SlideShare a Scribd company logo
LAB05ex1.m
function LAB05ex1
m = 1; % mass [kg]
k = 4; % spring constant [N/m]
omega0=sqrt(k/m);
y0=0.1; v0=0; % initial conditions
[t,Y]=ode45(@f,[0,10],[y0,v0],[],omega0); % solve for 0<t<10
y=Y(:,1); v=Y(:,2); % retrieve y, v from Y
figure(1); plot(t,y,'b+-',t,v,'ro-'); % time series for y and v
grid on;
%------------------------------------------------------
function dYdt= f(t,Y,omega0)
y = Y(1); v= Y(2);
dYdt = [v; -omega0^2*y];
__MACOSX/._LAB05ex1.m
LAB05ex1a.m
function LAB05ex1a
m = 1; % mass [kg]
k = 4; % spring constant [N/m]
c = 1; % friction coefficient [Ns/m]
omega0 = sqrt(k/m); p = c/(2*m);
y0 = 0.1; v0 = 0; % initial conditions
[t,Y]=ode45(@f,[0,10],[y0,v0],[],omega0,p); % solve for
0<t<10
y=Y(:,1); v=Y(:,2); % retrieve y, v from Y
figure(1); plot(t,y,'b+-',t,v,'ro-'); % time series for y and v
grid on
%------------------------------------------------------
function dYdt= f(t,Y,omega0,p)
y = Y(1); v= Y(2);
dYdt = [v; ?? ]; % fill-in dv/dt
__MACOSX/._LAB05ex1a.m
MAT275_LAB05.pdf
MATLAB sessions: Laboratory 5
MAT 275 Laboratory 5
The Mass-Spring System
In this laboratory we will examine harmonic oscillation. We
will model the motion of a mass-spring
system with differential equations.
Our objectives are as follows:
1. Determine the effect of parameters on the solutions of
differential equations.
2. Determine the behavior of the mass-spring system from the
graph of the solution.
3. Determine the effect of the parameters on the behavior of the
mass-spring.
The primary MATLAB command used is the ode45 function.
Mass-Spring System without Damping
The motion of a mass suspended to a vertical spring can be
described as follows. When the spring is
not loaded it has length ℓ0 (situation (a)). When a mass m is
attached to its lower end it has length ℓ
(situation (b)). From the first principle of mechanics we then
obtain
mg︸︷︷︸
downward weight force
+ −k(ℓ − ℓ0)︸ ︷︷ ︸
upward tension force
= 0. (L5.1)
The term g measures the gravitational acceleration (g ≃ 9.8m/s2
≃ 32ft/s2). The quantity k is a spring
constant measuring its stiffness. We now pull downwards on the
mass by an amount y and let the mass
go (situation (c)). We expect the mass to oscillate around the
position y = 0. The second principle of
mechanics yields
mg︸︷︷︸
weight
+ −k(ℓ + y − ℓ0)︸ ︷︷ ︸
upward tension force
= m
d2(ℓ + y)
dt2︸ ︷︷ ︸
acceleration of mass
, i.e., m
d2y
dt2
+ ky = 0 (L5.2)
using (L5.1). This ODE is second-order.
(a) (b) (c) (d)
y
ℓ
ℓ0
m
k
γ
Equation (L5.2) is rewritten
d2y
dt2
+ ω20y = 0 (L5.3)
c⃝2011 Stefania Tracogna, SoMSS, ASU
MATLAB sessions: Laboratory 5
where ω20 = k/m. Equation (L5.3) models simple harmonic
motion. A numerical solution with ini-
tial conditions y(0) = 0.1 meter and y′(0) = 0 (i.e., the mass is
initially stretched downward 10cms
and released, see setting (c) in figure) is obtained by first
reducing the ODE to first-order ODEs (see
Laboratory 4).
Let v = y′. Then v′ = y′′ = −ω20y = −4y. Also v(0) = y′(0) = 0.
The following MATLAB program
implements the problem (with ω0 = 2).
function LAB05ex1
m = 1; % mass [kg]
k = 4; % spring constant [N/m]
omega0 = sqrt(k/m);
y0 = 0.1; v0 = 0; % initial conditions
[t,Y] = ode45(@f,[0,10],[y0,v0],[],omega0); % solve for 0<t<10
y = Y(:,1); v = Y(:,2); % retrieve y, v from Y
figure(1); plot(t,y,’b+-’,t,v,’ro-’); % time series for y and v
grid on;
%-----------------------------------------
function dYdt = f(t,Y,omega0)
y = Y(1); v = Y(2);
dYdt = [ v ; -omega0^2*y ];
Note that the parameter ω0 was passed as an argument to ode45
rather than set to its value ω0 = 2
directly in the function f. The advantage is that its value can
easily be changed in the driver part of the
program rather than in the function, for example when multiple
plots with different values of ω0 need
to be compared in a single MATLAB figure window.
0 1 2 3 4 5 6 7 8 9 10
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
0.15
0.2
Figure L5a: Harmonic motion
1. From the graph in Fig. L5a answer the following questions.
(a) Which curve represents y = y(t)? How do you know?
(b) What is the period of the motion? Answer this question first
graphically (by reading the
period from the graph) and then analytically (by finding the
period using ω0).
(c) We say that the mass comes to rest if, after a certain time,
the position of the mass remains
within an arbitrary small distance from the equilibrium position.
Will the mass ever come to
rest? Why?
c⃝2011 Stefania Tracogna, SoMSS, ASU
MATLAB sessions: Laboratory 5
(d) What is the amplitude of the oscillations for y?
(e) What is the maximum velocity (in magnitude) attained by
the mass, and when is it attained?
Make sure you give all the t-values at which the velocity is
maximum and the corresponding
maximum value. The t-values can be determined by magnifying
the MATLAB figure using
the magnify button , and by using the periodicity of the velocity
function.
(f) How does the size of the mass m and the stiffness k of the
spring affect the motion?
Support your answer first with a theoretical analysis on how ω0
– and therefore the period
of the oscillation – is related to m and k, and then graphically
by running LAB05ex1.m first
with m = 5 and k = 4 and then with m = 1 and k = 16. Include
the corresponding graphs.
2. The energy of the mass-spring system is given by the sum of
the potential energy and kinetic
energy. In absence of damping, the energy is conserved.
(a) Plot the quantity E = 1
2
mv2 + 1
2
ky2 as a function of time. What do you observe? (pay close
attention to the y-axis scale and, if necessary, use ylim to get a
better graph). Does the graph
confirm the fact that the energy is conserved?
(b) Show analytically that dE
dt
= 0.(Note that this proves that the energy is constant).
(c) Plot v vs y (phase plot). Does the curve ever get close to the
origin? Why or why not? What
does that mean for the mass-spring system?
Mass-Spring System with Damping
When the movement of the mass is damped due to viscous
effects (e.g., the mass moves in a cylinder
containing oil, situation (d)), an additional term proportional to
the velocity must be added. The
resulting equation becomes
m
d2y
dt2
+ c
dy
dt
+ ky = 0 or
d2y
dt2
+ 2p
dy
dt
+ ω20y = 0 (L5.4)
by setting p = c
2m
. The program LAB05ex1 is updated by modifying the function
f:
function LAB05ex1a
m = 1; % mass [kg]
k = 4; % spring constant [N/m]
c = 1; % friction coefficient [Ns/m]
omega0 = sqrt(k/m); p = c/(2*m);
y0 = 0.1; v0 = 0; % initial conditions
[t,Y] = ode45(@f,[0,10],[y0,v0],[],omega0,p); % solve for
0<t<10
y = Y(:,1); v = Y(:,2); % retrieve y, v from Y
figure(1); plot(t,y,’b+-’,t,v,’ro-’); % time series for y and v
grid on;
%-------------------------------------------
function dYdt = f(t,Y,omega0,p)
y = Y(1); v = Y(2);
dYdt = [ v ; ?? ]; % fill-in dv/dt
3. Fill in LAB05ex1a.m to reproduce Fig. L5b and then answer
the following questions.
(a) For what minimal time t1 will the mass-spring system
satisfy |y(t)| < 0.01 for all t > t1? You
can answer the question either by magnifying the MATLAB
figure using the magnify button
(include a graph that confirms your answer), or use the
following MATLAB commands
(explain):
c⃝2011 Stefania Tracogna, SoMSS, ASU
MATLAB sessions: Laboratory 5
0 1 2 3 4 5 6 7 8 9 10
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
0.15
0.2
y(t)
v(t)=y’(t)
Figure L5b: Damped harmonic motion
for i=1:length(y)
m(i)=max(abs(y(i:end)));
end
i = find(m<0.01); i = i(1);
disp([’|y|<0.01 for t>t1 with ’ num2str(t(i-1)) ’<t1<’
num2str(t(i))])
(b) What is the maximum (in magnitude) velocity attained by
the mass, and when is it attained?
Answer by using the magnify button and include the
corresponding picture.
(c) How does the size of c affect the motion? To support your
answer, run the file LAB05ex1.m
for c = 2, c = 4, c = 6 and c = 8. Include the corresponding
graphs with a title indicating
the value of c used.
(d) Determine analytically the smallest (critical) value of c such
that no oscillation appears in
the solution.
4. (a) Plot the quantity E = 1
2
mv2 + 1
2
ky2 as a function of time. What do you observe? Is the
energy conserved in this case?
(b) Show analytically that dE
dt
< 0 for c > 0 while dE
dt
> 0 for c < 0.
(c) Plot v vs y (phase plot). Comment on the behavior of the
curve in the context of the motion
of the spring. Does the graph ever get close to the origin? Why
or why not?
c⃝2011 Stefania Tracogna, SoMSS, ASU
__MACOSX/._MAT275_LAB05.pdf
Emerging Markets Case Study Format
a. Cover page
b. Executive Summary (Brief Teaching Case)
c. Table of Contents
1. Introduction
1.1 Case-context /Country Background
1.2 Current Situation Analysis
1.3 Research Question/Purpose of your review
1.4 How is the report structured
2. Institutional Factors affecting the Success/Failures in
Emerging Markets context
2.1 Formal Institutional Factors
2.2 Informal Institutional Factors
3. Organizational /Individual-level Factors affecting
Success/Failures in Emerging Markets context
3.1 Internal Tangible & Intangible Resources
3.2 Competencies
3.3 Dynamic Capabilities
3.4 Key Problems faced
4. Strategic Options & Analysis
5. Recommendations
6. Conclusion
7. References

More Related Content

Similar to LAB05ex1.mfunction LAB05ex1m = 1; .docx

Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
Springer
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
qedobose
 
Solution of matlab chapter 3
Solution of matlab chapter 3Solution of matlab chapter 3
Solution of matlab chapter 3
AhsanIrshad8
 
LAB #2Escape VelocityGoal Determine the initial veloc.docx
LAB #2Escape VelocityGoal Determine the initial veloc.docxLAB #2Escape VelocityGoal Determine the initial veloc.docx
LAB #2Escape VelocityGoal Determine the initial veloc.docx
DIPESH30
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
International Journal of Power Electronics and Drive Systems
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
DakotaFredericks
 
Ch35 ssm
Ch35 ssmCh35 ssm
Ch35 ssm
Marta Díaz
 
ECE 565 Project1
ECE 565 Project1ECE 565 Project1
ECE 565 Project1
?? ?
 
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptxModelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
KadiriIbrahim2
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
Cemal Ardil
 
Dynamics
DynamicsDynamics
Dynamics
nguyendattdh
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
CosmoAIMS Bassett
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
Keigo Nitadori
 
Use the same variable names and write the function F - Force(x-ks-kc-l.pdf
Use the same variable names and write the function F - Force(x-ks-kc-l.pdfUse the same variable names and write the function F - Force(x-ks-kc-l.pdf
Use the same variable names and write the function F - Force(x-ks-kc-l.pdf
acteleshoppe
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
JOAQUIN REA
 
Please use the same variables and only write the TODO part #!-usr-bi.pdf
Please use the same variables and only write the TODO part   #!-usr-bi.pdfPlease use the same variables and only write the TODO part   #!-usr-bi.pdf
Please use the same variables and only write the TODO part #!-usr-bi.pdf
asenterprisestyagi
 
Solutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdfSolutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdf
WaleedHussain30
 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
Filippo Campolmi
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09
志远 姚
 
Solutions fox
Solutions   foxSolutions   fox
Solutions fox
Arthur Lott Bezerra
 

Similar to LAB05ex1.mfunction LAB05ex1m = 1; .docx (20)

Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
 
Solution of matlab chapter 3
Solution of matlab chapter 3Solution of matlab chapter 3
Solution of matlab chapter 3
 
LAB #2Escape VelocityGoal Determine the initial veloc.docx
LAB #2Escape VelocityGoal Determine the initial veloc.docxLAB #2Escape VelocityGoal Determine the initial veloc.docx
LAB #2Escape VelocityGoal Determine the initial veloc.docx
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
 
Ch35 ssm
Ch35 ssmCh35 ssm
Ch35 ssm
 
ECE 565 Project1
ECE 565 Project1ECE 565 Project1
ECE 565 Project1
 
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptxModelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
Modelling using differnt metods in matlab2 (2) (2) (2) (4) (1) (1).pptx
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
 
Dynamics
DynamicsDynamics
Dynamics
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
 
Use the same variable names and write the function F - Force(x-ks-kc-l.pdf
Use the same variable names and write the function F - Force(x-ks-kc-l.pdfUse the same variable names and write the function F - Force(x-ks-kc-l.pdf
Use the same variable names and write the function F - Force(x-ks-kc-l.pdf
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
Please use the same variables and only write the TODO part #!-usr-bi.pdf
Please use the same variables and only write the TODO part   #!-usr-bi.pdfPlease use the same variables and only write the TODO part   #!-usr-bi.pdf
Please use the same variables and only write the TODO part #!-usr-bi.pdf
 
Solutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdfSolutions_Manual_to_accompany_Applied_Nu.pdf
Solutions_Manual_to_accompany_Applied_Nu.pdf
 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09
 
Solutions fox
Solutions   foxSolutions   fox
Solutions fox
 

More from smile790243

PART B Please response to these two original posts below. Wh.docx
PART B Please response to these two original posts below. Wh.docxPART B Please response to these two original posts below. Wh.docx
PART B Please response to these two original posts below. Wh.docx
smile790243
 
Part C Developing Your Design SolutionThe Production Cycle.docx
Part C Developing Your Design SolutionThe Production Cycle.docxPart C Developing Your Design SolutionThe Production Cycle.docx
Part C Developing Your Design SolutionThe Production Cycle.docx
smile790243
 
PART A You will create a media piece based around the theme of a.docx
PART A You will create a media piece based around the theme of a.docxPART A You will create a media piece based around the theme of a.docx
PART A You will create a media piece based around the theme of a.docx
smile790243
 
Part 4. Implications to Nursing Practice & Implication to Patien.docx
Part 4. Implications to Nursing Practice & Implication to Patien.docxPart 4. Implications to Nursing Practice & Implication to Patien.docx
Part 4. Implications to Nursing Practice & Implication to Patien.docx
smile790243
 
PART AHepatitis C is a chronic liver infection that can be e.docx
PART AHepatitis C is a chronic liver infection that can be e.docxPART AHepatitis C is a chronic liver infection that can be e.docx
PART AHepatitis C is a chronic liver infection that can be e.docx
smile790243
 
Part A post your answer to the following question1. How m.docx
Part A post your answer to the following question1. How m.docxPart A post your answer to the following question1. How m.docx
Part A post your answer to the following question1. How m.docx
smile790243
 
PART BPlease response to these two original posts below..docx
PART BPlease response to these two original posts below..docxPART BPlease response to these two original posts below..docx
PART BPlease response to these two original posts below..docx
smile790243
 
Part A (50 Points)Various men and women throughout history .docx
Part A (50 Points)Various men and women throughout history .docxPart A (50 Points)Various men and women throughout history .docx
Part A (50 Points)Various men and women throughout history .docx
smile790243
 
Part A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docx
Part A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docxPart A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docx
Part A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docx
smile790243
 
Part A Develop an original age-appropriate activity for your .docx
Part A Develop an original age-appropriate activity for your .docxPart A Develop an original age-appropriate activity for your .docx
Part A Develop an original age-appropriate activity for your .docx
smile790243
 
Part 3 Social Situations2. Identify multicultural challenges th.docx
Part 3 Social Situations2. Identify multicultural challenges th.docxPart 3 Social Situations2. Identify multicultural challenges th.docx
Part 3 Social Situations2. Identify multicultural challenges th.docx
smile790243
 
Part A (1000 words) Annotated Bibliography - Create an annota.docx
Part A (1000 words) Annotated Bibliography - Create an annota.docxPart A (1000 words) Annotated Bibliography - Create an annota.docx
Part A (1000 words) Annotated Bibliography - Create an annota.docx
smile790243
 
Part 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docx
Part 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docxPart 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docx
Part 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docx
smile790243
 
Part 3 Social Situations • Proposal paper which identifies multicul.docx
Part 3 Social Situations • Proposal paper which identifies multicul.docxPart 3 Social Situations • Proposal paper which identifies multicul.docx
Part 3 Social Situations • Proposal paper which identifies multicul.docx
smile790243
 
Part 3 Social Situations 2. Identify multicultural challenges that .docx
Part 3 Social Situations 2. Identify multicultural challenges that .docxPart 3 Social Situations 2. Identify multicultural challenges that .docx
Part 3 Social Situations 2. Identify multicultural challenges that .docx
smile790243
 
Part 2The client is a 32-year-old Hispanic American male who c.docx
Part 2The client is a 32-year-old Hispanic American male who c.docxPart 2The client is a 32-year-old Hispanic American male who c.docx
Part 2The client is a 32-year-old Hispanic American male who c.docx
smile790243
 
Part 2For this section of the template, focus on gathering deta.docx
Part 2For this section of the template, focus on gathering deta.docxPart 2For this section of the template, focus on gathering deta.docx
Part 2For this section of the template, focus on gathering deta.docx
smile790243
 
Part 2 Observation Summary and Analysis • Summary paper of observat.docx
Part 2 Observation Summary and Analysis • Summary paper of observat.docxPart 2 Observation Summary and Analysis • Summary paper of observat.docx
Part 2 Observation Summary and Analysis • Summary paper of observat.docx
smile790243
 
Part 2 Observation Summary and Analysis 1. Review and implement any.docx
Part 2 Observation Summary and Analysis 1. Review and implement any.docxPart 2 Observation Summary and Analysis 1. Review and implement any.docx
Part 2 Observation Summary and Analysis 1. Review and implement any.docx
smile790243
 
Part 2Data collectionfrom your change study initiative,.docx
Part 2Data collectionfrom your change study initiative,.docxPart 2Data collectionfrom your change study initiative,.docx
Part 2Data collectionfrom your change study initiative,.docx
smile790243
 

More from smile790243 (20)

PART B Please response to these two original posts below. Wh.docx
PART B Please response to these two original posts below. Wh.docxPART B Please response to these two original posts below. Wh.docx
PART B Please response to these two original posts below. Wh.docx
 
Part C Developing Your Design SolutionThe Production Cycle.docx
Part C Developing Your Design SolutionThe Production Cycle.docxPart C Developing Your Design SolutionThe Production Cycle.docx
Part C Developing Your Design SolutionThe Production Cycle.docx
 
PART A You will create a media piece based around the theme of a.docx
PART A You will create a media piece based around the theme of a.docxPART A You will create a media piece based around the theme of a.docx
PART A You will create a media piece based around the theme of a.docx
 
Part 4. Implications to Nursing Practice & Implication to Patien.docx
Part 4. Implications to Nursing Practice & Implication to Patien.docxPart 4. Implications to Nursing Practice & Implication to Patien.docx
Part 4. Implications to Nursing Practice & Implication to Patien.docx
 
PART AHepatitis C is a chronic liver infection that can be e.docx
PART AHepatitis C is a chronic liver infection that can be e.docxPART AHepatitis C is a chronic liver infection that can be e.docx
PART AHepatitis C is a chronic liver infection that can be e.docx
 
Part A post your answer to the following question1. How m.docx
Part A post your answer to the following question1. How m.docxPart A post your answer to the following question1. How m.docx
Part A post your answer to the following question1. How m.docx
 
PART BPlease response to these two original posts below..docx
PART BPlease response to these two original posts below..docxPART BPlease response to these two original posts below..docx
PART BPlease response to these two original posts below..docx
 
Part A (50 Points)Various men and women throughout history .docx
Part A (50 Points)Various men and women throughout history .docxPart A (50 Points)Various men and women throughout history .docx
Part A (50 Points)Various men and women throughout history .docx
 
Part A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docx
Part A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docxPart A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docx
Part A1. K2. D3. N4. C5. A6. O7. F8. Q9. H10..docx
 
Part A Develop an original age-appropriate activity for your .docx
Part A Develop an original age-appropriate activity for your .docxPart A Develop an original age-appropriate activity for your .docx
Part A Develop an original age-appropriate activity for your .docx
 
Part 3 Social Situations2. Identify multicultural challenges th.docx
Part 3 Social Situations2. Identify multicultural challenges th.docxPart 3 Social Situations2. Identify multicultural challenges th.docx
Part 3 Social Situations2. Identify multicultural challenges th.docx
 
Part A (1000 words) Annotated Bibliography - Create an annota.docx
Part A (1000 words) Annotated Bibliography - Create an annota.docxPart A (1000 words) Annotated Bibliography - Create an annota.docx
Part A (1000 words) Annotated Bibliography - Create an annota.docx
 
Part 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docx
Part 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docxPart 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docx
Part 6 Disseminating Results Create a 5-minute, 5- to 6-sli.docx
 
Part 3 Social Situations • Proposal paper which identifies multicul.docx
Part 3 Social Situations • Proposal paper which identifies multicul.docxPart 3 Social Situations • Proposal paper which identifies multicul.docx
Part 3 Social Situations • Proposal paper which identifies multicul.docx
 
Part 3 Social Situations 2. Identify multicultural challenges that .docx
Part 3 Social Situations 2. Identify multicultural challenges that .docxPart 3 Social Situations 2. Identify multicultural challenges that .docx
Part 3 Social Situations 2. Identify multicultural challenges that .docx
 
Part 2The client is a 32-year-old Hispanic American male who c.docx
Part 2The client is a 32-year-old Hispanic American male who c.docxPart 2The client is a 32-year-old Hispanic American male who c.docx
Part 2The client is a 32-year-old Hispanic American male who c.docx
 
Part 2For this section of the template, focus on gathering deta.docx
Part 2For this section of the template, focus on gathering deta.docxPart 2For this section of the template, focus on gathering deta.docx
Part 2For this section of the template, focus on gathering deta.docx
 
Part 2 Observation Summary and Analysis • Summary paper of observat.docx
Part 2 Observation Summary and Analysis • Summary paper of observat.docxPart 2 Observation Summary and Analysis • Summary paper of observat.docx
Part 2 Observation Summary and Analysis • Summary paper of observat.docx
 
Part 2 Observation Summary and Analysis 1. Review and implement any.docx
Part 2 Observation Summary and Analysis 1. Review and implement any.docxPart 2 Observation Summary and Analysis 1. Review and implement any.docx
Part 2 Observation Summary and Analysis 1. Review and implement any.docx
 
Part 2Data collectionfrom your change study initiative,.docx
Part 2Data collectionfrom your change study initiative,.docxPart 2Data collectionfrom your change study initiative,.docx
Part 2Data collectionfrom your change study initiative,.docx
 

Recently uploaded

Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
danielkiash986
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDFLifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Vivekanand Anglo Vedic Academy
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
deepaannamalai16
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
BoudhayanBhattachari
 
Bonku-Babus-Friend by Sathyajith Ray (9)
Bonku-Babus-Friend by Sathyajith Ray  (9)Bonku-Babus-Friend by Sathyajith Ray  (9)
Bonku-Babus-Friend by Sathyajith Ray (9)
nitinpv4ai
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
Celine George
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
imrankhan141184
 
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.pptLevel 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Henry Hollis
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
JomonJoseph58
 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
zuzanka
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
Nguyen Thanh Tu Collection
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 

Recently uploaded (20)

Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDFLifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
Lifelines of National Economy chapter for Class 10 STUDY MATERIAL PDF
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.HYPERTENSION - SLIDE SHARE PRESENTATION.
HYPERTENSION - SLIDE SHARE PRESENTATION.
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
 
Bonku-Babus-Friend by Sathyajith Ray (9)
Bonku-Babus-Friend by Sathyajith Ray  (9)Bonku-Babus-Friend by Sathyajith Ray  (9)
Bonku-Babus-Friend by Sathyajith Ray (9)
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
How to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 InventoryHow to Setup Warehouse & Location in Odoo 17 Inventory
How to Setup Warehouse & Location in Odoo 17 Inventory
 
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
Traditional Musical Instruments of Arunachal Pradesh and Uttar Pradesh - RAYH...
 
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.pptLevel 3 NCEA - NZ: A  Nation In the Making 1872 - 1900 SML.ppt
Level 3 NCEA - NZ: A Nation In the Making 1872 - 1900 SML.ppt
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 

LAB05ex1.mfunction LAB05ex1m = 1; .docx

  • 1. LAB05ex1.m function LAB05ex1 m = 1; % mass [kg] k = 4; % spring constant [N/m] omega0=sqrt(k/m); y0=0.1; v0=0; % initial conditions [t,Y]=ode45(@f,[0,10],[y0,v0],[],omega0); % solve for 0<t<10 y=Y(:,1); v=Y(:,2); % retrieve y, v from Y figure(1); plot(t,y,'b+-',t,v,'ro-'); % time series for y and v grid on; %------------------------------------------------------ function dYdt= f(t,Y,omega0) y = Y(1); v= Y(2); dYdt = [v; -omega0^2*y]; __MACOSX/._LAB05ex1.m LAB05ex1a.m function LAB05ex1a m = 1; % mass [kg]
  • 2. k = 4; % spring constant [N/m] c = 1; % friction coefficient [Ns/m] omega0 = sqrt(k/m); p = c/(2*m); y0 = 0.1; v0 = 0; % initial conditions [t,Y]=ode45(@f,[0,10],[y0,v0],[],omega0,p); % solve for 0<t<10 y=Y(:,1); v=Y(:,2); % retrieve y, v from Y figure(1); plot(t,y,'b+-',t,v,'ro-'); % time series for y and v grid on %------------------------------------------------------ function dYdt= f(t,Y,omega0,p) y = Y(1); v= Y(2); dYdt = [v; ?? ]; % fill-in dv/dt __MACOSX/._LAB05ex1a.m MAT275_LAB05.pdf MATLAB sessions: Laboratory 5 MAT 275 Laboratory 5 The Mass-Spring System
  • 3. In this laboratory we will examine harmonic oscillation. We will model the motion of a mass-spring system with differential equations. Our objectives are as follows: 1. Determine the effect of parameters on the solutions of differential equations. 2. Determine the behavior of the mass-spring system from the graph of the solution. 3. Determine the effect of the parameters on the behavior of the mass-spring. The primary MATLAB command used is the ode45 function. Mass-Spring System without Damping The motion of a mass suspended to a vertical spring can be described as follows. When the spring is not loaded it has length ℓ0 (situation (a)). When a mass m is attached to its lower end it has length ℓ (situation (b)). From the first principle of mechanics we then obtain mg︸︷︷︸ downward weight force + −k(ℓ − ℓ0)︸ ︷︷ ︸ upward tension force = 0. (L5.1) The term g measures the gravitational acceleration (g ≃ 9.8m/s2 ≃ 32ft/s2). The quantity k is a spring
  • 4. constant measuring its stiffness. We now pull downwards on the mass by an amount y and let the mass go (situation (c)). We expect the mass to oscillate around the position y = 0. The second principle of mechanics yields mg︸︷︷︸ weight + −k(ℓ + y − ℓ0)︸ ︷︷ ︸ upward tension force = m d2(ℓ + y) dt2︸ ︷︷ ︸ acceleration of mass , i.e., m d2y dt2 + ky = 0 (L5.2) using (L5.1). This ODE is second-order. (a) (b) (c) (d) y ℓ ℓ0 m
  • 5. k γ Equation (L5.2) is rewritten d2y dt2 + ω20y = 0 (L5.3) c⃝2011 Stefania Tracogna, SoMSS, ASU MATLAB sessions: Laboratory 5 where ω20 = k/m. Equation (L5.3) models simple harmonic motion. A numerical solution with ini- tial conditions y(0) = 0.1 meter and y′(0) = 0 (i.e., the mass is initially stretched downward 10cms and released, see setting (c) in figure) is obtained by first reducing the ODE to first-order ODEs (see Laboratory 4). Let v = y′. Then v′ = y′′ = −ω20y = −4y. Also v(0) = y′(0) = 0. The following MATLAB program implements the problem (with ω0 = 2). function LAB05ex1 m = 1; % mass [kg] k = 4; % spring constant [N/m] omega0 = sqrt(k/m);
  • 6. y0 = 0.1; v0 = 0; % initial conditions [t,Y] = ode45(@f,[0,10],[y0,v0],[],omega0); % solve for 0<t<10 y = Y(:,1); v = Y(:,2); % retrieve y, v from Y figure(1); plot(t,y,’b+-’,t,v,’ro-’); % time series for y and v grid on; %----------------------------------------- function dYdt = f(t,Y,omega0) y = Y(1); v = Y(2); dYdt = [ v ; -omega0^2*y ]; Note that the parameter ω0 was passed as an argument to ode45 rather than set to its value ω0 = 2 directly in the function f. The advantage is that its value can easily be changed in the driver part of the program rather than in the function, for example when multiple plots with different values of ω0 need to be compared in a single MATLAB figure window. 0 1 2 3 4 5 6 7 8 9 10 −0.2 −0.15 −0.1 −0.05 0
  • 7. 0.05 0.1 0.15 0.2 Figure L5a: Harmonic motion 1. From the graph in Fig. L5a answer the following questions. (a) Which curve represents y = y(t)? How do you know? (b) What is the period of the motion? Answer this question first graphically (by reading the period from the graph) and then analytically (by finding the period using ω0). (c) We say that the mass comes to rest if, after a certain time, the position of the mass remains within an arbitrary small distance from the equilibrium position. Will the mass ever come to rest? Why? c⃝2011 Stefania Tracogna, SoMSS, ASU MATLAB sessions: Laboratory 5 (d) What is the amplitude of the oscillations for y? (e) What is the maximum velocity (in magnitude) attained by the mass, and when is it attained?
  • 8. Make sure you give all the t-values at which the velocity is maximum and the corresponding maximum value. The t-values can be determined by magnifying the MATLAB figure using the magnify button , and by using the periodicity of the velocity function. (f) How does the size of the mass m and the stiffness k of the spring affect the motion? Support your answer first with a theoretical analysis on how ω0 – and therefore the period of the oscillation – is related to m and k, and then graphically by running LAB05ex1.m first with m = 5 and k = 4 and then with m = 1 and k = 16. Include the corresponding graphs. 2. The energy of the mass-spring system is given by the sum of the potential energy and kinetic energy. In absence of damping, the energy is conserved. (a) Plot the quantity E = 1 2 mv2 + 1 2 ky2 as a function of time. What do you observe? (pay close attention to the y-axis scale and, if necessary, use ylim to get a better graph). Does the graph confirm the fact that the energy is conserved? (b) Show analytically that dE dt = 0.(Note that this proves that the energy is constant).
  • 9. (c) Plot v vs y (phase plot). Does the curve ever get close to the origin? Why or why not? What does that mean for the mass-spring system? Mass-Spring System with Damping When the movement of the mass is damped due to viscous effects (e.g., the mass moves in a cylinder containing oil, situation (d)), an additional term proportional to the velocity must be added. The resulting equation becomes m d2y dt2 + c dy dt + ky = 0 or d2y dt2 + 2p dy dt + ω20y = 0 (L5.4) by setting p = c 2m
  • 10. . The program LAB05ex1 is updated by modifying the function f: function LAB05ex1a m = 1; % mass [kg] k = 4; % spring constant [N/m] c = 1; % friction coefficient [Ns/m] omega0 = sqrt(k/m); p = c/(2*m); y0 = 0.1; v0 = 0; % initial conditions [t,Y] = ode45(@f,[0,10],[y0,v0],[],omega0,p); % solve for 0<t<10 y = Y(:,1); v = Y(:,2); % retrieve y, v from Y figure(1); plot(t,y,’b+-’,t,v,’ro-’); % time series for y and v grid on; %------------------------------------------- function dYdt = f(t,Y,omega0,p) y = Y(1); v = Y(2); dYdt = [ v ; ?? ]; % fill-in dv/dt 3. Fill in LAB05ex1a.m to reproduce Fig. L5b and then answer the following questions.
  • 11. (a) For what minimal time t1 will the mass-spring system satisfy |y(t)| < 0.01 for all t > t1? You can answer the question either by magnifying the MATLAB figure using the magnify button (include a graph that confirms your answer), or use the following MATLAB commands (explain): c⃝2011 Stefania Tracogna, SoMSS, ASU MATLAB sessions: Laboratory 5 0 1 2 3 4 5 6 7 8 9 10 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 y(t) v(t)=y’(t)
  • 12. Figure L5b: Damped harmonic motion for i=1:length(y) m(i)=max(abs(y(i:end))); end i = find(m<0.01); i = i(1); disp([’|y|<0.01 for t>t1 with ’ num2str(t(i-1)) ’<t1<’ num2str(t(i))]) (b) What is the maximum (in magnitude) velocity attained by the mass, and when is it attained? Answer by using the magnify button and include the corresponding picture. (c) How does the size of c affect the motion? To support your answer, run the file LAB05ex1.m for c = 2, c = 4, c = 6 and c = 8. Include the corresponding graphs with a title indicating the value of c used. (d) Determine analytically the smallest (critical) value of c such that no oscillation appears in the solution. 4. (a) Plot the quantity E = 1 2 mv2 + 1 2 ky2 as a function of time. What do you observe? Is the energy conserved in this case?
  • 13. (b) Show analytically that dE dt < 0 for c > 0 while dE dt > 0 for c < 0. (c) Plot v vs y (phase plot). Comment on the behavior of the curve in the context of the motion of the spring. Does the graph ever get close to the origin? Why or why not? c⃝2011 Stefania Tracogna, SoMSS, ASU __MACOSX/._MAT275_LAB05.pdf Emerging Markets Case Study Format a. Cover page b. Executive Summary (Brief Teaching Case) c. Table of Contents 1. Introduction 1.1 Case-context /Country Background 1.2 Current Situation Analysis 1.3 Research Question/Purpose of your review 1.4 How is the report structured 2. Institutional Factors affecting the Success/Failures in Emerging Markets context 2.1 Formal Institutional Factors 2.2 Informal Institutional Factors
  • 14. 3. Organizational /Individual-level Factors affecting Success/Failures in Emerging Markets context 3.1 Internal Tangible & Intangible Resources 3.2 Competencies 3.3 Dynamic Capabilities 3.4 Key Problems faced 4. Strategic Options & Analysis 5. Recommendations 6. Conclusion 7. References