SlideShare a Scribd company logo
An	
  Assay	
  for	
  Coun,ng	
  
I	
  HAVE	
  2	
  X’S,	
  BUT	
  WHO’S	
  COUNTING?	
  
LENA	
  BENGTSSON,	
  KAREN	
  LEUNG	
  PHD,	
  SAILAJA	
  PEDDADA	
  PHD,	
  LEEANNE	
  GOODRICH,	
  JESSELYNN	
  LABELLE,	
  BARBARA	
  PANNING	
  PHD	
  
PANNING	
  LAB,	
  DEPARTMENT	
  OF	
  BIOPHYSICS,	
  UNIVERSITY	
  OF	
  CALIFORNIA,	
  SAN	
  FRANCISCO	
  
	
  
Conclusion	
  
	
  
The	
  knockdown	
  of	
  Nipbl,	
  a	
  loading	
  factor	
  for	
  the	
  cohesin	
  complex,	
  which	
  regulates	
  
chromosome	
  structure,	
  results	
  in	
  a	
  decrease	
  in	
  the	
  singlet/doublet	
  signals	
  and	
  an	
  
increase	
  in	
  singlet/singlet	
  signals,	
  without	
  an	
  obvious	
  change	
  in	
  cell	
  morphology.	
  	
  	
  
Follow	
  up	
  experiments	
  need	
  to	
  be	
  performed	
  in	
  order	
  to	
  understand	
  how	
  Nipbl	
  
controls	
  this	
  unusual	
  chromosome	
  organiza@on	
  that	
  may	
  regulate	
  coun@ng.	
  	
  
	
  
Knockdown	
  of	
  Smc2,	
  a	
  subunit	
  of	
  the	
  condensin	
  complex,	
  has	
  no	
  effect	
  on	
  the	
  singlet/
doublet	
  frequency	
  and	
  may	
  not	
  play	
  a	
  role	
  in	
  X	
  chromosome	
  coun@ng	
  in	
  female	
  ESCs.	
  	
  
	
  
All	
  results need to be repeated, but 15 targets were identified that may have an
effect on counting.
	
  
Funding	
  for	
  this	
  project	
  was	
  provided	
  by	
  CIRM	
  grant	
  TB1-­‐01188.	
  
A	
  special	
  Thank	
  You	
  to	
  all	
  the	
  amazing	
  scien@fic	
  minds	
  in	
  the	
  Panning	
  Lab	
  –	
  Barbara	
  
Panning,	
  Karen	
  Leung,	
  Sailaja	
  Peddada,	
  Leeanne	
  Goodrich,	
  Betsy	
  Mar@n,	
  Joel	
  Hrit,	
  Dale	
  
Talbot	
  and	
  Assen	
  Rougev.	
  Their	
  guidance,	
  pa@ence,	
  and	
  support	
  made	
  this	
  project	
  
possible.	
  	
  
	
  
	
  
Abstract	
  	
  	
  
Female	
  placental	
  mammals	
  (ex.	
  mice	
  and	
  humans)	
  undergo	
  X	
  Chromosome	
  Inac@va@on	
  (XCI)	
  to	
  
equalize	
  X-­‐linked	
  gene	
  dosage	
  between	
  XX	
  females	
  and	
  XY	
  males.	
  Because	
  it	
  is	
  necessary	
  for	
  female	
  
survival,	
  XCI	
  is	
  an	
  important	
  developmentally	
  regulated	
  epigene@c	
  process.	
  Early	
  in	
  post-­‐implanta@on	
  
development,	
  female	
  embryos	
  inac@vate	
  one	
  of	
  their	
  two	
  X	
  chromosomes	
  (Xs).	
  XCI	
  also	
  occurs	
  ex	
  
vivo	
  when	
  female	
  embryonic	
  stem	
  cells	
  (ESCs),	
  which	
  have	
  two	
  ac@ve	
  Xs,	
  are	
  differen@ated.	
  The	
  
silent	
  X	
  is	
  highly	
  condensed,	
  forming	
  a	
  structure	
  called	
  the	
  Barr	
  Body.	
  	
  XCI	
  does	
  not	
  occur	
  in	
  cells	
  with	
  
one	
  X,	
  such	
  as	
  XY	
  male	
  cells	
  or	
  female	
  cells	
  that	
  have	
  lost	
  one	
  X	
  (XO).	
  Cells	
  with	
  mul@ple	
  X’s	
  (XX,	
  XXX,	
  
XXY)	
  silence	
  all	
  but	
  one	
  X,	
  sugges@ng	
  that	
  cells	
  are	
  able	
  to	
  “count”	
  their	
  Xs.	
  The	
  mechanisms	
  behind	
  
how	
  Xs	
  are	
  counted	
  are	
  currently	
  unknown.	
  The	
  Panning	
  lab	
  has	
  iden@fied	
  a	
  signature	
  of	
  coun@ng,	
  an	
  
unusual	
  organiza@on	
  of	
  X-­‐linked	
  genes	
  in	
  female	
  ESCs.	
  I	
  carried	
  out	
  a	
  screen	
  to	
  iden@fy	
  proteins	
  
necessary	
  for	
  this	
  cytological	
  signature	
  of	
  coun@ng.	
  The	
  screen	
  focused	
  on	
  proteins	
  involved	
  in	
  
regula@on	
  of	
  chromosome	
  structure,	
  since	
  we	
  hypothesize	
  that	
  chromosomal	
  structural	
  proteins	
  may	
  
be	
  important	
  in	
  determining	
  the	
  unusual	
  organiza@on	
  of	
  X-­‐linked	
  genes	
  in	
  XX	
  ESCs.	
  Using	
  this	
  
approach	
  I	
  hope	
  to	
  gain	
  a	
  mechanis@c	
  understanding	
  of	
  how	
  Xs	
  are	
  counted.	
  Being	
  aware	
  of	
  the	
  
mechanisms	
  behind	
  XCI	
  will	
  help	
  us	
  to	
  understand	
  how	
  cells	
  developmentally	
  regulated	
  gene	
  
expression	
  and	
  	
  improve	
  our	
  understanding	
  of	
  stem	
  cell	
  biology.	
  
Smc2	
  esiRNA	
  Oct4	
  esiRNA	
  Untransfected	
   Nipbl	
  esiRNA	
  
Assay	
  for	
  Gene	
  Knockdowns	
  in	
  Female	
  ESCs	
  
•  12	
  well	
  plate	
  RNAi:	
  
•  9	
  targets	
  
•  Oct4	
  (RNAi	
  Control)	
  
•  GFP	
  (Nonspecific	
  Control)	
  
	
  
	
  
	
  
72	
  hours	
  
Xist	
  
	
  Fig.	
  1	
  -­‐	
  esiRNAs	
  
silence	
  effec@vely	
  in	
  
ESCs.	
  Brighfield	
  and	
  
GFP	
  fluorescence	
  
images	
  of	
  ESCs	
  
bearing	
  an	
  EGFP	
  
transgene	
  
transfected	
  with	
  
indicated	
  esiRNAs.3	
  
	
  
Fig.	
  3	
  -­‐	
  Representa@ve	
  phase	
  and	
  RNA	
  FISH	
  images	
  of	
  esiRNA	
  KDs	
  in	
  female	
  ESCs.	
  A.	
  Untransfected	
  
control.	
  B.	
  Oct4	
  esiRNA	
  KD	
  showing	
  differen@ated	
  morphology	
  (phase)	
  and	
  Xist	
  clouds	
  (RNA	
  FISH).	
  
XaXa	
  ESC	
  
Soma,c	
  
cell	
  
X	
  
Chromosome	
  
Inac,va,on	
  
Noncoding	
  RNA	
  
(Xist)	
  is	
  
upregulated;	
  
coats	
  future	
  Xi.	
  
	
  
Differen,a,
on	
  
Silenced	
  X	
  (Xi/
Barr	
  Body)	
  
Xist	
  coated	
  
Phase	
  images	
   RNA	
  FISH	
  
Stages	
  of	
  XCI:	
  Coun,ng	
  à	
  Choice	
  à	
  Silencing	
  
XaXi	
  
Female	
  ESC	
  Undergo	
  Gene	
  Dosage	
  Compensa,on	
  During	
  Differen,a,on	
  
RNA	
  fluorescent	
  in	
  situ	
  hybridiza@on	
  (FISH)	
  probes	
  for	
  X-­‐
linked	
  genes	
  produce	
  a	
  unique	
  singlet/doublet	
  (S/D)	
  
pinpoint	
  paiern	
  in	
  female	
  mouse	
  ESCs	
  indicates	
  X	
  
chromosome	
  coun@ng.2	
  
♀	
  mouse	
  ESC	
  cell	
  with	
  RNA	
  Xist	
  	
  FISH	
  
probe	
  	
  
Singlet	
  
Doublet	
  
Xist	
  
	
  DAPI	
  
U,lizing	
  RNAi	
  to	
  Deplete	
  (Knockdown)	
  Protein4	
  
•  RNA	
  FISH	
  for	
  Xist	
  
RNA	
  FISH	
  for	
  Xist	
  
•  Phase	
  images	
  	
  
•  Live	
  cells	
  cytospun	
  &	
  fixed	
  
Sister	
  
chroma@ds	
  
Xist	
  cloud	
  
Undifferen,ated	
  
ESCs	
  
Differen,ated	
  
XY	
  or	
  XO	
  
ESCs	
  
XX	
  ESCs	
  
X-­‐linked	
  loci	
   Autosomal	
  loci	
  
RNA	
  FISH	
  Signals	
  
	
  
Ques,on:	
  What	
  proteins	
  are	
  necessary	
  for	
  S/D	
  signals	
  and	
  coun,ng?	
  	
  
Answer:	
  	
  Deplete	
  proteins	
  (RNAi)	
  à	
  Cell	
  Morphology	
  (Phase)	
  à	
  FISH	
  
	
  
•  One	
  of	
  two	
  classes	
  of	
  Structural	
  Maintenance	
  of	
  
Chromosomes	
  (SMC)	
  proteins	
  might	
  have	
  an	
  effect	
  
on	
  the	
  singlet/doublet	
  cytological	
  signature.	
  	
  
•  NIPBL,	
  a	
  cohesin	
  loading	
  factor,	
  forms	
  a	
  dimer	
  that	
  is	
  
essen@al	
  for	
  loading	
  the	
  cohesin	
  complex	
  onto	
  sister	
  
chroma@ds	
  and	
  also	
  plays	
  important	
  roles	
  in	
  
stabilizing	
  cells6	
  gene@c	
  informa@on,	
  repairing	
  
damaged	
  DNA,	
  and	
  controlling	
  the	
  ac@vity	
  of	
  certain	
  
genes	
  that	
  are	
  essen@al	
  for	
  normal	
  development.	
  
•  Smc2	
  &Smc4	
  -­‐	
  Components	
  of	
  the	
  condensin	
  
complex,	
  which	
  contains	
  the	
  SMC2	
  and	
  SMC4	
  
heterodimer,	
  and	
  three	
  non	
  SMC	
  subunits	
  that	
  
probably	
  regulate	
  the	
  complex.7	
  
	
  
	
  
Xist	
  
Brighfield	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GFP	
  fluorescence	
  
A B
References	
  
1.	
  Kathrin	
  Plath,	
  Susanna	
  Mlynarczyk-­‐Evans,	
  Dmitri	
  A.	
  Nusinow,	
  Barbara	
  Panning	
  Xist	
  RNA	
  and	
  the	
  mechanism	
  of	
  X	
  
chromosome	
  inac@va@on.	
  Annu	
  Rev	
  Genet.	
  2002;	
  36:	
  233–278.	
  Published	
  online	
  2002	
  June	
  11.	
  doi:10.1146/
annurev.genet.36.042902.092433	
  
2.	
  Mlynarczyk-­‐Evans,	
  S.,	
  Royce-­‐Tolland,	
  M.,	
  Alexander,	
  M.	
  K.,	
  Andersen,	
  A.	
  A.,	
  Kalantry,	
  S.,	
  Gribnau,	
  J.,	
  &	
  Panning,	
  B.	
  
(2006).	
  X	
  Chromosomes	
  Alternate	
  between	
  Two	
  States	
  prior	
  to	
  Random	
  X-­‐Inac@va@on.	
  PLoS	
  Biology,	
  4(6),	
  e159.	
  
doi:10.1371/journal.pbio.0040159	
  
3.	
  Fazzio,	
  T.	
  G.,	
  J.	
  T.	
  Huff,	
  et	
  al.	
  "An	
  RNAi	
  Screen	
  of	
  Chroma@n	
  Proteins	
  Iden@fies	
  Tip60-­‐p400	
  as	
  a	
  Regulator	
  of	
  
Embryonic	
  Stem	
  Cell	
  Iden@ty."	
  Cell	
  134(1):	
  162-­‐174.	
  
4.	
  Roguev	
  A,	
  Talbot	
  D,	
  Negri	
  GL,	
  et	
  al.	
  Quan@ta@ve	
  gene@c-­‐interac@on	
  mapping	
  in	
  mammalian	
  cells.	
  Nature	
  
methods.	
  2013;10(5):432-­‐437.	
  doi:10.1038/nmeth.2398.	
  
5.	
  Michelson	
  Medical	
  Research	
  Founda@on;	
  hip://michelsonmedical.org/wp-­‐content/uploads/2014/05/
interference_f1_large.jpg,	
  20	
  May	
  2016	
  
6.	
  Horsfield,	
  J.,	
  C.	
  G.	
  Print,	
  et	
  al.	
  (2012).	
  "Diverse	
  developmental	
  disorders	
  from	
  The	
  One	
  Ring:	
  dis@nct	
  molecular	
  
pathways	
  underlie	
  the	
  cohesinopathies."	
  Fron@ers	
  in	
  Gene@cs	
  3.	
  
7.	
  Watrin,	
  E.,	
  A.	
  Schleiffer,	
  et	
  al.	
  "Human	
  Scc4	
  Is	
  Required	
  for	
  Cohesin	
  Binding	
  to	
  Chroma@n,	
  Sister-­‐Chroma@d	
  
Cohesion,	
  and	
  Mito@c	
  Progression."	
  Current	
  Biology	
  16(9):	
  863-­‐874	
  
8.	
  Chromosome	
  condensa@on,	
  amazing	
  evidence	
  of	
  design;	
  hip://reasonandscience.heavenforum.org/t2086-­‐
chromosome-­‐condensa@on-­‐amazing-­‐evidence-­‐of-­‐design,	
  20	
  May	
  2016	
  
20x	
  
Phase	
  
20x	
  
Phase	
  
20x	
  
Phase	
  
20x	
  
Phase	
  
Xist	
  Xist	
   Xist	
  Xist	
  
e
Fig. 2- Gene silencing by RNA interference(RNAi).5
	
  
Fig. 4- Examples Cohesin and Condensin Complexes.8
	
  
Fig.	
  5	
  –	
  NIPBL	
  
plays	
  a	
  role	
  in	
  
cohesin	
  loading	
  
on	
  the	
  sister	
  
chroma@ds.6	
  	
  
Results	
  
Results continued
esiKnockdown counts that resulted in a RNA FISH singlet/doublet (S/D) signal pattern percentage
outside of 45-54% range as compared to the negative controls (NC, Mock GFP) are potential targets of
interest.
Singlet/Singlet (S/S), Doublet/Doublet (D/D), and Total X Cloud (TC) signal pattern ranges also considered, but not
discussed.

More Related Content

What's hot

CYTOPLASMIC INHERITANCE
CYTOPLASMIC INHERITANCECYTOPLASMIC INHERITANCE
CYTOPLASMIC INHERITANCE
Ankit Kumar Dubey
 
CYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEAST
CYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEASTCYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEAST
CYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEAST
BishnuPatra1
 
education_11-24
education_11-24education_11-24
education_11-24pharmdude
 
Cytoplasmic inheritance
Cytoplasmic inheritanceCytoplasmic inheritance
Cytoplasmic inheritance
Vikas Kumar Singh
 
CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)
CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)
CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)
ANAMIKA RAJ
 
Genomic imprinting
Genomic imprinting Genomic imprinting
Genomic imprinting
SumedhaBobade
 
Cytoplasmic inheritance and Maternal Effect
Cytoplasmic inheritance and Maternal EffectCytoplasmic inheritance and Maternal Effect
Cytoplasmic inheritance and Maternal Effect
Mekdela Amba University
 
Cytoplasmic inheritance
Cytoplasmic inheritanceCytoplasmic inheritance
Cytoplasmic inheritance
Jaleelkabdul Jaleel
 
Research report (alternative splicing, protein structure; retinitis pigmentosa)
Research report (alternative splicing, protein structure; retinitis pigmentosa)Research report (alternative splicing, protein structure; retinitis pigmentosa)
Research report (alternative splicing, protein structure; retinitis pigmentosa)
avalgar
 
Animal Epigenetics
Animal Epigenetics Animal Epigenetics
Animal Epigenetics
Jingyue (Ellie) Duan
 
Epigenetics and genomic imprinting must
Epigenetics and genomic imprinting mustEpigenetics and genomic imprinting must
Epigenetics and genomic imprinting must
Hussein Sabit
 
17 syllabus statements
17 syllabus statements17 syllabus statements
17 syllabus statements
cartlidge
 
Brienoenriquez 2015
Brienoenriquez 2015Brienoenriquez 2015
Brienoenriquez 2015
Muhammad waqas
 
PPT on duplication; Production and Uses
PPT on duplication; Production and UsesPPT on duplication; Production and Uses
PPT on duplication; Production and Uses
Nitesh Panwar
 
GENETICS- Gene expression and regulations
GENETICS- Gene expression and regulationsGENETICS- Gene expression and regulations
GENETICS- Gene expression and regulations
GOPALASATHEESKUMAR K
 
Cell division best
Cell division bestCell division best
Cell division best
Santosh Kumar Kar
 
100 Science Genetics
100 Science Genetics100 Science Genetics
100 Science Genetics
ngibellini
 
Basic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotypingBasic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotypingAamir Sharif
 
Basic genetics /certified fixed orthodontic courses by Indian dental academy
Basic genetics   /certified fixed orthodontic courses by Indian dental academy Basic genetics   /certified fixed orthodontic courses by Indian dental academy
Basic genetics /certified fixed orthodontic courses by Indian dental academy
Indian dental academy
 

What's hot (20)

CYTOPLASMIC INHERITANCE
CYTOPLASMIC INHERITANCECYTOPLASMIC INHERITANCE
CYTOPLASMIC INHERITANCE
 
CYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEAST
CYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEASTCYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEAST
CYTOPLASMIC INHERITANCE WITH REFERENCETO MITOCHONDRIAL INHERITANCE IN YEAST
 
education_11-24
education_11-24education_11-24
education_11-24
 
Cytoplasmic inheritance
Cytoplasmic inheritanceCytoplasmic inheritance
Cytoplasmic inheritance
 
CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)
CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)
CYTOPLASMIC INHERITANCE(Non Mendelian Inheritance)
 
Genomic imprinting
Genomic imprinting Genomic imprinting
Genomic imprinting
 
Cytoplasmic inheritance and Maternal Effect
Cytoplasmic inheritance and Maternal EffectCytoplasmic inheritance and Maternal Effect
Cytoplasmic inheritance and Maternal Effect
 
Cytoplasmic inheritance
Cytoplasmic inheritanceCytoplasmic inheritance
Cytoplasmic inheritance
 
Research report (alternative splicing, protein structure; retinitis pigmentosa)
Research report (alternative splicing, protein structure; retinitis pigmentosa)Research report (alternative splicing, protein structure; retinitis pigmentosa)
Research report (alternative splicing, protein structure; retinitis pigmentosa)
 
Animal Epigenetics
Animal Epigenetics Animal Epigenetics
Animal Epigenetics
 
Epigenetics and genomic imprinting must
Epigenetics and genomic imprinting mustEpigenetics and genomic imprinting must
Epigenetics and genomic imprinting must
 
17 syllabus statements
17 syllabus statements17 syllabus statements
17 syllabus statements
 
Brienoenriquez 2015
Brienoenriquez 2015Brienoenriquez 2015
Brienoenriquez 2015
 
PPT on duplication; Production and Uses
PPT on duplication; Production and UsesPPT on duplication; Production and Uses
PPT on duplication; Production and Uses
 
Hereditas
HereditasHereditas
Hereditas
 
GENETICS- Gene expression and regulations
GENETICS- Gene expression and regulationsGENETICS- Gene expression and regulations
GENETICS- Gene expression and regulations
 
Cell division best
Cell division bestCell division best
Cell division best
 
100 Science Genetics
100 Science Genetics100 Science Genetics
100 Science Genetics
 
Basic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotypingBasic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotyping
 
Basic genetics /certified fixed orthodontic courses by Indian dental academy
Basic genetics   /certified fixed orthodontic courses by Indian dental academy Basic genetics   /certified fixed orthodontic courses by Indian dental academy
Basic genetics /certified fixed orthodontic courses by Indian dental academy
 

Similar to Lena Bengtsson CIRM Poster 2016

Ceraseetal2021complete.pdf
Ceraseetal2021complete.pdfCeraseetal2021complete.pdf
Ceraseetal2021complete.pdf
AndreaCerase3
 
Cerase review Genome Biology.pdf
Cerase review Genome Biology.pdfCerase review Genome Biology.pdf
Cerase review Genome Biology.pdf
AndreaCerase3
 
x-inactivationinmammals-131202041540-phpapp01 (1).pdf
x-inactivationinmammals-131202041540-phpapp01 (1).pdfx-inactivationinmammals-131202041540-phpapp01 (1).pdf
x-inactivationinmammals-131202041540-phpapp01 (1).pdf
RCGaur1
 
X inactivation in mammals
X  inactivation in mammalsX  inactivation in mammals
X inactivation in mammals
rana alhakimi
 
dosage compensation in human genetics.pptx
dosage compensation in human genetics.pptxdosage compensation in human genetics.pptx
dosage compensation in human genetics.pptx
aadilnazirallie5299
 
X chromosome inactivation ambaye, s. & mujahed, h.
X chromosome inactivation ambaye, s. & mujahed, h.X chromosome inactivation ambaye, s. & mujahed, h.
X chromosome inactivation ambaye, s. & mujahed, h.Mr Huthayfa
 
pnas-0503504102
pnas-0503504102pnas-0503504102
pnas-0503504102Trinh Hoac
 
Zoo bio rainbow boa parthenogenesis
Zoo bio rainbow boa parthenogenesisZoo bio rainbow boa parthenogenesis
Zoo bio rainbow boa parthenogenesisBryan Starrett
 
Regulatory RNA at epigenetic level
Regulatory RNA at epigenetic level Regulatory RNA at epigenetic level
Regulatory RNA at epigenetic level
Ammar Yousuf Ahmedani
 
Induced pluripotent stem cells
Induced pluripotent stem cells Induced pluripotent stem cells
Induced pluripotent stem cells punnu_malik
 
Molecular Mechanism Of Sex Determination In Drosophila.pptx
Molecular Mechanism Of Sex Determination In Drosophila.pptxMolecular Mechanism Of Sex Determination In Drosophila.pptx
Molecular Mechanism Of Sex Determination In Drosophila.pptx
npppandey100
 
THE PUZZLE OF X CHROMOSOME "alice test"
THE PUZZLE OF X CHROMOSOME    "alice test" THE PUZZLE OF X CHROMOSOME    "alice test"
THE PUZZLE OF X CHROMOSOME "alice test"
حسين الخافوري
 
introduction, terms, mendelian law, chromosome,karyotyping-Dr.Gourav
introduction, terms, mendelian law, chromosome,karyotyping-Dr.Gouravintroduction, terms, mendelian law, chromosome,karyotyping-Dr.Gourav
introduction, terms, mendelian law, chromosome,karyotyping-Dr.GouravGourav Thakre
 
Zoology Second Year Important Question | Exam Tips and Tricks
Zoology Second Year Important Question | Exam Tips and TricksZoology Second Year Important Question | Exam Tips and Tricks
Zoology Second Year Important Question | Exam Tips and Tricks
PreethyKs
 
Honors Capstone Poster
Honors Capstone PosterHonors Capstone Poster
Honors Capstone PosterCorbett Hall
 
SHSARP paper final
SHSARP paper finalSHSARP paper final
SHSARP paper finalKaylee Racs
 
Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014Katie K. Hsiao
 
Synthetic biology
Synthetic biologySynthetic biology
Synthetic biology
Vasyl Mykytyuk
 

Similar to Lena Bengtsson CIRM Poster 2016 (20)

Ceraseetal2021complete.pdf
Ceraseetal2021complete.pdfCeraseetal2021complete.pdf
Ceraseetal2021complete.pdf
 
Cerase review Genome Biology.pdf
Cerase review Genome Biology.pdfCerase review Genome Biology.pdf
Cerase review Genome Biology.pdf
 
x-inactivationinmammals-131202041540-phpapp01 (1).pdf
x-inactivationinmammals-131202041540-phpapp01 (1).pdfx-inactivationinmammals-131202041540-phpapp01 (1).pdf
x-inactivationinmammals-131202041540-phpapp01 (1).pdf
 
X inactivation in mammals
X  inactivation in mammalsX  inactivation in mammals
X inactivation in mammals
 
dosage compensation in human genetics.pptx
dosage compensation in human genetics.pptxdosage compensation in human genetics.pptx
dosage compensation in human genetics.pptx
 
X chromosome inactivation ambaye, s. & mujahed, h.
X chromosome inactivation ambaye, s. & mujahed, h.X chromosome inactivation ambaye, s. & mujahed, h.
X chromosome inactivation ambaye, s. & mujahed, h.
 
pnas-0503504102
pnas-0503504102pnas-0503504102
pnas-0503504102
 
Zoo bio rainbow boa parthenogenesis
Zoo bio rainbow boa parthenogenesisZoo bio rainbow boa parthenogenesis
Zoo bio rainbow boa parthenogenesis
 
Regulatory RNA at epigenetic level
Regulatory RNA at epigenetic level Regulatory RNA at epigenetic level
Regulatory RNA at epigenetic level
 
Induced pluripotent stem cells
Induced pluripotent stem cells Induced pluripotent stem cells
Induced pluripotent stem cells
 
Molecular Mechanism Of Sex Determination In Drosophila.pptx
Molecular Mechanism Of Sex Determination In Drosophila.pptxMolecular Mechanism Of Sex Determination In Drosophila.pptx
Molecular Mechanism Of Sex Determination In Drosophila.pptx
 
THE PUZZLE OF X CHROMOSOME "alice test"
THE PUZZLE OF X CHROMOSOME    "alice test" THE PUZZLE OF X CHROMOSOME    "alice test"
THE PUZZLE OF X CHROMOSOME "alice test"
 
introduction, terms, mendelian law, chromosome,karyotyping-Dr.Gourav
introduction, terms, mendelian law, chromosome,karyotyping-Dr.Gouravintroduction, terms, mendelian law, chromosome,karyotyping-Dr.Gourav
introduction, terms, mendelian law, chromosome,karyotyping-Dr.Gourav
 
Zoology Second Year Important Question | Exam Tips and Tricks
Zoology Second Year Important Question | Exam Tips and TricksZoology Second Year Important Question | Exam Tips and Tricks
Zoology Second Year Important Question | Exam Tips and Tricks
 
Poster MQCB
Poster MQCBPoster MQCB
Poster MQCB
 
Honors Capstone Poster
Honors Capstone PosterHonors Capstone Poster
Honors Capstone Poster
 
SHSARP paper final
SHSARP paper finalSHSARP paper final
SHSARP paper final
 
Grindberg - PNAS
Grindberg - PNASGrindberg - PNAS
Grindberg - PNAS
 
Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014
 
Synthetic biology
Synthetic biologySynthetic biology
Synthetic biology
 

Lena Bengtsson CIRM Poster 2016

  • 1. An  Assay  for  Coun,ng   I  HAVE  2  X’S,  BUT  WHO’S  COUNTING?   LENA  BENGTSSON,  KAREN  LEUNG  PHD,  SAILAJA  PEDDADA  PHD,  LEEANNE  GOODRICH,  JESSELYNN  LABELLE,  BARBARA  PANNING  PHD   PANNING  LAB,  DEPARTMENT  OF  BIOPHYSICS,  UNIVERSITY  OF  CALIFORNIA,  SAN  FRANCISCO     Conclusion     The  knockdown  of  Nipbl,  a  loading  factor  for  the  cohesin  complex,  which  regulates   chromosome  structure,  results  in  a  decrease  in  the  singlet/doublet  signals  and  an   increase  in  singlet/singlet  signals,  without  an  obvious  change  in  cell  morphology.       Follow  up  experiments  need  to  be  performed  in  order  to  understand  how  Nipbl   controls  this  unusual  chromosome  organiza@on  that  may  regulate  coun@ng.       Knockdown  of  Smc2,  a  subunit  of  the  condensin  complex,  has  no  effect  on  the  singlet/ doublet  frequency  and  may  not  play  a  role  in  X  chromosome  coun@ng  in  female  ESCs.       All  results need to be repeated, but 15 targets were identified that may have an effect on counting.   Funding  for  this  project  was  provided  by  CIRM  grant  TB1-­‐01188.   A  special  Thank  You  to  all  the  amazing  scien@fic  minds  in  the  Panning  Lab  –  Barbara   Panning,  Karen  Leung,  Sailaja  Peddada,  Leeanne  Goodrich,  Betsy  Mar@n,  Joel  Hrit,  Dale   Talbot  and  Assen  Rougev.  Their  guidance,  pa@ence,  and  support  made  this  project   possible.         Abstract       Female  placental  mammals  (ex.  mice  and  humans)  undergo  X  Chromosome  Inac@va@on  (XCI)  to   equalize  X-­‐linked  gene  dosage  between  XX  females  and  XY  males.  Because  it  is  necessary  for  female   survival,  XCI  is  an  important  developmentally  regulated  epigene@c  process.  Early  in  post-­‐implanta@on   development,  female  embryos  inac@vate  one  of  their  two  X  chromosomes  (Xs).  XCI  also  occurs  ex   vivo  when  female  embryonic  stem  cells  (ESCs),  which  have  two  ac@ve  Xs,  are  differen@ated.  The   silent  X  is  highly  condensed,  forming  a  structure  called  the  Barr  Body.    XCI  does  not  occur  in  cells  with   one  X,  such  as  XY  male  cells  or  female  cells  that  have  lost  one  X  (XO).  Cells  with  mul@ple  X’s  (XX,  XXX,   XXY)  silence  all  but  one  X,  sugges@ng  that  cells  are  able  to  “count”  their  Xs.  The  mechanisms  behind   how  Xs  are  counted  are  currently  unknown.  The  Panning  lab  has  iden@fied  a  signature  of  coun@ng,  an   unusual  organiza@on  of  X-­‐linked  genes  in  female  ESCs.  I  carried  out  a  screen  to  iden@fy  proteins   necessary  for  this  cytological  signature  of  coun@ng.  The  screen  focused  on  proteins  involved  in   regula@on  of  chromosome  structure,  since  we  hypothesize  that  chromosomal  structural  proteins  may   be  important  in  determining  the  unusual  organiza@on  of  X-­‐linked  genes  in  XX  ESCs.  Using  this   approach  I  hope  to  gain  a  mechanis@c  understanding  of  how  Xs  are  counted.  Being  aware  of  the   mechanisms  behind  XCI  will  help  us  to  understand  how  cells  developmentally  regulated  gene   expression  and    improve  our  understanding  of  stem  cell  biology.   Smc2  esiRNA  Oct4  esiRNA  Untransfected   Nipbl  esiRNA   Assay  for  Gene  Knockdowns  in  Female  ESCs   •  12  well  plate  RNAi:   •  9  targets   •  Oct4  (RNAi  Control)   •  GFP  (Nonspecific  Control)         72  hours   Xist    Fig.  1  -­‐  esiRNAs   silence  effec@vely  in   ESCs.  Brighfield  and   GFP  fluorescence   images  of  ESCs   bearing  an  EGFP   transgene   transfected  with   indicated  esiRNAs.3     Fig.  3  -­‐  Representa@ve  phase  and  RNA  FISH  images  of  esiRNA  KDs  in  female  ESCs.  A.  Untransfected   control.  B.  Oct4  esiRNA  KD  showing  differen@ated  morphology  (phase)  and  Xist  clouds  (RNA  FISH).   XaXa  ESC   Soma,c   cell   X   Chromosome   Inac,va,on   Noncoding  RNA   (Xist)  is   upregulated;   coats  future  Xi.     Differen,a, on   Silenced  X  (Xi/ Barr  Body)   Xist  coated   Phase  images   RNA  FISH   Stages  of  XCI:  Coun,ng  à  Choice  à  Silencing   XaXi   Female  ESC  Undergo  Gene  Dosage  Compensa,on  During  Differen,a,on   RNA  fluorescent  in  situ  hybridiza@on  (FISH)  probes  for  X-­‐ linked  genes  produce  a  unique  singlet/doublet  (S/D)   pinpoint  paiern  in  female  mouse  ESCs  indicates  X   chromosome  coun@ng.2   ♀  mouse  ESC  cell  with  RNA  Xist    FISH   probe     Singlet   Doublet   Xist    DAPI   U,lizing  RNAi  to  Deplete  (Knockdown)  Protein4   •  RNA  FISH  for  Xist   RNA  FISH  for  Xist   •  Phase  images     •  Live  cells  cytospun  &  fixed   Sister   chroma@ds   Xist  cloud   Undifferen,ated   ESCs   Differen,ated   XY  or  XO   ESCs   XX  ESCs   X-­‐linked  loci   Autosomal  loci   RNA  FISH  Signals     Ques,on:  What  proteins  are  necessary  for  S/D  signals  and  coun,ng?     Answer:    Deplete  proteins  (RNAi)  à  Cell  Morphology  (Phase)  à  FISH     •  One  of  two  classes  of  Structural  Maintenance  of   Chromosomes  (SMC)  proteins  might  have  an  effect   on  the  singlet/doublet  cytological  signature.     •  NIPBL,  a  cohesin  loading  factor,  forms  a  dimer  that  is   essen@al  for  loading  the  cohesin  complex  onto  sister   chroma@ds  and  also  plays  important  roles  in   stabilizing  cells6  gene@c  informa@on,  repairing   damaged  DNA,  and  controlling  the  ac@vity  of  certain   genes  that  are  essen@al  for  normal  development.   •  Smc2  &Smc4  -­‐  Components  of  the  condensin   complex,  which  contains  the  SMC2  and  SMC4   heterodimer,  and  three  non  SMC  subunits  that   probably  regulate  the  complex.7       Xist   Brighfield                        GFP  fluorescence   A B References   1.  Kathrin  Plath,  Susanna  Mlynarczyk-­‐Evans,  Dmitri  A.  Nusinow,  Barbara  Panning  Xist  RNA  and  the  mechanism  of  X   chromosome  inac@va@on.  Annu  Rev  Genet.  2002;  36:  233–278.  Published  online  2002  June  11.  doi:10.1146/ annurev.genet.36.042902.092433   2.  Mlynarczyk-­‐Evans,  S.,  Royce-­‐Tolland,  M.,  Alexander,  M.  K.,  Andersen,  A.  A.,  Kalantry,  S.,  Gribnau,  J.,  &  Panning,  B.   (2006).  X  Chromosomes  Alternate  between  Two  States  prior  to  Random  X-­‐Inac@va@on.  PLoS  Biology,  4(6),  e159.   doi:10.1371/journal.pbio.0040159   3.  Fazzio,  T.  G.,  J.  T.  Huff,  et  al.  "An  RNAi  Screen  of  Chroma@n  Proteins  Iden@fies  Tip60-­‐p400  as  a  Regulator  of   Embryonic  Stem  Cell  Iden@ty."  Cell  134(1):  162-­‐174.   4.  Roguev  A,  Talbot  D,  Negri  GL,  et  al.  Quan@ta@ve  gene@c-­‐interac@on  mapping  in  mammalian  cells.  Nature   methods.  2013;10(5):432-­‐437.  doi:10.1038/nmeth.2398.   5.  Michelson  Medical  Research  Founda@on;  hip://michelsonmedical.org/wp-­‐content/uploads/2014/05/ interference_f1_large.jpg,  20  May  2016   6.  Horsfield,  J.,  C.  G.  Print,  et  al.  (2012).  "Diverse  developmental  disorders  from  The  One  Ring:  dis@nct  molecular   pathways  underlie  the  cohesinopathies."  Fron@ers  in  Gene@cs  3.   7.  Watrin,  E.,  A.  Schleiffer,  et  al.  "Human  Scc4  Is  Required  for  Cohesin  Binding  to  Chroma@n,  Sister-­‐Chroma@d   Cohesion,  and  Mito@c  Progression."  Current  Biology  16(9):  863-­‐874   8.  Chromosome  condensa@on,  amazing  evidence  of  design;  hip://reasonandscience.heavenforum.org/t2086-­‐ chromosome-­‐condensa@on-­‐amazing-­‐evidence-­‐of-­‐design,  20  May  2016   20x   Phase   20x   Phase   20x   Phase   20x   Phase   Xist  Xist   Xist  Xist   e Fig. 2- Gene silencing by RNA interference(RNAi).5   Fig. 4- Examples Cohesin and Condensin Complexes.8   Fig.  5  –  NIPBL   plays  a  role  in   cohesin  loading   on  the  sister   chroma@ds.6     Results   Results continued esiKnockdown counts that resulted in a RNA FISH singlet/doublet (S/D) signal pattern percentage outside of 45-54% range as compared to the negative controls (NC, Mock GFP) are potential targets of interest. Singlet/Singlet (S/S), Doublet/Doublet (D/D), and Total X Cloud (TC) signal pattern ranges also considered, but not discussed.