This document presents a hybrid algorithm using biogeography-based optimization (BBO) and ant colony optimization (ACO) for land cover feature extraction from remote sensing images. The algorithm first analyzes a training image to identify features that BBO and ACO classify efficiently. It then applies BBO to clusters containing these features and ACO to remaining clusters. An evaluation shows the hybrid algorithm achieves a higher kappa coefficient of 0.97 compared to 0.67 for BBO alone, indicating better classification accuracy. The authors conclude the algorithm effectively handles uncertainties in remote sensing images and future work could improve efficiency further.