SlideShare a Scribd company logo
Schema Matching and Integration
IIS 651 (S 2022)
1
Outline
 Schema and Schema Matching
 Schema Heterogeneity & Data Interoperability
 Large Scale Scenarios concerning Schema Matching and
Integration
 Related Work
 Our approach to handle Large Scale Scenario
 PORSCHE (Performance Oriented Schema Mediation)
 Future Research Directions
2
Schema
origin in Greek, meaning "shape“ or "plan"
From computer science perspective –
• description of the relationship of data/ information in some
structured way or
• a set of rules defining the relationship
or
• a model to represent the data
For example
• Relational Schema
• XML Schema
• Class Diagram ….
3
Relational Database Schema
4
book_id
book
title
author_id
author
name pub_id
publisher
name
book_id
detail
author_id pub_id
books
XML Schema
5
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="time">
<xs:complexType/>
</xs:element>
<xs:element name="day">
<xs:complexType/>
</xs:element>
<xs:element name="courseCode">
<xs:complexType mixed="true">
<xs:sequence>
<xs:element ref="time"/>
<xs:element ref="day"/>
<xs:element ref="Instructor"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="arizonaCourses">
<xs:complexType>
<xs:sequence>
<xs:element ref="courseCode"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Instructor">
<xs:complexType/>
</xs:element>
</xs:schema>
Web Interface Form Schema
From city or airport* To city or airport*
I f y o u a r e u n s u r e o f t h e s p e l l i n g o f a c i t y o r a i r p o r t , e n t e r t h e
f i r s t 3 o r m o r e l e t t e r s f o l l o w e d b y a n a s t e r i s k ( * ) .
Departure date Departure time
Jul 2008 23 Any Time
Wednesday
Return Date Return time
Jul 2008 24 Any Time
Thursday
Traveler types
Adults
(12-64 yrs)
1
Children
(2-11 yrs)
0
Seniors
(65+ yrs)
0
Infants (0-
23 months)
0
Cabin type
Coach
Direct or Non-Stop flights only
More search options
6
Schema Matching
7
• Takes two schemas/ontologies as input and produces a
mapping between elements of the two schemas that
correspond semantically to each other [Halevy05]
1-1 match
complex match
26,60 Harry Potter J. K. Rowling
11,50 Marie Des Juliette Benzoni
Intrigues
16,50 Nous Les Bernard Werber
Dieux
24 Pompei Robert Harris
price book-title author-name
Books
Source A
listed-price title a-fname a-lname
Books
Source B
Applications of Schema Matching
• Data Interoperability
• Data Integration
• Data Warehousing
• Catalogue Integration
• Web Services Discovery and
Composition
• Query over the Web
• ...
• Data Exchange
• E-commerce
• Agents Communication
• ...
8
Static
Dynamic
Contributing
Schema Set Not
Evolving >>
Matching and
Mapping is one
time process
Contributing
Schema Set
Evolving >>
Matching and
Mapping also
evolve
PROBLEM?
9
Schema Heterogeneity &
Data Interoperability
• A key roadblock for information integration!
• Different data sources speak their own schema
10
Consumer
Data Source
Data Source
Data Source
Hotels, Youth Centers
Lodges, Restaurants
Beaches, Volcanoes
Hotel, Restaurant,
AdventureSports,
HistoricalSites
SOLUTION!
Schema Mediation
11
Schema Integration and Mediation
• All concerned data sources schemas are merged together into one
schema, without any concept redundancy. i.e. similar concepts are
represented by one concept
• All the input data sources schemas are mapped to this integrated
schema, also called the mediated schema
12
Consumer
Data Source
Data Source
Data Source
Hotels, Youth Centers
Lodges, Restaurants
Beaches, Volcanoes
Hotel, Restaurant,
AdventureSports,
HistoricalSites
Mediation
Mediation
Schema Mapping is key to any data sharing architecture
13
[Tomasic et al. IEEE TKDE 1998].
Mediated Schema
Source n
Source 1 Source 2
mappings
...
wrapper wrapper wrapper
User Query
sub-query
sub-query
sub-query
Schema
Matching, Mapping, Integration & Mediation
14
S1
B C
S2
B1 C2
C1
Matching
S1
B C
S2
B1 C2
C1
Mapping
Merging/ Integration
Si
B C1
C
Mediation
Si
B C1
C
S1
B C
S2
B1 C2
C1
Finding similarities
between schemas
Final correspondences
between elements
of two schemas
Based upon schema
mappings, merging
schemas into one schema
Mappings from source
schemas to the integrated
schema for data interoperability
Different Research Domains - Mediation
15
Mediation
Distributed
Databases
Data
Warehousin
g
Data Mining
……………
Informatio
n Retrieval
Knowledge
Extraction
LARGE SCALE
PROBLEM!
16
Large Scale Scenario
• Creating a mediated schema from two large schemas (with thousands
of nodes).
• For example Open Applications Group Integration Specification (OAGIS)1
XML schema instances with number of elements in thousands
• Creating a mediated schema from a large set of schemas (with
hundreds of schemas and thousands of nodes)
• For example creating a mediated web interface input form (schema) from
the hundreds of web interface forms (schemas) related to travel domain2
17
1. http://www.openapplications.org/
2. http://metaquerier.cs.uiuc.edu
Large scale schema matching and integration requires
automated approach
Related Work
18
Pre-Match
eTuner
[Lee&Doan 07]
Amid-Match
SCIA
[Wang et al 07]
Post-Match
COMA++
[Do et al 07,
Manakanatas06]
Tuning approach
Large Scale Schema Matching and
Integration Approaches
Incremental Holistic
Fragmentation Clustering Mining
Data-mining
Element
Level
Schema
Level
Tree-mining
COMA++
[Do&Rahm07]
BellFlower
[Smiljanic06]
DCM [He et al 04]
xClust
[Lee et al 02]
PORSCHE
[Saleem et al 08]
An approach to handle
Large Scale Scenario
 Handle Schemas as Trees
 Apply the Clustering Method
 Use Tree Mining
 Devise Hybrid Approach
19
Result
Automated Approach having
Good Time Performance with
Approximate Match Quality
From city or airport* To city or airport*
I f y o u a r e u n s u r e o f t h e s p e l l i n g o f a c i t y o r a i r p o r t , e n t e r t h e
f i r s t 3 o r m o r e l e t t e r s f o l l o w e d b y a n a s t e r i s k ( * ) .
Departure date Departure time
Jul 2008 23 Any Time
Wednesday
Return Date Return time
Jul 2008 24 Any Time
Thursday
Traveler types
Adults
(12-64 yrs)
1
Children
(2-11 yrs)
0
Seniors
(65+ yrs)
0
Infants (0-
23 months)
0
Cabin type
Coach
Direct or Non-Stop flights only
More search options
20
Schemas as trees – Web Interface Forms
absTravel
From
D_City
To
A_City
Departure
Date
D_Month
D_Day
D_Time
Return
Date
R_Month
R_Day
R_Time
CabinType
TravelerTypes
Adults
Children
Seniors
Infants
absTravel
D_City
D_Day
Return
D_Month
Departure
A_City
D_Time
CabinType
Adults
Children
Seniors
Infants
D_Day
D_Month
D_Time
TravlerTypes
From
To
Date
Date
[He et al. KDD 2004]
Schemas as trees – Relational Database
21
books
book_id
author_id
author
detail
name
publisher
title
pub_id name
book_id
book
title
author_id
author
name pub_id
publisher
name
book_id
detail
author_id pub_id
books
[Lee et al. CIKM 2006]
Schemas as trees – XML Schema
22
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="time">
<xs:complexType/>
</xs:element>
<xs:element name="day">
<xs:complexType/>
</xs:element>
<xs:element name="courseCode">
<xs:complexType mixed="true">
<xs:sequence>
<xs:element ref="time"/>
<xs:element ref="day"/>
<xs:element ref="Instructor"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="arizonaCourses">
<xs:complexType>
<xs:sequence>
<xs:element ref="courseCode"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Instructor">
<xs:complexType/>
</xs:element>
</xs:schema>
arizonaCourses
courseCode
day
time place instructor
A speculatively rooted tree for rRNA genes
23
Schema Tree Benefit
• Tree structure for a data model inherently supports the contextual
meanings of the descendent nodes.
24
A
B
C
S1
D
A1
B1
C11
C1
S2
D
D
X
A
B C
D
S1
A1
B C11
C1
D D
S2
Element Level Clustering
• Clustering helps in target search space optimization
• Schema elements clustering based on label similarity
25
A
B
C
A1
B1
C4
C1
A
B
C2
A1
B1
C3
C5
D
D
S1 S2 S3 Si
Node Labels Similarity
C ≈ C1 ≈ C2 ≈ C3 ≈ C4 ≈ C5
t1 t2 t3 t4 …… tn
s1
s2
s3
s4
…
sm
a1
a2
a3
a4 …
aq
Typical matching scenario
Tree Mining Aspect
• Tree mining finds frequent sub-trees in a given set of trees;
• similar to schema matching, which finds similar concepts among a set of
schemas
• Use of data structures supporting tree mining algorithms for schema
matching is possible
• Helps in handling Large Scale Scenario
• Supports the context of nodes
26
computers
Desktop notebook
Software
Desktop notepad
Tree mining example
• Element Level Matching (sub-tree size 1)
• Structure Level Matching (sub-tree size > 1)
27
b
a p
n
t
n
b
a f
n
t
p i
n
b
d
a
f
t p r
a
n h b
t
a
n
b
t
b
p t ……
Hybrid Approach
28
Matching
Mapping
Integratio
n
Mediation
Schema Trees
Clustering
Tree Mining
Database Research Advances Reports
• https://dsf.berkeley.edu/claremont/claremontreport08.pdf
• https://beckman.cs.wisc.edu/beckman-report2013.pdf
• https://link.springer.com/article/10.1007/s10796-017-9819-2
• https://sigmodrecord.org/publications/sigmodRecord/1912/pdfs/07_
Reports_Abadi.pdf Last one 2018 …
• https://www.sciencedirect.com/science/article/pii/S0306437908000
15X
• https://vldb.org/2021/?papers-research
29

More Related Content

Similar to Lecture 05-SchemaMatching.ppt

Graph Abstractions Matter by Ora Lassila
Graph Abstractions Matter by Ora LassilaGraph Abstractions Matter by Ora Lassila
Graph Abstractions Matter by Ora Lassila
Connected Data World
 
Graph Database and Neo4j
Graph Database and Neo4jGraph Database and Neo4j
Graph Database and Neo4j
Sina Khorami
 
An Ontology for K-12 Education and the NIEM
An Ontology for K-12 Education and the NIEMAn Ontology for K-12 Education and the NIEM
An Ontology for K-12 Education and the NIEM
Optum
 
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Artem Chebotko
 
Semantic web Santhosh N Basavarajappa
Semantic web   Santhosh N BasavarajappaSemantic web   Santhosh N Basavarajappa
Semantic web Santhosh N Basavarajappa
Santhosh Basavarajappa
 
The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...
The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...
The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...
Dr. Aparna Varde
 
CBS CEDAR Presentation
CBS CEDAR PresentationCBS CEDAR Presentation
CBS CEDAR Presentation
Albert Meroño-Peñuela
 
Semantic web
Semantic webSemantic web
Semantic web
Ronit Mathur
 
MIT302 Lesson 2_Advanced Database Systems.pptx
MIT302 Lesson 2_Advanced Database Systems.pptxMIT302 Lesson 2_Advanced Database Systems.pptx
MIT302 Lesson 2_Advanced Database Systems.pptx
elsagalgao
 
L2s 090701234157 Phpapp02
L2s 090701234157 Phpapp02L2s 090701234157 Phpapp02
L2s 090701234157 Phpapp02
google
 
Democratizing Data Science in the Cloud
Democratizing Data Science in the CloudDemocratizing Data Science in the Cloud
Democratizing Data Science in the Cloud
University of Washington
 
Top 5-nosql
Top 5-nosqlTop 5-nosql
Top 5-nosql
Mehul Jariwala
 
Migrating from SQL to MongoDB
Migrating from SQL to MongoDBMigrating from SQL to MongoDB
Migrating from SQL to MongoDB
MongoDB
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and SparkVital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital.AI
 
Semantics in Financial Services -David Newman
Semantics in Financial Services -David NewmanSemantics in Financial Services -David Newman
Semantics in Financial Services -David Newman
Peter Berger
 
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Artificial Intelligence Institute at UofSC
 
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
Armin Haller
 
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptxGraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
Neo4j
 
RDF and OWL : the powerful duo | Tara Raafat
RDF and OWL : the powerful duo | Tara RaafatRDF and OWL : the powerful duo | Tara Raafat
RDF and OWL : the powerful duo | Tara Raafat
Connected Data World
 
RDF-Gen: Generating RDF from streaming and archival data
RDF-Gen: Generating RDF from streaming and archival dataRDF-Gen: Generating RDF from streaming and archival data
RDF-Gen: Generating RDF from streaming and archival data
Giorgos Santipantakis
 

Similar to Lecture 05-SchemaMatching.ppt (20)

Graph Abstractions Matter by Ora Lassila
Graph Abstractions Matter by Ora LassilaGraph Abstractions Matter by Ora Lassila
Graph Abstractions Matter by Ora Lassila
 
Graph Database and Neo4j
Graph Database and Neo4jGraph Database and Neo4j
Graph Database and Neo4j
 
An Ontology for K-12 Education and the NIEM
An Ontology for K-12 Education and the NIEMAn Ontology for K-12 Education and the NIEM
An Ontology for K-12 Education and the NIEM
 
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
Using the Chebotko Method to Design Sound and Scalable Data Models for Apache...
 
Semantic web Santhosh N Basavarajappa
Semantic web   Santhosh N BasavarajappaSemantic web   Santhosh N Basavarajappa
Semantic web Santhosh N Basavarajappa
 
The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...
The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...
The Hidden Web, XML and the Semantic Web: A Scientific Data Management Perspe...
 
CBS CEDAR Presentation
CBS CEDAR PresentationCBS CEDAR Presentation
CBS CEDAR Presentation
 
Semantic web
Semantic webSemantic web
Semantic web
 
MIT302 Lesson 2_Advanced Database Systems.pptx
MIT302 Lesson 2_Advanced Database Systems.pptxMIT302 Lesson 2_Advanced Database Systems.pptx
MIT302 Lesson 2_Advanced Database Systems.pptx
 
L2s 090701234157 Phpapp02
L2s 090701234157 Phpapp02L2s 090701234157 Phpapp02
L2s 090701234157 Phpapp02
 
Democratizing Data Science in the Cloud
Democratizing Data Science in the CloudDemocratizing Data Science in the Cloud
Democratizing Data Science in the Cloud
 
Top 5-nosql
Top 5-nosqlTop 5-nosql
Top 5-nosql
 
Migrating from SQL to MongoDB
Migrating from SQL to MongoDBMigrating from SQL to MongoDB
Migrating from SQL to MongoDB
 
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and SparkVital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
Vital AI MetaQL: Queries Across NoSQL, SQL, Sparql, and Spark
 
Semantics in Financial Services -David Newman
Semantics in Financial Services -David NewmanSemantics in Financial Services -David Newman
Semantics in Financial Services -David Newman
 
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
 
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
What Are Links in Linked Open Data? A Characterization and Evaluation of Link...
 
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptxGraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
GraphSummit London Feb 2024 - ABK - Neo4j Product Vision and Roadmap.pptx
 
RDF and OWL : the powerful duo | Tara Raafat
RDF and OWL : the powerful duo | Tara RaafatRDF and OWL : the powerful duo | Tara Raafat
RDF and OWL : the powerful duo | Tara Raafat
 
RDF-Gen: Generating RDF from streaming and archival data
RDF-Gen: Generating RDF from streaming and archival dataRDF-Gen: Generating RDF from streaming and archival data
RDF-Gen: Generating RDF from streaming and archival data
 

More from Asadkhan47384

DWH_ Lec-01 nmnmmnmn asad khan asad.pptx
DWH_ Lec-01 nmnmmnmn asad khan asad.pptxDWH_ Lec-01 nmnmmnmn asad khan asad.pptx
DWH_ Lec-01 nmnmmnmn asad khan asad.pptx
Asadkhan47384
 
cactus-.pptx
cactus-.pptxcactus-.pptx
cactus-.pptx
Asadkhan47384
 
Usability in Practice.pptx
Usability in Practice.pptxUsability in Practice.pptx
Usability in Practice.pptx
Asadkhan47384
 
HCI_Lec-15.pptx
HCI_Lec-15.pptxHCI_Lec-15.pptx
HCI_Lec-15.pptx
Asadkhan47384
 
Lecture 08B - Logical-DWH-Model-Pending.pptx
Lecture 08B - Logical-DWH-Model-Pending.pptxLecture 08B - Logical-DWH-Model-Pending.pptx
Lecture 08B - Logical-DWH-Model-Pending.pptx
Asadkhan47384
 
Lecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.pptLecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.ppt
Asadkhan47384
 
Lecture 10 - DataMiningEngineering.ppt
Lecture 10 - DataMiningEngineering.pptLecture 10 - DataMiningEngineering.ppt
Lecture 10 - DataMiningEngineering.ppt
Asadkhan47384
 
HCI_Lec-12.pptx
HCI_Lec-12.pptxHCI_Lec-12.pptx
HCI_Lec-12.pptx
Asadkhan47384
 
Lecture 06 -IIS-OLAP.pptx
Lecture 06 -IIS-OLAP.pptxLecture 06 -IIS-OLAP.pptx
Lecture 06 -IIS-OLAP.pptx
Asadkhan47384
 
Lecture 01-1-IIS.pptx
Lecture 01-1-IIS.pptxLecture 01-1-IIS.pptx
Lecture 01-1-IIS.pptx
Asadkhan47384
 
Lecture 02-2-IIS.pptx
Lecture 02-2-IIS.pptxLecture 02-2-IIS.pptx
Lecture 02-2-IIS.pptx
Asadkhan47384
 
HCI_ Lec-5.pptx
HCI_ Lec-5.pptxHCI_ Lec-5.pptx
HCI_ Lec-5.pptx
Asadkhan47384
 
HCI.pptx
HCI.pptxHCI.pptx
HCI.pptx
Asadkhan47384
 
Lecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.pptLecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.ppt
Asadkhan47384
 
HCI.pptx
HCI.pptxHCI.pptx
HCI.pptx
Asadkhan47384
 

More from Asadkhan47384 (15)

DWH_ Lec-01 nmnmmnmn asad khan asad.pptx
DWH_ Lec-01 nmnmmnmn asad khan asad.pptxDWH_ Lec-01 nmnmmnmn asad khan asad.pptx
DWH_ Lec-01 nmnmmnmn asad khan asad.pptx
 
cactus-.pptx
cactus-.pptxcactus-.pptx
cactus-.pptx
 
Usability in Practice.pptx
Usability in Practice.pptxUsability in Practice.pptx
Usability in Practice.pptx
 
HCI_Lec-15.pptx
HCI_Lec-15.pptxHCI_Lec-15.pptx
HCI_Lec-15.pptx
 
Lecture 08B - Logical-DWH-Model-Pending.pptx
Lecture 08B - Logical-DWH-Model-Pending.pptxLecture 08B - Logical-DWH-Model-Pending.pptx
Lecture 08B - Logical-DWH-Model-Pending.pptx
 
Lecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.pptLecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.ppt
 
Lecture 10 - DataMiningEngineering.ppt
Lecture 10 - DataMiningEngineering.pptLecture 10 - DataMiningEngineering.ppt
Lecture 10 - DataMiningEngineering.ppt
 
HCI_Lec-12.pptx
HCI_Lec-12.pptxHCI_Lec-12.pptx
HCI_Lec-12.pptx
 
Lecture 06 -IIS-OLAP.pptx
Lecture 06 -IIS-OLAP.pptxLecture 06 -IIS-OLAP.pptx
Lecture 06 -IIS-OLAP.pptx
 
Lecture 01-1-IIS.pptx
Lecture 01-1-IIS.pptxLecture 01-1-IIS.pptx
Lecture 01-1-IIS.pptx
 
Lecture 02-2-IIS.pptx
Lecture 02-2-IIS.pptxLecture 02-2-IIS.pptx
Lecture 02-2-IIS.pptx
 
HCI_ Lec-5.pptx
HCI_ Lec-5.pptxHCI_ Lec-5.pptx
HCI_ Lec-5.pptx
 
HCI.pptx
HCI.pptxHCI.pptx
HCI.pptx
 
Lecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.pptLecture 06- Reading-SQLDataManipulation.ppt
Lecture 06- Reading-SQLDataManipulation.ppt
 
HCI.pptx
HCI.pptxHCI.pptx
HCI.pptx
 

Recently uploaded

Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...
Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...
Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...
Joshua Orris
 
Improving the viability of probiotics by encapsulation methods for developmen...
Improving the viability of probiotics by encapsulation methods for developmen...Improving the viability of probiotics by encapsulation methods for developmen...
Improving the viability of probiotics by encapsulation methods for developmen...
Open Access Research Paper
 
Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...
Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...
Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...
Joshua Orris
 
Kinetic studies on malachite green dye adsorption from aqueous solutions by A...
Kinetic studies on malachite green dye adsorption from aqueous solutions by A...Kinetic studies on malachite green dye adsorption from aqueous solutions by A...
Kinetic studies on malachite green dye adsorption from aqueous solutions by A...
Open Access Research Paper
 
在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样
在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样
在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样
pjq9n1lk
 
Peatland Management in Indonesia, Science to Policy and Knowledge Education
Peatland Management in Indonesia, Science to Policy and Knowledge EducationPeatland Management in Indonesia, Science to Policy and Knowledge Education
Peatland Management in Indonesia, Science to Policy and Knowledge Education
Global Landscapes Forum (GLF)
 
Improving the Management of Peatlands and the Capacities of Stakeholders in I...
Improving the Management of Peatlands and the Capacities of Stakeholders in I...Improving the Management of Peatlands and the Capacities of Stakeholders in I...
Improving the Management of Peatlands and the Capacities of Stakeholders in I...
Global Landscapes Forum (GLF)
 
Overview of the Global Peatlands Assessment
Overview of the Global Peatlands AssessmentOverview of the Global Peatlands Assessment
Overview of the Global Peatlands Assessment
Global Landscapes Forum (GLF)
 
一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理
一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理
一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理
zm9ajxup
 
Promoting Multilateral Cooperation for Sustainable Peatland management
Promoting Multilateral Cooperation for Sustainable Peatland managementPromoting Multilateral Cooperation for Sustainable Peatland management
Promoting Multilateral Cooperation for Sustainable Peatland management
Global Landscapes Forum (GLF)
 
Global Peatlands Map and Hotspot Explanation Atlas
Global Peatlands Map and Hotspot Explanation AtlasGlobal Peatlands Map and Hotspot Explanation Atlas
Global Peatlands Map and Hotspot Explanation Atlas
Global Landscapes Forum (GLF)
 
ENVIRONMENT~ Renewable Energy Sources and their future prospects.
ENVIRONMENT~ Renewable Energy Sources and their future prospects.ENVIRONMENT~ Renewable Energy Sources and their future prospects.
ENVIRONMENT~ Renewable Energy Sources and their future prospects.
tiwarimanvi3129
 
Microbial characterisation and identification, and potability of River Kuywa ...
Microbial characterisation and identification, and potability of River Kuywa ...Microbial characterisation and identification, and potability of River Kuywa ...
Microbial characterisation and identification, and potability of River Kuywa ...
Open Access Research Paper
 
world-environment-day-2024-240601103559-14f4c0b4.pptx
world-environment-day-2024-240601103559-14f4c0b4.pptxworld-environment-day-2024-240601103559-14f4c0b4.pptx
world-environment-day-2024-240601103559-14f4c0b4.pptx
mfasna35
 
Peatlands of Latin America and the Caribbean
Peatlands of Latin America and the CaribbeanPeatlands of Latin America and the Caribbean
Peatlands of Latin America and the Caribbean
Global Landscapes Forum (GLF)
 
原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样
原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样
原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样
p2npnqp
 
DENR-PENRO-Bulacan-Presentation Philippine EIS
DENR-PENRO-Bulacan-Presentation Philippine EISDENR-PENRO-Bulacan-Presentation Philippine EIS
DENR-PENRO-Bulacan-Presentation Philippine EIS
MarlonJayBayag
 
Enhanced action and stakeholder engagement for sustainable peatland management
Enhanced action and stakeholder engagement for sustainable peatland managementEnhanced action and stakeholder engagement for sustainable peatland management
Enhanced action and stakeholder engagement for sustainable peatland management
Global Landscapes Forum (GLF)
 
How about Huawei mobile phone-www.cfye-commerce.shop
How about Huawei mobile phone-www.cfye-commerce.shopHow about Huawei mobile phone-www.cfye-commerce.shop
How about Huawei mobile phone-www.cfye-commerce.shop
laozhuseo02
 
Global Climate Change and global warming
Global Climate Change and global warmingGlobal Climate Change and global warming
Global Climate Change and global warming
ballkicker20
 

Recently uploaded (20)

Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...
Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...
Optimizing Post Remediation Groundwater Performance with Enhanced Microbiolog...
 
Improving the viability of probiotics by encapsulation methods for developmen...
Improving the viability of probiotics by encapsulation methods for developmen...Improving the viability of probiotics by encapsulation methods for developmen...
Improving the viability of probiotics by encapsulation methods for developmen...
 
Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...
Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...
Evolving Lifecycles with High Resolution Site Characterization (HRSC) and 3-D...
 
Kinetic studies on malachite green dye adsorption from aqueous solutions by A...
Kinetic studies on malachite green dye adsorption from aqueous solutions by A...Kinetic studies on malachite green dye adsorption from aqueous solutions by A...
Kinetic studies on malachite green dye adsorption from aqueous solutions by A...
 
在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样
在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样
在线办理(lboro毕业证书)拉夫堡大学毕业证学历证书一模一样
 
Peatland Management in Indonesia, Science to Policy and Knowledge Education
Peatland Management in Indonesia, Science to Policy and Knowledge EducationPeatland Management in Indonesia, Science to Policy and Knowledge Education
Peatland Management in Indonesia, Science to Policy and Knowledge Education
 
Improving the Management of Peatlands and the Capacities of Stakeholders in I...
Improving the Management of Peatlands and the Capacities of Stakeholders in I...Improving the Management of Peatlands and the Capacities of Stakeholders in I...
Improving the Management of Peatlands and the Capacities of Stakeholders in I...
 
Overview of the Global Peatlands Assessment
Overview of the Global Peatlands AssessmentOverview of the Global Peatlands Assessment
Overview of the Global Peatlands Assessment
 
一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理
一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理
一比一原版(UMTC毕业证书)明尼苏达大学双城分校毕业证如何办理
 
Promoting Multilateral Cooperation for Sustainable Peatland management
Promoting Multilateral Cooperation for Sustainable Peatland managementPromoting Multilateral Cooperation for Sustainable Peatland management
Promoting Multilateral Cooperation for Sustainable Peatland management
 
Global Peatlands Map and Hotspot Explanation Atlas
Global Peatlands Map and Hotspot Explanation AtlasGlobal Peatlands Map and Hotspot Explanation Atlas
Global Peatlands Map and Hotspot Explanation Atlas
 
ENVIRONMENT~ Renewable Energy Sources and their future prospects.
ENVIRONMENT~ Renewable Energy Sources and their future prospects.ENVIRONMENT~ Renewable Energy Sources and their future prospects.
ENVIRONMENT~ Renewable Energy Sources and their future prospects.
 
Microbial characterisation and identification, and potability of River Kuywa ...
Microbial characterisation and identification, and potability of River Kuywa ...Microbial characterisation and identification, and potability of River Kuywa ...
Microbial characterisation and identification, and potability of River Kuywa ...
 
world-environment-day-2024-240601103559-14f4c0b4.pptx
world-environment-day-2024-240601103559-14f4c0b4.pptxworld-environment-day-2024-240601103559-14f4c0b4.pptx
world-environment-day-2024-240601103559-14f4c0b4.pptx
 
Peatlands of Latin America and the Caribbean
Peatlands of Latin America and the CaribbeanPeatlands of Latin America and the Caribbean
Peatlands of Latin America and the Caribbean
 
原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样
原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样
原版制作(Newcastle毕业证书)纽卡斯尔大学毕业证在读证明一模一样
 
DENR-PENRO-Bulacan-Presentation Philippine EIS
DENR-PENRO-Bulacan-Presentation Philippine EISDENR-PENRO-Bulacan-Presentation Philippine EIS
DENR-PENRO-Bulacan-Presentation Philippine EIS
 
Enhanced action and stakeholder engagement for sustainable peatland management
Enhanced action and stakeholder engagement for sustainable peatland managementEnhanced action and stakeholder engagement for sustainable peatland management
Enhanced action and stakeholder engagement for sustainable peatland management
 
How about Huawei mobile phone-www.cfye-commerce.shop
How about Huawei mobile phone-www.cfye-commerce.shopHow about Huawei mobile phone-www.cfye-commerce.shop
How about Huawei mobile phone-www.cfye-commerce.shop
 
Global Climate Change and global warming
Global Climate Change and global warmingGlobal Climate Change and global warming
Global Climate Change and global warming
 

Lecture 05-SchemaMatching.ppt

  • 1. Schema Matching and Integration IIS 651 (S 2022) 1
  • 2. Outline  Schema and Schema Matching  Schema Heterogeneity & Data Interoperability  Large Scale Scenarios concerning Schema Matching and Integration  Related Work  Our approach to handle Large Scale Scenario  PORSCHE (Performance Oriented Schema Mediation)  Future Research Directions 2
  • 3. Schema origin in Greek, meaning "shape“ or "plan" From computer science perspective – • description of the relationship of data/ information in some structured way or • a set of rules defining the relationship or • a model to represent the data For example • Relational Schema • XML Schema • Class Diagram …. 3
  • 4. Relational Database Schema 4 book_id book title author_id author name pub_id publisher name book_id detail author_id pub_id books
  • 5. XML Schema 5 <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="time"> <xs:complexType/> </xs:element> <xs:element name="day"> <xs:complexType/> </xs:element> <xs:element name="courseCode"> <xs:complexType mixed="true"> <xs:sequence> <xs:element ref="time"/> <xs:element ref="day"/> <xs:element ref="Instructor"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="arizonaCourses"> <xs:complexType> <xs:sequence> <xs:element ref="courseCode"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="Instructor"> <xs:complexType/> </xs:element> </xs:schema>
  • 6. Web Interface Form Schema From city or airport* To city or airport* I f y o u a r e u n s u r e o f t h e s p e l l i n g o f a c i t y o r a i r p o r t , e n t e r t h e f i r s t 3 o r m o r e l e t t e r s f o l l o w e d b y a n a s t e r i s k ( * ) . Departure date Departure time Jul 2008 23 Any Time Wednesday Return Date Return time Jul 2008 24 Any Time Thursday Traveler types Adults (12-64 yrs) 1 Children (2-11 yrs) 0 Seniors (65+ yrs) 0 Infants (0- 23 months) 0 Cabin type Coach Direct or Non-Stop flights only More search options 6
  • 7. Schema Matching 7 • Takes two schemas/ontologies as input and produces a mapping between elements of the two schemas that correspond semantically to each other [Halevy05] 1-1 match complex match 26,60 Harry Potter J. K. Rowling 11,50 Marie Des Juliette Benzoni Intrigues 16,50 Nous Les Bernard Werber Dieux 24 Pompei Robert Harris price book-title author-name Books Source A listed-price title a-fname a-lname Books Source B
  • 8. Applications of Schema Matching • Data Interoperability • Data Integration • Data Warehousing • Catalogue Integration • Web Services Discovery and Composition • Query over the Web • ... • Data Exchange • E-commerce • Agents Communication • ... 8 Static Dynamic Contributing Schema Set Not Evolving >> Matching and Mapping is one time process Contributing Schema Set Evolving >> Matching and Mapping also evolve
  • 10. Schema Heterogeneity & Data Interoperability • A key roadblock for information integration! • Different data sources speak their own schema 10 Consumer Data Source Data Source Data Source Hotels, Youth Centers Lodges, Restaurants Beaches, Volcanoes Hotel, Restaurant, AdventureSports, HistoricalSites
  • 12. Schema Integration and Mediation • All concerned data sources schemas are merged together into one schema, without any concept redundancy. i.e. similar concepts are represented by one concept • All the input data sources schemas are mapped to this integrated schema, also called the mediated schema 12 Consumer Data Source Data Source Data Source Hotels, Youth Centers Lodges, Restaurants Beaches, Volcanoes Hotel, Restaurant, AdventureSports, HistoricalSites Mediation
  • 13. Mediation Schema Mapping is key to any data sharing architecture 13 [Tomasic et al. IEEE TKDE 1998]. Mediated Schema Source n Source 1 Source 2 mappings ... wrapper wrapper wrapper User Query sub-query sub-query sub-query
  • 14. Schema Matching, Mapping, Integration & Mediation 14 S1 B C S2 B1 C2 C1 Matching S1 B C S2 B1 C2 C1 Mapping Merging/ Integration Si B C1 C Mediation Si B C1 C S1 B C S2 B1 C2 C1 Finding similarities between schemas Final correspondences between elements of two schemas Based upon schema mappings, merging schemas into one schema Mappings from source schemas to the integrated schema for data interoperability
  • 15. Different Research Domains - Mediation 15 Mediation Distributed Databases Data Warehousin g Data Mining …………… Informatio n Retrieval Knowledge Extraction
  • 17. Large Scale Scenario • Creating a mediated schema from two large schemas (with thousands of nodes). • For example Open Applications Group Integration Specification (OAGIS)1 XML schema instances with number of elements in thousands • Creating a mediated schema from a large set of schemas (with hundreds of schemas and thousands of nodes) • For example creating a mediated web interface input form (schema) from the hundreds of web interface forms (schemas) related to travel domain2 17 1. http://www.openapplications.org/ 2. http://metaquerier.cs.uiuc.edu Large scale schema matching and integration requires automated approach
  • 18. Related Work 18 Pre-Match eTuner [Lee&Doan 07] Amid-Match SCIA [Wang et al 07] Post-Match COMA++ [Do et al 07, Manakanatas06] Tuning approach Large Scale Schema Matching and Integration Approaches Incremental Holistic Fragmentation Clustering Mining Data-mining Element Level Schema Level Tree-mining COMA++ [Do&Rahm07] BellFlower [Smiljanic06] DCM [He et al 04] xClust [Lee et al 02] PORSCHE [Saleem et al 08]
  • 19. An approach to handle Large Scale Scenario  Handle Schemas as Trees  Apply the Clustering Method  Use Tree Mining  Devise Hybrid Approach 19 Result Automated Approach having Good Time Performance with Approximate Match Quality
  • 20. From city or airport* To city or airport* I f y o u a r e u n s u r e o f t h e s p e l l i n g o f a c i t y o r a i r p o r t , e n t e r t h e f i r s t 3 o r m o r e l e t t e r s f o l l o w e d b y a n a s t e r i s k ( * ) . Departure date Departure time Jul 2008 23 Any Time Wednesday Return Date Return time Jul 2008 24 Any Time Thursday Traveler types Adults (12-64 yrs) 1 Children (2-11 yrs) 0 Seniors (65+ yrs) 0 Infants (0- 23 months) 0 Cabin type Coach Direct or Non-Stop flights only More search options 20 Schemas as trees – Web Interface Forms absTravel From D_City To A_City Departure Date D_Month D_Day D_Time Return Date R_Month R_Day R_Time CabinType TravelerTypes Adults Children Seniors Infants absTravel D_City D_Day Return D_Month Departure A_City D_Time CabinType Adults Children Seniors Infants D_Day D_Month D_Time TravlerTypes From To Date Date [He et al. KDD 2004]
  • 21. Schemas as trees – Relational Database 21 books book_id author_id author detail name publisher title pub_id name book_id book title author_id author name pub_id publisher name book_id detail author_id pub_id books [Lee et al. CIKM 2006]
  • 22. Schemas as trees – XML Schema 22 <?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element name="time"> <xs:complexType/> </xs:element> <xs:element name="day"> <xs:complexType/> </xs:element> <xs:element name="courseCode"> <xs:complexType mixed="true"> <xs:sequence> <xs:element ref="time"/> <xs:element ref="day"/> <xs:element ref="Instructor"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="arizonaCourses"> <xs:complexType> <xs:sequence> <xs:element ref="courseCode"/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="Instructor"> <xs:complexType/> </xs:element> </xs:schema> arizonaCourses courseCode day time place instructor
  • 23. A speculatively rooted tree for rRNA genes 23
  • 24. Schema Tree Benefit • Tree structure for a data model inherently supports the contextual meanings of the descendent nodes. 24 A B C S1 D A1 B1 C11 C1 S2 D D X A B C D S1 A1 B C11 C1 D D S2
  • 25. Element Level Clustering • Clustering helps in target search space optimization • Schema elements clustering based on label similarity 25 A B C A1 B1 C4 C1 A B C2 A1 B1 C3 C5 D D S1 S2 S3 Si Node Labels Similarity C ≈ C1 ≈ C2 ≈ C3 ≈ C4 ≈ C5 t1 t2 t3 t4 …… tn s1 s2 s3 s4 … sm a1 a2 a3 a4 … aq Typical matching scenario
  • 26. Tree Mining Aspect • Tree mining finds frequent sub-trees in a given set of trees; • similar to schema matching, which finds similar concepts among a set of schemas • Use of data structures supporting tree mining algorithms for schema matching is possible • Helps in handling Large Scale Scenario • Supports the context of nodes 26 computers Desktop notebook Software Desktop notepad
  • 27. Tree mining example • Element Level Matching (sub-tree size 1) • Structure Level Matching (sub-tree size > 1) 27 b a p n t n b a f n t p i n b d a f t p r a n h b t a n b t b p t ……
  • 29. Database Research Advances Reports • https://dsf.berkeley.edu/claremont/claremontreport08.pdf • https://beckman.cs.wisc.edu/beckman-report2013.pdf • https://link.springer.com/article/10.1007/s10796-017-9819-2 • https://sigmodrecord.org/publications/sigmodRecord/1912/pdfs/07_ Reports_Abadi.pdf Last one 2018 … • https://www.sciencedirect.com/science/article/pii/S0306437908000 15X • https://vldb.org/2021/?papers-research 29