Summit
Copenhagen Climate SummitCopenhagen Climate Summit
Copenhagen Climate Summit
 
Convention on Long Range Transboundary air pollution
Convention on Long Range Transboundary air pollution Convention on Long Range Transboundary air pollution
Convention on Long Range Transboundary air pollution
 
Andrew Whitehead, BOC Hydrogen Refuelling
Andrew Whitehead, BOC Hydrogen RefuellingAndrew Whitehead, BOC Hydrogen Refuelling
Andrew Whitehead, BOC Hydrogen Refuelling
 
Kyoto Protocol to The UNFCCC by Md Sohrab Hossain
Kyoto Protocol to The UNFCCC by Md Sohrab HossainKyoto Protocol to The UNFCCC by Md Sohrab Hossain
Kyoto Protocol to The UNFCCC by Md Sohrab Hossain
 
Kyoto protocol
Kyoto protocol Kyoto protocol
Kyoto protocol
 
9136IIED
9136IIED9136IIED
9136IIED
 
Global Environmental Governance: Copenhagen Accord
Global Environmental Governance: Copenhagen AccordGlobal Environmental Governance: Copenhagen Accord
Global Environmental Governance: Copenhagen Accord
 
The Kyoto Protocol
The Kyoto ProtocolThe Kyoto Protocol
The Kyoto Protocol
 
Shippings bermuda triangle-5
Shippings bermuda triangle-5Shippings bermuda triangle-5
Shippings bermuda triangle-5
 
Kyoto Protocol (Article explanation)
Kyoto Protocol (Article explanation)Kyoto Protocol (Article explanation)
Kyoto Protocol (Article explanation)
 

Viewers also liked

BRANDING GREECE -KYRITSI Anastasia
BRANDING GREECE  -KYRITSI AnastasiaBRANDING GREECE  -KYRITSI Anastasia
BRANDING GREECE -KYRITSI AnastasiaAnastasia Kiritsi
 
Starwoodhotelsresortsworldwide-Strategycase
Starwoodhotelsresortsworldwide-StrategycaseStarwoodhotelsresortsworldwide-Strategycase
Starwoodhotelsresortsworldwide-StrategycaseAnastasia Kiritsi
 
Lng bunkering china status report January 2016
Lng bunkering china status report January 2016Lng bunkering china status report January 2016
Lng bunkering china status report January 2016
Dan-Hermann Thue
 
US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014
George Teriakidis
 
Supporting an lng fuelled marine industry future across the entire gas value ...
Supporting an lng fuelled marine industry future across the entire gas value ...Supporting an lng fuelled marine industry future across the entire gas value ...
Supporting an lng fuelled marine industry future across the entire gas value ...
Wärtsilä Marine Solutions
 
Seagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking GraceSeagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking Grace
John Hatley PE
 
Small scale lng
Small scale lngSmall scale lng
Small scale lng
feikojager
 
TNO - LNG Safety Program intro Berlin
TNO - LNG Safety Program intro BerlinTNO - LNG Safety Program intro Berlin
TNO - LNG Safety Program intro BerlinBas Van Den Beemt
 
GE Small Scale Lng solutions
GE Small Scale  Lng solutionsGE Small Scale  Lng solutions
GE Small Scale Lng solutions
Andy Varoshiotis
 
LNG as Fuel magazine
LNG as Fuel magazineLNG as Fuel magazine
LNG as Fuel magazine
George Teriakidis
 
DNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkeringDNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkering
George Teriakidis
 
LNG as ship fuel
LNG as ship fuelLNG as ship fuel
LNG as ship fuel
George Teriakidis
 

Viewers also liked (14)

BRANDING GREECE -KYRITSI Anastasia
BRANDING GREECE  -KYRITSI AnastasiaBRANDING GREECE  -KYRITSI Anastasia
BRANDING GREECE -KYRITSI Anastasia
 
Starwoodhotelsresortsworldwide-Strategycase
Starwoodhotelsresortsworldwide-StrategycaseStarwoodhotelsresortsworldwide-Strategycase
Starwoodhotelsresortsworldwide-Strategycase
 
PLS_LNG_Study
PLS_LNG_StudyPLS_LNG_Study
PLS_LNG_Study
 
Lng bunkering china status report January 2016
Lng bunkering china status report January 2016Lng bunkering china status report January 2016
Lng bunkering china status report January 2016
 
US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014
 
Supporting an lng fuelled marine industry future across the entire gas value ...
Supporting an lng fuelled marine industry future across the entire gas value ...Supporting an lng fuelled marine industry future across the entire gas value ...
Supporting an lng fuelled marine industry future across the entire gas value ...
 
Seagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking GraceSeagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking Grace
 
Small scale lng
Small scale lngSmall scale lng
Small scale lng
 
TNO - LNG Safety Program intro Berlin
TNO - LNG Safety Program intro BerlinTNO - LNG Safety Program intro Berlin
TNO - LNG Safety Program intro Berlin
 
GE Small Scale Lng solutions
GE Small Scale  Lng solutionsGE Small Scale  Lng solutions
GE Small Scale Lng solutions
 
LNG fuelled ships bunkering
LNG fuelled ships bunkeringLNG fuelled ships bunkering
LNG fuelled ships bunkering
 
LNG as Fuel magazine
LNG as Fuel magazineLNG as Fuel magazine
LNG as Fuel magazine
 
DNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkeringDNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkering
 
LNG as ship fuel
LNG as ship fuelLNG as ship fuel
LNG as ship fuel
 

Similar to LNGinShippingIndustry.docx

Energy Efficiency Measures for Ships and Potential Barriers for Adoption
Energy Efficiency Measures for Ships and Potential Barriers for AdoptionEnergy Efficiency Measures for Ships and Potential Barriers for Adoption
Energy Efficiency Measures for Ships and Potential Barriers for Adoption
Mohammud Hanif Dewan M.Phil.
 
Andrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI Europe
Andrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI EuropeAndrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI Europe
Andrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI Europe
WEC Italia
 
2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL
MEC Intelligence
 
Policy options to reduce GHGs from international shipping
Policy options to reduce GHGs from international shippingPolicy options to reduce GHGs from international shipping
Policy options to reduce GHGs from international shipping
Ricardo Energy & Environment
 
1 s2.0-s2092678216301753-main
1 s2.0-s2092678216301753-main1 s2.0-s2092678216301753-main
1 s2.0-s2092678216301753-main
Cinthia Leite
 
Session 41 Erik Svensson
Session 41 Erik SvenssonSession 41 Erik Svensson
Session 41 Erik SvenssonSvavel
 
ditc-ted-10.05.16-oceans-imo-heike deggim.pdf
ditc-ted-10.05.16-oceans-imo-heike deggim.pdfditc-ted-10.05.16-oceans-imo-heike deggim.pdf
ditc-ted-10.05.16-oceans-imo-heike deggim.pdf
AmanRaj86288
 
Poly Shield Technologies Incorporated SHPR - Equities.com Research Report
Poly Shield Technologies Incorporated SHPR - Equities.com Research ReportPoly Shield Technologies Incorporated SHPR - Equities.com Research Report
Poly Shield Technologies Incorporated SHPR - Equities.com Research ReportEquities.com Smith
 
Presentation in APPAM
Presentation in APPAMPresentation in APPAM
Presentation in APPAM
Sea Wang
 
Energy efficient ship_operation
Energy efficient ship_operationEnergy efficient ship_operation
Energy efficient ship_operation
Yasser B. A. Farag
 
Report completo one corporation to pollute them all
Report completo one corporation to pollute them allReport completo one corporation to pollute them all
Report completo one corporation to pollute them all
ilfattoquotidiano.it
 
Eu sulphur directive_dfds
Eu sulphur directive_dfdsEu sulphur directive_dfds
Eu sulphur directive_dfds
Joachim Woehlkens
 
Flies like a plane Safe as a plane with the Power of a plane TS820 Brief intro
Flies like a plane Safe as a plane  with the Power of a plane TS820 Brief introFlies like a plane Safe as a plane  with the Power of a plane TS820 Brief intro
Flies like a plane Safe as a plane with the Power of a plane TS820 Brief intro
www.thiiink.com
 
atmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdfatmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdf
MajidBaqeri
 
document.pdf
document.pdfdocument.pdf
document.pdf
RishabhGarg293076
 
Guide%20 Marpol Anex%20 Vi
Guide%20 Marpol Anex%20 ViGuide%20 Marpol Anex%20 Vi
Guide%20 Marpol Anex%20 Vi
Krzysztof
 
TIER III NOX emission
TIER III NOX emissionTIER III NOX emission
TIER III NOX emission
ChristianPopeBarte
 
Civic Exchange 2009 The Air We Breathe Conference - Air Pollution can be Fixed
Civic Exchange 2009 The Air We Breathe Conference - Air Pollution can be FixedCivic Exchange 2009 The Air We Breathe Conference - Air Pollution can be Fixed
Civic Exchange 2009 The Air We Breathe Conference - Air Pollution can be Fixed
Civic Exchange
 

Similar to LNGinShippingIndustry.docx (20)

Energy Efficiency Measures for Ships and Potential Barriers for Adoption
Energy Efficiency Measures for Ships and Potential Barriers for AdoptionEnergy Efficiency Measures for Ships and Potential Barriers for Adoption
Energy Efficiency Measures for Ships and Potential Barriers for Adoption
 
Andrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI Europe
Andrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI EuropeAndrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI Europe
Andrea Marroni - Expert Leader - Climate Change, AF - Mercados EMI Europe
 
2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL2011 LNG AS PROPULSION FUEL
2011 LNG AS PROPULSION FUEL
 
Policy options to reduce GHGs from international shipping
Policy options to reduce GHGs from international shippingPolicy options to reduce GHGs from international shipping
Policy options to reduce GHGs from international shipping
 
1 s2.0-s2092678216301753-main
1 s2.0-s2092678216301753-main1 s2.0-s2092678216301753-main
1 s2.0-s2092678216301753-main
 
Session 41 Erik Svensson
Session 41 Erik SvenssonSession 41 Erik Svensson
Session 41 Erik Svensson
 
ditc-ted-10.05.16-oceans-imo-heike deggim.pdf
ditc-ted-10.05.16-oceans-imo-heike deggim.pdfditc-ted-10.05.16-oceans-imo-heike deggim.pdf
ditc-ted-10.05.16-oceans-imo-heike deggim.pdf
 
Marpol annex 3& 6
Marpol annex 3& 6Marpol annex 3& 6
Marpol annex 3& 6
 
Poly Shield Technologies Incorporated SHPR - Equities.com Research Report
Poly Shield Technologies Incorporated SHPR - Equities.com Research ReportPoly Shield Technologies Incorporated SHPR - Equities.com Research Report
Poly Shield Technologies Incorporated SHPR - Equities.com Research Report
 
Presentation in APPAM
Presentation in APPAMPresentation in APPAM
Presentation in APPAM
 
Energy efficient ship_operation
Energy efficient ship_operationEnergy efficient ship_operation
Energy efficient ship_operation
 
Report completo one corporation to pollute them all
Report completo one corporation to pollute them allReport completo one corporation to pollute them all
Report completo one corporation to pollute them all
 
Eu sulphur directive_dfds
Eu sulphur directive_dfdsEu sulphur directive_dfds
Eu sulphur directive_dfds
 
MARPOL Annex VI Chapter 4
MARPOL Annex VI Chapter 4MARPOL Annex VI Chapter 4
MARPOL Annex VI Chapter 4
 
Flies like a plane Safe as a plane with the Power of a plane TS820 Brief intro
Flies like a plane Safe as a plane  with the Power of a plane TS820 Brief introFlies like a plane Safe as a plane  with the Power of a plane TS820 Brief intro
Flies like a plane Safe as a plane with the Power of a plane TS820 Brief intro
 
atmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdfatmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdf
 
document.pdf
document.pdfdocument.pdf
document.pdf
 
Guide%20 Marpol Anex%20 Vi
Guide%20 Marpol Anex%20 ViGuide%20 Marpol Anex%20 Vi
Guide%20 Marpol Anex%20 Vi
 
TIER III NOX emission
TIER III NOX emissionTIER III NOX emission
TIER III NOX emission
 
Civic Exchange 2009 The Air We Breathe Conference - Air Pollution can be Fixed
Civic Exchange 2009 The Air We Breathe Conference - Air Pollution can be FixedCivic Exchange 2009 The Air We Breathe Conference - Air Pollution can be Fixed
Civic Exchange 2009 The Air We Breathe Conference - Air Pollution can be Fixed
 

LNGinShippingIndustry.docx

  • 2.       Contents   1. Executive Summary  3  PART A 3  2. Environmental Regulations Affecting the Shipping Industry 3-4  PART B 5  3. LNG Description as an Energy Source  5  3.1. How does LNG work?  5  3.2. What’s LNG?  5  3.3. A typical LNG process 6  3.4. LNG Transportation 7  3.5. LNG Storage 7  3.6. LNG Regasification Terminals 7  3.7. The Benefits of LNG as Opposed to Gas Transported by Pipelines 7  PART C 8  4. LNG Demand from Shipping at the Port of Piraeus 8  4.1. Basic shipping characteristics at the Port of Piraeus 8  PART D 9  5. Analysis of Ship Traffic Data at the Port of Piraeus 9-14  PART E 15  6. LNG as Marine Fuel; the Ship Owners View 15-17  PART F 18  7. Expected LNG Demand at other Regional Satellite Ports 18-20  8. Concussions  21  9. Comments and Recommendations:  22  10. References 23-25      2 
  • 3.   1. Executive Summary  The current assignment is following the new challenges for Liquefied Natural Gas                        (LNG) in Shipping Industry as the mail fuel after the latest developments on energy                            security along with environmental issues.   Today is the right time for a decisive move towards the LNG as the main fuel for the                                    shipping industry. This will serve not only the need for security of supply but also met                                the future demand for LNG as marine fuel as expected in the forthcoming years. The                              alternative fuel infrastructure directive 2013/0012(COD), foresees an increased use of                    LNG for sea and inland waterborne. More specific, all core marine and inland ports                            (139) will have to be able to provide LNG as marine fuel from 2020 and 2025                                respectively.   The directive 2012/33/EC mandates the use of marine fuel with max 0.1%. Sulphur in                            EU ports and while at berth or equivalent method to achieve the required emission                            standards. The limits for sulphur content in marine fuels in EU Member States territorial                            Seas outside the designated Emission Control Ares (ECAs) are 3.5% from 1/1/2012 and                          0,5% from 1/1/2020. Limits for sulphur content in marine fuels used by passenger ship                            in EU Member States territorial Seas outside ECAs are 1,5% until 31/12/2019 and 0,1                            from 1/1/2020. Additional Greece and Italy expect the EU Macro-regional Strategy on                        Adriatic and Ionian region, which more likely will set strict emissions limits. ​(Buhaug,                          2019)  The Port of Piraeus is the largest Terminal in the Mediterranean Sea in terms of Short                                Sea and Deep Sea services. Actually it is expected that the Port of Piraeus will play the                                  leading role similarly to the one that the Port of Rotterdam has in the Baltic Region. The                                  Baltic model of a major leading hub and a set of satellite ports will be applied in the                                    case of Piraeus. The initial design is that Rotterdam as a hub utilizes big storage tanks                                and with the use of LNG feeder vessels distributes LNG in satellite ports such as                              Goteborg. Following the same scheme, Port of Piraeus will require major infrastructure                        facilities ​(Theodoropoulos, 2009).   According to the Market experts LNG will play the role of the future Marine fuel able to                                  meet emission limits and additionally under the right price policy provide financial                        benefits to the ship-owners. Analysis depicts that a ship-owner shifting to LNG will                          exhibit an attractive payback period and significant operational and financial benefits.    PART A  2. Environmental Regulations Affecting the Shipping Industry  Increased emphasis is placed both globally and locally in relation to environmental                        issues. This coupled with the growing awareness of the actual burden of pollution from                            shipping has led to intense development of regulations at both the international and                          national levels. The introduction at the global level of Emission Control Areas (ECA's) is                            an attempt to address this issue and reduce the environmental footprint of the                          maritime industry.  Thus abatement of air pollution in maritime transport is high on the world and on the                                European agenda. As far as shipping is concerned, agreements and contracts at an                          3 
  • 4.   international level and on a regional basis as well as various organizations are involved                            in different ways in different places in the world. One of the oldest and most important                                international bodies governing the shipping industry is the International Maritime                    Organization (IMO), which is based in London, UK. IMO is responsible for improving                          maritime safety, for safeguarding the environment, for addressing maritime security                    and for developing of international rules to be followed by all shipping member nations.                            (Rather, 2013)  The Convention MARPOL 73/78 of the IMO is the main International Convention for the                            Prevention of Pollution from Ships. Air pollution is regulated in Annex VI "Regulations for                            the Prevention of Air Pollution from Ships" (since 2005). More stringent measures                        adopted by the IMO in relation to SO​X and NO​X emissions are introduced with the                              revised Annex VI to MARPOL. ​(Lloyd’s, 2012)  On the other hand, the EU has set a target to reduce greenhouse gas emissions by at                                  least 40% by 2050 (compared to 2005) for the maritime sector. EU​’​s White Paper on                              Transport also states that the shipping industry should additionally contribute to the                        reduction of local and global emissions. EU legislation aligned with IMO requirements                        with Directive 2012/33/EU, which amends Directive 1999/32/EC on the sulfur content                      of shipping fuels. Although the Directive does not contain provisions that regulate ship                          emissions for NO​x or Particulate Matter (PM), it introduces, inter alia, stricter sulfur limits                            for marine fuels and in marine areas outside Sulfur Emission Control Areas (SECA​’​s).                          (Nilsson, 2011)  In Figure 1 we observe the sulfur limits and the corresponding dates of required                            compliance both in SECA's and at a global level.​ (EU report, 2013)    Figure1. Regulations imposing sulfur limits and the corresponding deadlines in accordance with Annex VI by  MARPOL  (Source:​ ​Lloyd​’​s Register, 2012, LNG-fuelled deep sea shipping ​– ​the outlook for LNG bunker and  LNG-fuelled newbuild demand up to 2025)  PART B  4 
  • 5.   3. LNG Description as an Energy Source   In our days, Liquefied Natural Gas (LNG) seems to be one of the most favorable energy                                sources mainly for the power and electricity sector across the globe. Qatar is the                            world’s biggest producer of liquefied natural gas and it cut exports of the fuel for the                                first time since at least 2006 as Australia and the U.S. prepare to erode the Middle                                Eastern nation’s dominant position. The Qatari volumes dropped 2.1 percent from a                        year earlier in 2014 after at least eight years of gains. The nation’s share of global LNG                                  imports shrank to 31.9 percent from a peak of 32.9 percent in 2013. The industry is                                waiting for the wave of new exports from the U.S. and from Australia, who will likely top                                  the producers’ list by 2020. Qatar, whose North Field is part of the world’s biggest gas                                reservoir, dominates the market with output from its 14 LNG plants, known as trains.                            The nation has capacity to produce 77 million metric tons a year of the fuel, or 26                                  percent of the world’s total. That is being challenged by Australia and the U.S., which                              are building a total of 99 million tons of annual capacity. ​(Theodoropoulos, 2009)    3.1. How does LNG work?   Liquefied natural gas (LNG) is natural gas (predominantly methane, CH4) that has                        been converted to liquid form for ease of storage or transport. It takes up about                              1/600th the volume of natural gas in the gaseous state ​(Algel, 2012).    3.2. What’s LNG? ​LNG is natural gas that is cooled into liquid form at -160 degrees                                Centigrade, reducing it to one-six-hundredth of its original size. It is stored and                          transported in insulated tankers which minimize vaporization resulting from heat                    ingress. The LNG is transported by tankers to different destinations. On arrival, it is                            converted back into a gaseous form for delivery to users such as power stations,                            industries, commercial buildings and domestic. LNG is composed of a mixture of                        hydrocarbon gases that occur with petroleum deposits, principally methane together                    with varying quantities of ethane, propane, butane, and other gases, and is used as                            fuel and in the manufacture of organic compounds.” Liquefied natural gas or LNG is                            natural gas (predominantly methane, CH4) that has been converted temporarily to                      liquid form for ease of storage or transport. Liquefied natural gas takes up about                            1/600th the volume of natural gas in the gaseous state. It is odorless, colorless,                            non-toxic and non-corrosive. Hazards include flammability, freezing and asphyxia.  5 
  • 6.     Illustration A.​ The Energy Process – LNG Value Chain    3.3. A typical LNG process  The gas is first extracted and transported to a processing plant where it is purified by                                removing any condensates such as water, oil, mud, as well as other gases like CO2                              and H2S and sometimes solids as mercury. The gas is then cooled down in stages until                                it is liquefied. LNG is finally stored in storage tanks and can be loaded and shipped. The                                  liquefication process involves removal of certain components, such as dust, acid                      gases, helium, water, and heavy hydrocarbons, which could cause difficulty                    downstream. The natural gas is then condensed into a liquid at close to atmospheric                            pressure (maximum transport pressure set at around 25 kPa/3.6 psi) by cooling it to                            approximately −162 °C (−260 °F). The reduction in volume makes it much more cost                            efficient to transport over long distances where pipelines do not exist. Where moving                          natural gas by pipelines is not possible or economical, it can be transported by                            specially designed cryogenic sea vessels (LNG carriers) or cryogenic road tankers. The                        energy density of LNG is 60% of that of diesel fuel. ​(Maffii, 2007)  The gas is first extracted and transported to a processing plant where it is purified by                                removing any condensates such as water, oil, mud, as well as other gases like CO2                              and H2S and sometimes solids as mercury. The gas is then cooled down in stages until                                it is liquefied. LNG is finally stored in storage tanks and can be loaded and shipped.                                (Theodoropoulos, 2011)    6 
  • 7.   3.4. LNG Transportation  An LNG carrier is a tank ship designed for transporting liquefied natural gas (LNG). As                              the LNG market grows rapidly, the fleet of LNG carriers continues to experience                          tremendous growth. ​(Consuegra, 2010)  3.5. LNG Storage  A liquefied natural gas storage tank or LNG storage tank is a specialized type of                              storage tank used for the storage of Liquefied Natural Gas. LNG storage tanks can be                              found in ground, above ground or in LNG carriers. The common characteristic of LNG                            Storage tanks is the ability to store LNG at the very low temperature of -162 °C (-260                                  °F). LNG storage tanks have double containers, where the inner contains LNG and the                            outer container contains insulation materials. The most common tank type is the full                          containment tank. Tanks are roughly 55 m (180 ft) high and 75 m (250 ft) in diameter                                  (=250 000 m³). In LNG storage tanks if LNG vapours are not released, the pressure and                                temperature within the tank will continue to rise. LNG is a cryogen, and is kept in its                                  liquid state at very low temperatures. The temperature within the tank will remain                          constant if the pressure is kept constant by allowing the boil off gas to escape from the                                  tank. This is known as auto-refrigeration. ​(Bengtsson, 2011)  3.6. LNG Regasification Terminals  LNG regasification terminals are the keys to unlocking markets. In regasification                      terminals, the ultimate destination of LNG carriers, the liquefied natural gas is returned                          to its initial, gaseous state, then fed into transmission and distribution networks.  ­ Onshore regasification terminal – Land facility for receiving, unloading, storing                    and re-gasifying LNG, usually including breakwaters, tanker berthing and other                    marine facilities. ​(Levander, 2008)  ­ Offshore regasification terminal – Offshore facility for receiving, unloading,                  storing and re-gasifying LNG. ​(Sipila, 2008)    3.7. The Benefits of LNG as Opposed to Gas Transported by Pipelines  The biggest advantage of having access to the LNG market and being able to import                              it, is the proof of the existence of alternative sources of LNG supply, which is necessary                                both for the safety of the total company supply so as to meet the needs of its clients, as                                      well as for the correction of the Load Factor of its consumers-clients for whom the                              imported LNG is intended for. Furthermore, the supply and import of LNG also                          contributes to the overall security of gas supply of SE Europe, since the supply of LNG                                is not affected by geopolitical or other financially problems that may occasionally                        occur in transit countries from which the gas supply pipelines go through. In terms of                              price, changing conditions in the world natural gas market in the last 3 years have                              affirmed LNG as being a much more competitive commodity to pipeline gas, due to the                              collapse of prices on the world’s largest market, the U.S., brought on by the                            development of indigenous shale gas (nonconventional gas).   PART C  4. LNG Demand from Shipping at the Port of Piraeus  7 
  • 8.   The use of liquefied natural gas as marine fuel is not a science fiction vision today as                                  the number of ships that choose this type of fuel is constantly rising. But to be able to                                    adopt widespread use there should be a development of the global network                        infrastructure and an efficient logistics chain. These two parameters are currently at                        an early stage in most parts of Europe as companies supply natural gas and fuel                              suppliers are reluctant to invest in creating the necessary infrastructure until there is                          sufficient commercial demand from the shipping industry. On the other hand,                      ship-owners are reluctant to invest in new construction or retrofit ships and although                          they would like to use LNG even prior to the compulsory phase (2020) the initial                              investment cost is a great obstacle.  In the frame of this study, the feasibility of creating a terminal supplying LNG as marine                                fuel in the port of Piraeus is determined. At first, the description of a profile of the                                  shipping industry serving this port is drawn, and then an appropriate methodology                        assesses the annual demand for LNG as presented in more detail below. The cases,                            on which this method was based, were designed to provide reliable results.    4.1. Basic shipping characteristics at the Port of Piraeus  The strategic geographical position occupied by Greece renders it an obvious                      gateway for ships to dock in the East, with a focus on developing countries of Eastern                                Europe and the Black Sea and to the European Union member states.​(Consuegra,                        2010)  Piraeus, the first in size and handling capacity port in the country and one of the                                largest in the Mediterranean, is an important driver of development for international                        trade and for the local and national economies. It constitutes the hub of the country for                                the supply and export of raw materials and finished products. It serves both passenger                            and tourist traffic. Being an international transshipment center and located at the                        intersection of waterways linking the Mediterranean to Northern Europe via the                      Suez-Gibraltar axis, it serves vessels of any type and size. The port has an LNG                              bunkering potential covering a wide range of activities such as container operations,                        movement of vehicles and conventional cargo, costal routes and the cruise industry.                        (Bengtsson, 2011)                 PART D  5. Analysis of Ship Traffic Data at the Port of Piraeus  8 
  • 9.   With a view to reliable study, I outlined the profile of the maritime industry in this port,                                  by creating a database, which includes all the ships that visited the port in 2013. Then I                                  made a detailed description for each ship collecting data on the basis of data from                              Lloyd​’​s Register/Fairplay SEAWEB database.  Key features of each ship are:  ▪ Type of ship  ▪ Dimensions hull  ▪ Capacity (e.g DWT, TEU capacity, CEU, berths etc.)  ▪ Age  ▪ Total installed power  ▪ Service speed  ▪ Number of arrivals in the port  Based on this data, I conducted a series of groupings. The main objective of groupings                              is the categorization of total arrivals based on specific characteristics for each ship.                          The classification of ships helps me approach the estimated number of refuelings                        using LNG from the port in the coming years as well as the estimated quantity of LNG                                  required. (Lloyd’s, 2012)​. More specifically, the initial grouping was based on the type of                            ship, identifying these categories: coastal ships, cruise ships, container ships, and                      tankers. This grouping helps us draw conclusions on the routes the vessels serve and                            thus the geographical areas in which they operate. To be able to better understand                            the importance of the initial grouping, it is sufficient to consider the discrepancies                          between the different types of ships. For example, coastal vessels operating in specific                          geographic regions covering the needs of passenger traffic have a totally different                        operational profile compared to the container vessels. ​(Man, 2013)  Having categorized all vessels based on their type, we conducted a further grouping to                            allow a detailed description of each category in the port. For costal ships, a second                              grouping was performed according to the geographical areas of routes served during                        the year 2013, their service speed and age, while for other classes of ships a grouping                                was performed according to the capacity and age. ​(MGFL report, 2008)  At the text below there are some details about the type of vessels which have the                                majority of the port call.  ➢ Container Ships  In 2013, at the Piraeus Container terminal handled a total of about 2.398 arrivals from                              302 ships. As we mentioned, TEU transshipment is a major activity of the port. The                              majority of ships visiting the port have small capacity, designed to feed either large                            ships served in Piraeus either neighboring ports which do not have high demand from                            large ships or do not have the required infrastructure to service them.  9 
  • 10.     Figure 2. Frequency of Container Ships that visited the port of Piraeus by age  In Figure 2 we can observe the ages of the TEU ships that visited Piraeus in 2013. The                                    set is relatively young with an average value of 12, 27 years. To be able to make a                                    better approximation for the profile of the ships that visited the port in 2013, I grouped                                separate the ships according to the capacity in TEU.    Figure 3. Frequency of Container Ships visiting Piraeus by capacity.  In Figure 3 we can see the frequency of ships according to capacity. We observe that                                the number of ships that visited the port of Piraeus is concentrated in four main                              ranges. The first covers ships with a capacity of less than 2.000 TEU, the second those                                with a capacity of 2.000 to 5.000 TEU, the third those from 5.000 and 10.000 TEU and                                  the fourth those with a capacity exceeding 10.000 TEU. These four areas have                          constituted the main grouping of the study:  ▪ Class A (0 -1.999 TEU)  ▪ Class B (2.000 - 4.999 TEU)  ▪ Class C (5.000 ​– ​9.999 TEU)  10 
  • 11.   ▪ Class D (10.000 + TEU)  ➢ Vehicle Carriers  In 2013 the port of Piraeus had 716 arrivals from 202 Ro-Ro Carriers. In Figure 7 we                                  observe the ages of Ro-Ro Carriers. The mean age was 9.3 years.    Figure 4. Frequency of Vehicle Carriers that visited the port of Piraeus by age.  As we mentioned, the transshipment of vehicles is the main activity of the port. In                              Figure 5 we observe the frequency of ships by capacity.    Figure 5. Frequency of Vehicle Carriers visiting Piraeus by capacity.  We observe that the size of ships that visited the port of Piraeus was relatively large,                                mainly ships capacity over 4000 ceu. For this reason we divided the ships arriving at                              the port in two main categories:  ▪ Class A (​≤ ​3.999 ceu)  ▪ Class B (​≥ ​4.000 ceu)  The number of ships of Class B is about six times the ships of Class A, but made fewer                                      arrivals than Class A. They made 319 and 394 arrivals respectively.  11 
  • 12.       ➢ Cruise Ship  The global cruise industry has grown rapidly over the last 15 years and is expected to                                continue to grow at even higher pace. In 2013 the port of Piraeus had 770 arrivals from                                  109 Cruise Ships. In Figure 6 we observe the frequency of the Cruise ships by age. The                                  average age was close to 17,62 years.     Figure 6.​ ​Frequency of Cruise Ships by age  In Figure 7 we can see the frequency of Cruise Ships by berths.    Figure 7.​ ​Frequency of Cruise Ships by capacity  We observe that the size of ships that visited the port of Piraeus is divided into two                                  main categories, ships which have below 1.000 berths and ships over 1.000 berths. For                            this reason we split ships that arrived at the port in two basic classes:  ▪ Class A (​≤ ​999 berths)  12 
  • 13.   ▪ Class B (​≥ ​1.000 berths)  The number of ships of Class B is a slightly larger than the number of ships of Class A.                                      However, larger cruise ships have made more arrivals than smaller cruise ships: 478                          Class B arrivals, as compared to 292 Class A arrivals.  ➢ Costal Vessels  Ships of this class are coastal vessels and exhibited the largest number of arrivals at                              the port of Piraeus, with large seasonal fluctuations. Indeed, these ships are                        considered ideal for LNG use as they spend their entire time cruising emission control                            areas. We must emphasize that ferries to the islands of the Saronic Gulf will not be                                studied in the context of this work, since their fleet is much older.  ❖ Vessels Serving Cyclades  In this paragraph we will deal with the description of the geographical area of the                              Cyclades. This market segment was based on the assumption mentioned above about                        the service speed. In Table 1 we can observe the main features of each category, i.e.                                the number of arrivals, the total installed capacity, the service speed and age.  Table 1. Characteristics of ships arriving from Cycladic islands.  “​Small Ro-Ro/Pax​”  “​Large Ro-Ro/Pax​”  Number of Arrivals  1132  756  Average Total installed power [kW]  12.735,6  29.090,4  Average Service speed [knots]  22,2  36,0  Average age  20,4  10,2  The "Small Ro-Ro/Pax" made 1132 arrivals, 74% of which by ships whose age was                            below 15 years. In the third quarter, there were 327 arrivals by "Small Ro-Ro/Pax" by                              527 "Large Ro-Ro/Pax".  ❖ Vessels Serving Crete  In this paragraph we will deal with the arrivals of passenger vessels from ports of                              Crete.  In Table 2 we can observe the basic characteristics of each category.  Table​ ​2. Characteristics of ships having arrived from Crete  “​Small Ro-Ro/Pax​”  “​Large Ro-Ro/Pax​”  Number of Arrivals  664  708  Average Total installed power [kW]  19.946,1  58.200,0  Average Service speed [knots]  21,2  29,4  Average Age  29,0  12,25    Regarding the "Small Ro-Ro/Pax" segment, all arrivals were conducted by ships whose                        age was more than 15 years, in contrast to the "Big Ro-Ro/Pax" whose age was below                                15 years.  In the third quarter there were 236 arrivals from "Small Ro-Ro/Pax" and 237 "Large                            Ro-Ro/Pax".  13 
  • 14.   ❖ Vessels Serving Northern Aegean  In this paragraph we will deal with the analysis of arrivals from the ports of Northern                                Aegean. In Table 3 we can observe the basic characteristics of each category.    Table 3. Characteristics of ships arriving from the North Aegean islands.  “​Small Ro-Ro/Pax​”  “​Large Ro-Ro/Pax​”  Number of Arrivals  116  408  Average Total installed power [kW]  14.594,5  31.209,5  Average Service speed [knots]  18,75  26,08  Average age  39,00  13,50  All "Small Ro-Ro/Pax" arrivals were by ships whose age was over 25 years, in contrast                              to the "Big Ro-Ro/Pax", whose age was below 10 years. In the third quarter there were                                46 arrivals from "Small Ro-Ro/Pax" and 179 from "Large Ro-Ro/Pax".  ❖ Vessels Serving the Dodecanese  In this paragraph we will deal with the description of arrivals from the islands of the                                Dodecanese.   In Table 4 we can observe the basic characteristics of each category.  Table 4. Ship statistics of arrivals from Dodecanese  “​Small Ro-Ro/Pax​” “​Large Ro-Ro/Pax​” Number of Arrivals 238  274  Average Total installed power [kW]  10.815,5  44.480,00  Average Service speed [knots] 21,0  20,0  Average age 30,0  13,0  All "Small Ro-Ro/Pax" arrivals were by ships whose age was over 25 years, in contrast                              to the "Big Ro-Ro/Pax", whose age was below 10 years.  In the third quarter were 64 arrivals from "Small Ro-Ro/Pax" and 88 "Large Ro-Ro/Pax​”​.  PART  6. LNG as Marine Fuel; Ship Owners View  The engines using LNG as fuel have proven to be a reliable solution as well as the LNG                                    is an environmentally friendly fuel with low sulfur content. The exhaust emissions, such                          as SO​X and PM using LNG are negligible. The NO​X emissions can be reduced by about                                80-90% for four-stroke Otto and 10-20% for two-stroke engines. Still LNG contains less                          carbon than the other fuels, reducing CO​2 emissions by approximately 20%. In Figure 8                            we can see the significant environmental advantages of the LNG fuel as compared to                            other alternatives. Finally, and this is usually forgotten, due to the nature of the                            combustion and the more balanced movements of the mechanical parts, engines are                        significantly more quiet when using LNG. ​(Palsson, 2011)  14 
  • 15.     Figure 8.​ ​Comparison of NO​X​, SO​2​, CO​2​, PM emissions for alternative fuel oil types  (Source: TRI-ZEN International, 2012, LNG Markets Perspective)  According to the final Working Paper of the European Commission, ​“​Actions towards a                          comprehensive EU framework on LNG for shipping​”​, Brussels, 24.1.2013 SWD(2013) 4                      final, the use of LNG as a marine fuel is the most promising alternative for both the                                  short and medium term, at least for short sea shipping and sea- activities other than                              transport, e.g. fishing and offshore services.  The use of LNG as marine fuel mainly depends on the LNG Spread over Heavy Fuel Oil                                  (HFO) and Marine Gas Oil (MGO). Furthermore, the financial feasibility of LNG-as-fuel                        projects will affect the trend of retrofitting existing ships and new buildings for using                            LNG. Ship owners also usually base their investment decisions on payback times, i.e.                          they compare how many years are needed for the respective investments to generate                          revenues (or cost savings) that add up to the same amount as the investment.  The most important parameter for determining payback time is the relation between                        fuel use and installed engine power. ​(Belkin, 2013)  In the forthcoming years, as a proper infrastructure and an efficient supply chain will                            be developed, the amount of the ships that use LNG as marine fuel will increase                              significantly. ​(Levander, 2008)  Figure 9 shows the estimated number of ships that will do their bunkering with LNG as                                marine fuel in the port of Piraeus.  15 
  • 16.     Figure 9​ ​The number of ships, except Costal Ship that will do their bunkering in the port of Piraeus.  Figure 10 shows the estimated number of Costal Vessels that will do their bunkering                            with LNG as marine fuel in the port of Piraeus  Figure 10.​ ​The number of Costal Ship that will do their bunkering in the port of Piraeus.  Figure 11 at left vertical axis we can see the total demand of LNG as marine fuel at                                    Port of Piraeus and at right axis we observe the number of LNG fuelled vessel      16 
  • 17.       Figure 11. ​The demand estimation for LNG as marine fuel and number of ships that will do their bunkering in                                        the port of Pirae     The LNG demand for 2025 is estimated at 2.042 million cm. I observe that the                              "Ro-Ro/Pax" serving routes including Crete and the large cruise ships will be the two                            classes that will show the largest annual LNG demand reaching 1.439 million cm and                            224.000 cm respectively. The annual demand for LNG from other classes of ships of                            coastal ranges from 20.000 cm to 230.000 cm.     The middle container ships will exhibit a significant LNG demand with approximately                        233.000 cm annually. The smallest annual LNG demand will come from small vehicle                          vessels and small cruise ships with 25.000 cm and 28.000 cm respectively.     Generally, the Coastal Vessels are expected to largely determine the demand for LNG                          fuel shipping in Piraeus. They are expected to consume more than 50% of the total                              annual demand (2.04 million cm of LNG, 2025). This is reasonable since coastal vessels                            call at the largest number of ports as compared to any other ship class. They are                                expected to refuel in the port of Piraeus. ​(Maritime GasFL report , 2008)      17 
  • 18.   PART  7. Expected LNG Demand at other Regional Satellite Ports  The EU in the White Paper on Transport has set a target to reduce greenhouse gas                                emissions at least 40% by 2050 (compared to 2005) in the maritime sector. It also                              states that the shipping industry should also contribute to the reduction of local and                            global emissions. EU legislation aligned with IMO requirements with Directive                    2012/33/EU, which amends Directive 1999/32/EC on the sulfur content of shipping                      fuels. ​(DNV report, 2012)  The European Commission has planned a strategy to shift to cleaner fuels and                          proposes installing LNG fueling stations at a total of 139 marine and inland ports                            (generally around 10% of all ports in Europe) for the TEN-T (Trans European Core                            Network) from 2020 and 2025 respectively. These stations are not based on large gas                            terminals, but are either fixed or mobile refueling stations covering all major ports of                            the EU. ​(EU Com. Report, 2013)  The strategic geographical position of FSRU offer a great opportunity to supply with                          LNG the Ports considered in the study. A sample of these ports is shown in Table 5.    Table 5. Distance between FSRU and Various Satellite port.  Distance between ports  Port of Patrai 305  nm  Port of Thessaloniki 251  nm   Port of Volos 186  nm   Port of Brindisi [Italy] 540  nm   Port of Bari[Italy] 598  nm  Port of Limassol [Cyprus] 532  nm  Port of Malta [Malta] 534  nm  Port of Marmara [Turkey] 290  nm            18 
  • 19.     Figure 12.​ ​Potential Regional Satellite Ports in East Mediterranean.      Figure13. ​Timeline of potential expected demand of LNG as Marine Fuel at Piraeus & regional Satellite Port in                                    East Mediterranean Sea       19 
  • 20.     Figure 14 shows the timeline of infrastructure, bunkering facilities, annual demand and                        number of LNG ships at FSRU LNG terminal in the port of Piraeus.        Figure14.​ ​Timeline of infrastructure and bunkering shipping faciliti      20 
  • 21.   8. Conclusions  The use of LNG as fuel for the shipping sector and the developments of Piraeus Port as                                  an LNG bunkering hub along with other satellite Ports, seems a very good concept                            which fulfills the obligations of directive 2012/33/EC mandates the use of marine fuel                          with max 0.1%. sulphur in EU ports. ​(Ratner, 2013)  Today is the right time for a decisive move towards the LNG as the main fuel for the                                    shipping industry. This will serve not only the need for security of supply but also met                                the future demand for LNG as marine fuel as expected in the forthcoming years. The                              alternative fuel infrastructure directive 2013/0012(COD), foresees an increased use of                    LNG, NG and CNG for sea and inland waterborne and mainland transportation.                        (Wartsila report, 2012)  More specific, all core marine and inland ports (139) will have to be able to provide LNG                                  as marine fuel from 2020 and 2025 respectively. The directive 2012/33/EC mandates                        the use of marine fuel with max 0.1%. Sulphur in EU ports and while at berth or                                  equivalent method to achieve the required emission standards.   The limits for sulphur content in marine fuels in EU Member States territorial Seas                            outside the designated Emission Control Ares (ECAs) are 3.5% from 1/1/2012 and 0,5%                          from 1/1/2020. Limits for sulphur content in marine fuels used by passenger ship in EU                              Member States territorial Seas outside ECAs are 1,5% until 31/12/2019 and 0,1 from                          1/1/2020. ​(EU Com. report, 2014)    The Port of Piraeus is the largest Terminal in the Mediterranean Sea in terms of Short                                Sea and Deep Sea services. This justifies the proposal for installing LNG bunkering                          facilities in the port along with many operational, business and financial benefits for all                            involved parties. ​(Theodoropoulos, 20      21 
  • 22.     9. Comments and Recommendations:  The current assignment shows that there are many challenges regarding the LNG fuel                          for the shipping industry. Bellow we can place some basic comments and                        recommendations, as follows:  ­ LNG seems that it will play a crucial role in terms of energy security, mainly,                              across SE Europe, which mainly depends on Russian natural gas;  ­ along with energy security issues, LNG shows main environmental benefits                    especially for the shipping sector, as all core marine and inland ports (139) will                            have to be able to provide LNG as marine fuel from 2020 and 2025 respectively;  ­ addition, Greece and Italy expect the EU Macro-regional Strategy on Adriatic                      and Ionian region, which more likely will set strict emissions limits;  ­ The Port of Piraeus, as the largest Terminal in the Mediterranean Sea in terms                            of Short Sea and Deep Sea services, has all the potentials to be the HUB of LNG                                  BUNKERING across the region, supporting other satellite ports;  ­ Piraeus port will require major infrastructure facilities in order to provide                      services to ships  ­ The analysis shows that a ship-owner shifting to LNG will exhibit an attractive                          payback period and significant operational and financial benefits;  ­ A detailed financial model is needed in order to take into consideration all                          financial aspects;  ­ Analysis of LNG prices VS HFO prices is requested;  ­ Analysis of the LNG supply-chain and LNG sources sustainability is requested;  ­ The costs of retrofitting the existing vessels and build new LNG fuelled ships                          should be requested;  ­ Port licenses and regulation framework should be examined and further                    reviewed;  ­ Environmental issues should be discussed and communicated with the local                    community.                  10. References  22 
  • 23.   1. Algel J., Bakosch A., Forsman B., December 2012. Feasibility Study on LNG  Fuelled Short Sea and Coastal Shipping in the Wider Caribbean Region.  SSPA SWEDEN AB, pp: 2, 5, 19, 34.  2. Ashworth J., January 2012. The Genesis of LNG Bunkers, LNG Markets  Perspective. TRI-ZEN International, pp: 7, 45.  3. Buhaug, ​Ø​., Corbett J.J, Endresen, O., Eyring, V., Faber J., Hanayama, S., Lee,  D., Lindstad, H., Mjelde, A., Palsson, C., Wanquing, W., Winebrake, J.J.,  Yoshida, K., April 2009. Second IMO Greenhouse Gas Study. International  Maritime Organization, London, , pp:  6, 23, 34, 125.  4. BP Group, June 2013, Statistical Review of World Energy,  pp: 127, 134.  5. Consuegra, S. C. & Paalvast, M.S. M., November 2010. Sustainability in Inland  Shipping-The use of LNG as Marine Fuel. Delft University of Technology,  Delft,  pp: 122, 234, 237.  6. Det Norske Veritas, 2012. Shipping 2020 DNV, pp: 18, 23.  7. European Commission, January 2013. SWD (2013) 4 final: Actions towards a  comprehensive EU framework on LNG for shipping, Brussels, pp: 19, 34.  8. European Commission, 2013. Quarterly Report Energy on European Gas  Markets: Market Observatory for Energy. DG Energy Volume 5, issue 4, pp: 5,  8, 123, 125, 234, 267.  9. Groenendijk W., March 2013. LNG in transport: The views of the European  LNG terminal operators. Gas LNG Europe, Hamburg, pp: 12, 23, 45.  10. Levander O. & Sipil​ä ​T., February 2008. LNG auxiliary power in port for  container vessels, pp: 19, 34, 67.  11. Lloyd​’​s Register, August 2012. LNG-fuelled deep sea shipping: The outlook  for LNG bunker and LNG-fuelled newbuild demand up to 2025, pp: 19, 34, 89.  12. Lloyd​’​s Register, June 2012. Understanding exhaust gas treatment systems:  Guidance for shipowners and operators, pp: 34, 46, 234,  13. Maffii F., Molocchi A., Chiffi C., June 2007. External Costs of Maritime  Transport. European Parliament, Policy Department B: Structural and  Cohesion Policies: Transport and Tourism, Brussels , pp: 7, 17, 34.  14. MAN Diesel & Turbo, Propulsion Trends in Container Vessels, Copenhagen,  pp: 123, 236, 238  15. Maritime Gas Fuel Logistics, December 2008. Developing LNG as a clean  fuel for ships in the Baltic and North Seas, pp: 34, 76.  16. Nilsson L., Bengtsson N., P​å​lsson C., July 2011. Ships Visiting European Ports.  IHS Fairplay, Gothenburg, pp: 34, 63.  17. Ratner M., Belkin P., Nickol J., Woehrel S., March 2013. Europe​’​s Energy  Security: Options and Challenges to Natural Gas Supply Diversification.  Congressional Research Service,  pp: 123, 344.   18. Swedish Marine Technology Forum, LNG bunkering Ship to Ship procedure,  pp: 2, 66.  23 
  • 24.   19. Swedish Marine Technology Forum, May 2011. LNG supply chain definition.  CNSS WP4 Activity 2, Action D, pp: 22, 34, 77    20. The Danish Maritime Authority March 2012. Appendices, North European  LNG Infrastructure Project-A feasibility study for an LNG filling station  infrastructure. DMA, Copenhagen, pp: 6, 56, 78.   21. Theodore Theodoropoulos, 2009, ‘’The Secret World of Energy’’, 3​rd​  Edition,  pp:12, 23, 25, 60, 70, 72, 106, 134, 230, 260  22. Theodore Theodoropoulos, 2011, ‘’Future Energy’’, 2​nd​  Edition, pp: 11, 18, 23,  60, 126, 236, 238, 266.   23. The Danish Maritime Authority, October 2011. Baseline Report, North  European LNG Infrastructure Project-A feasibility study for an LNG filling  station infrastructure, DMA, Copenhagen, pp: 34, 36, 38, 123.  24. The Danish Maritime Authority March 2012. Full Report, North European LNG  Infrastructure Project-A feasibility study for an LNG filling station  infrastructure, DMA Copenhagen, pp: 77, 123, 343.  25. W​ä​rtsil​ä​, December 2012, W​Ä​RTSIL​Ä ​50DF Product Guide, pp: 2, 5, 19, 34  26. W​ä​rtsil​ä​, June 2012, W​Ä​RTSIL​Ä ​34DF Product Guide, pp: 12, 34, 126.    Internet Links:  http://www.onthemosway.eu/poseidon-med-lng-european-project/  http://inea.ec.europa.eu/en/cef/cef_transport/apply_for_funding/cef_transport_call_for_proposal s_2014.htm  http://blogs.dnv.com/  http://ec.europa.eu/​ - http://tentea.ec.europa.eu/  http://wpci.iaphworldports.org/  http://www.aga.com/  http://www.emsa.europa.eu/  http://www.imo.org/  http://www.mandieselturbo.com/  http://www.olp.gr/  http://www.portofrotterdam.com/  http://www.rae.gr/  http://www.whitesmoke.se/  http://www.qp.com.qa/​ - ​http://www.rasgas.com  ANNEX  Figures:   Figure1. Regulations imposing sulfur limits and the corresponding deadlines in accordance with  Annex VI by MARPOL 4  Figure 2. Frequency of Container Ships that visited the port of Piraeus by age 10  24 
  • 25.   Figure 3. Frequency of Container Ships visiting Piraeus by capacity 10  Figure 4. Frequency of Vehicle Carriers that visited the port of Piraeus by age 11  Figure 5. Frequency of Vehicle Carriers visiting Piraeus by capacity 11  Figure 6. Frequency of Cruise Ships by age 12  Figure 7. Frequency of Cruise Ships by capacity 12  Figure 8. Comparison of NOX, SO2, CO2, PM emissions for alternative fuel oil types 15  Figure 9. The number of ships, except Costal Ship that will do their bunkering in the port of Piraeus 16  Figure 10. The number of Costal Ship that will do their bunkering in the port of Piraeus 16  Figure11. The demand estimation for LNG as marine fuel and number of ships that will do their  bunkering in the port of Piraeus  17  Figure12. Potential Regional Satellite Ports in East Mediterranean 19  Figure13. Timeline of potential expected demand of LNG as Marine Fuel at Piraeus & regional  Satellite Port in East Mediterranean Sea  19  Figure14. Timeline of infrastructure and bunkering shipping facilities 20    Tables:  Table 1. Characteristics of ships arriving from Cycladic islands  13  Table 2. Characteristics of ships having arrived from Crete 13  Table 3. Characteristics of ships arriving from the North Aegean islands  14  Table 4. Ship statistics of arrivals from Dodecanese 14  Table 5. Distance between FSRU and Various Satellite port 18    Illustrations:  Illustration A. The Energy Process – LNG Value Chain  6          25