SlideShare a Scribd company logo
1
Data Engineering and Data Analysis Workshop #2
⾃⼰紹介
2
和⽥計也(WADA Kazuya)
#好きな⾷べ物は特に梨
#趣味はバンジージャンプ
#筑波⼤学⼤学院
#⽣命環境科学研究科 #情報⽣物学専攻
# ⼤⼿総合電機メーカー
# データ分析受託 #研究⽀援ソフトウェア開発
# 2011年〜 サイバーエージェント 秋葉原ラボ
# データ分析業務
会社概要
3
✓株式会社サイバーエージェント CyberAgent Inc.
✓設⽴ 1998年3⽉18⽇(サイバーの⽇)
✓本社 東京都渋⾕区
✓代表取締役 藤⽥晋 (福井県鯖江市出⾝)
✓売上⾼ 3,106億円 (2016年9⽉期連結)
✓従業員数 3,971⼈ (2016年9⽉期連結)
✓事業内容 メディア事業(Ameba)
        インターネット広告事業
        ゲーム事業
       投資育成事業
 メディア事業とは
4
インターネット広告事業
広告代理事業
⾃社広告商品
(アドテク)
など
ゲーム事業
など
ここら辺を担当
メディア事業
など
 メディア統括本部運営サービス
5
A 2
1 A
1 A
1 A 4 73
1 A
1 A 5
※1
※3
※2
※4
※5
秋葉原ラボについて
6
私はここの話
推薦
フィルタリング
監視
ユーザ⾏動分析
レポーティング
広告配信
:
ユーザ
⾏動ログ
記事
データ
番組視聴
ログ
 カップリングユニオンの紹介
7
 今夜はタップル誕⽣の話
8
 タップル誕⽣が好調
9
趣味で繋がるタップル誕⽣
10
タップル誕⽣の仕組み
11
タップル誕⽣の課⾦
12
13
ここから本題です
KPIとKGIとは?
14
KGI:
Key Goal Indicator
最終⽬標が達成されて
いるかを計測するため
の指標。ビジネスの場
合、普通は売上⾼。
KPI:
Key Performance
Indicator
最終⽬標を達成する
ための過程を計測す
るための中間指標。
KPIツリー
15
KGI
KPI1 KPI2 KPI3
⽊みたいじゃん
KPIツリー
16
売上
UU 課⾦率 単価
じゃ(い)あ(んとぱんだ)
UU上げて課⾦率も上げて
単価も上がればいいね!
そんなに単純じゃないKPIツリー
17
•顧客単価上げたら課⾦率下がっちゃった
•顧客単価を上げるために⾼価格帯商品を充実させたため
  低課⾦ユーザが無課⾦化
•課⾦率上げたらアクティブユーザ数下がっちゃった
•課⾦しないと全然楽しめない仕組みにしちゃっため
  無課⾦ユーザが離脱
KPI間の関係性を知っておかないと爆死
KPIツリーの例
18
KPIが増えすぎちゃうと
何を重点的に⾒るべきか迷⼦になっちゃう
複雑な関係
19
KPI同⼠の関係性が
わかるといいのに!!
構造⽅程式モデリングの説明
20
構造法的式モデリングとは、重回帰分析や因⼦分析、パス解析など
の機能を併せ持つ統合⼿法
社会貢献
リスク管理
法令遵守
経常利益
売上⾼増価額
株主資本利益率
部⻑最年少昇格年齢
⾮正社員向制度
中途採⽤者⽐率
売上⾼研究開発費⽐率
知財管理
研究開発者⽐率
柔軟性・
社会性
収益・
成⻑⼒
開発・
研究
若さ
優れた会社
識者の総合評価
記者の総合評価
記者の経営者評価
10.4%
52.2%
誤差
3.6%
3.0%
適合度:0.808
30.9%
構造⽅程式モデリングの説明
21
構造法的式モデリングとは、重回帰分析や因⼦分析、パス解析など
の機能を併せ持つ統合⼿法
社会貢献
リスク管理
法令遵守
経常利益
売上⾼増価額
株主資本利益率
部⻑最年少昇格年齢
⾮正社員向制度
中途採⽤者⽐率
売上⾼研究開発費⽐率
知財管理
研究開発者⽐率
柔軟性・
社会性
収益・
成⻑⼒
開発・
研究
若さ
優れた会社
識者の総合評価
記者の総合評価
記者の経営者評価
10.4%
52.2%
誤差
3.6%
3.0%
適合度:0.808
30.9%
測定
⽅程式
観測
変数
構造⽅程式
構成概念
構造⽅程式モデリングの実施
22
•SPSS AMOS
•MPlus
•Rのlavaanパッケージ
library(lavaan)
dat <- read.csv(‘your csv file’)
sem.mdl <- "
monthly_billing ~ MAU_male + spend_ratio
spend_ratio ~ MAU_male
“
sem.fit <- sem(sem.mdl, dat)
summary(sem.fit, standardized = TRUE)
基本型
23
売上
男MAU 男課⾦率
0.71*** 0.46***
0.39*
適合度:1.00
⼥性登場型
24
売上
男MAU 男課⾦率
0.71*** 0.46***
-1.89**
⼥MAU
2.35***
0.97***
適合度:0.99
男⼥MAU分解型
25
売上
男MAU 男課⾦率
0.63*** 0.52***
-1.46**
⼥MAU
2.03***
0.96***
男新規数
男既存
継続率 0.01
0.19***0.46*
⼥新規数 ⼥既存
継続率
0.82*** 0.29***
0.27
適合度:0.68
男課⾦タイプ分解型
26
売上
男MAU 男課⾦率
0.88*** 0.61***
-0.56*
⼥MAU
0.36
0.96***
男新規数
男既存
継続率
0.01
0.19***0.46*
⼥新規数 ⼥既存
継続率
0.82*** 0.29***
0.27
男新規
新規課⾦率
男既存
新規課⾦率
男既存
継続課⾦率
適合度:0.64
0.71***
0.23*
0.19*
0.54*0.09
0.45**
0.63***
課⾦タイプ男⼥マッチング分解型
27
売上
男MAU 男課⾦率
0.64***
0.53***
-0.23*
⼥MAU 0.89***
0.96***
男新規数
男既存
継続率
0.01
0.19***0.33*
⼥新規数
⼥既存
継続率
0.82***
0.29***
0.27
男新規
新規課⾦率
男既存
新規課⾦率
男既存
継続課⾦率
適合度:0.70
0.18 0.16*
-0.36***
0.73***
0.10
0.15
0.57***
0.16
0.28* -0.38**
0.49*
0.64**
まとめ
28
⼥性の新規数が(いろんなKPI上昇に)⼤事!!

More Related Content

What's hot

はじめてのPRD
はじめてのPRDはじめてのPRD
はじめてのPRD
Takuya Oikawa
 
テスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるなテスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるな
Kentaro Matsui
 
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
Tokoroten Nakayama
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
Shota Imai
 
投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法
投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法
投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法
Takaaki Umada
 
新分野に飛び入って半年で業績を作るには
新分野に飛び入って半年で業績を作るには新分野に飛び入って半年で業績を作るには
新分野に飛び入って半年で業績を作るには
Asai Masataro
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有
Naoaki Okazaki
 
Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析
Hiroaki Sengoku
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
Takayuki Itoh
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
数理最適化とPython
数理最適化とPython数理最適化とPython
数理最適化とPython
Yosuke Onoue
 
自己紹介スライドショー201606
自己紹介スライドショー201606自己紹介スライドショー201606
自己紹介スライドショー201606
LEFT HAND RULE
 
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
Tokoroten Nakayama
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
智之 村上
 
ゼロから始める自然言語処理 【FIT2016チュートリアル】
ゼロから始める自然言語処理 【FIT2016チュートリアル】ゼロから始める自然言語処理 【FIT2016チュートリアル】
ゼロから始める自然言語処理 【FIT2016チュートリアル】
Yuki Arase
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
Yoichi Ochiai
 
ビジネスパーソンのためのDX入門講座エッセンス版
ビジネスパーソンのためのDX入門講座エッセンス版ビジネスパーソンのためのDX入門講座エッセンス版
ビジネスパーソンのためのDX入門講座エッセンス版
Tokoroten Nakayama
 
For MANABIYA
For MANABIYAFor MANABIYA
For MANABIYA
ssuserafaae8
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 

What's hot (20)

はじめてのPRD
はじめてのPRDはじめてのPRD
はじめてのPRD
 
テスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるなテスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるな
 
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
 
投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法
投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法
投資家向けピッチ練習は30秒か2分かデモでお願いします スタートアップのシード段階におけるピッチの構成の方法
 
新分野に飛び入って半年で業績を作るには
新分野に飛び入って半年で業績を作るには新分野に飛び入って半年で業績を作るには
新分野に飛び入って半年で業績を作るには
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有
 
Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析Pythonではじめるロケーションデータ解析
Pythonではじめるロケーションデータ解析
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
 
数理最適化とPython
数理最適化とPython数理最適化とPython
数理最適化とPython
 
自己紹介スライドショー201606
自己紹介スライドショー201606自己紹介スライドショー201606
自己紹介スライドショー201606
 
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 
ゼロから始める自然言語処理 【FIT2016チュートリアル】
ゼロから始める自然言語処理 【FIT2016チュートリアル】ゼロから始める自然言語処理 【FIT2016チュートリアル】
ゼロから始める自然言語処理 【FIT2016チュートリアル】
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
 
ビジネスパーソンのためのDX入門講座エッセンス版
ビジネスパーソンのためのDX入門講座エッセンス版ビジネスパーソンのためのDX入門講座エッセンス版
ビジネスパーソンのためのDX入門講座エッセンス版
 
For MANABIYA
For MANABIYAFor MANABIYA
For MANABIYA
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
 

Viewers also liked

アドテクスタジオのデータ分析基盤について
アドテクスタジオのデータ分析基盤についてアドテクスタジオのデータ分析基盤について
アドテクスタジオのデータ分析基盤について
kazuhiro ito
 
最新版Hadoopクラスタを運用して得られたもの
最新版Hadoopクラスタを運用して得られたもの最新版Hadoopクラスタを運用して得られたもの
最新版Hadoopクラスタを運用して得られたもの
cyberagent
 
AbemaTV モバイルアプリの開発体制と開発プロセスの話
AbemaTV モバイルアプリの開発体制と開発プロセスの話AbemaTV モバイルアプリの開発体制と開発プロセスの話
AbemaTV モバイルアプリの開発体制と開発プロセスの話
Yuji Hato
 
AbemaTV デザインのBefore & After
AbemaTV デザインのBefore & AfterAbemaTV デザインのBefore & After
AbemaTV デザインのBefore & After
Shunsuke Matsumoto
 
広告プラットフォーム立ち上げ百鬼夜行
広告プラットフォーム立ち上げ百鬼夜行広告プラットフォーム立ち上げ百鬼夜行
広告プラットフォーム立ち上げ百鬼夜行
Takahiro Ogoshi
 
Jap2017 ss65 優しいベイズ統計への導入法
Jap2017 ss65 優しいベイズ統計への導入法Jap2017 ss65 優しいベイズ統計への導入法
Jap2017 ss65 優しいベイズ統計への導入法
考司 小杉
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスLyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Kosetsu Tsukuda
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
STAIR Lab, Chiba Institute of Technology
 
日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"
日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"
日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"
Shinnosuke Takamichi
 
VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0
VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0
VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0
Michitaka Yumoto
 
Amebaにおけるレコメンデーションシステムの紹介
Amebaにおけるレコメンデーションシステムの紹介Amebaにおけるレコメンデーションシステムの紹介
Amebaにおけるレコメンデーションシステムの紹介
cyberagent
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
takehikoihayashi
 
Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側
Cloudera Japan
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani
 
Jaccard係数の計算式と特徴(1)
Jaccard係数の計算式と特徴(1)Jaccard係数の計算式と特徴(1)
Jaccard係数の計算式と特徴(1)
khcoder
 
最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く
shindannin
 
ミリシタを支える GAE/Go
ミリシタを支える GAE/Goミリシタを支える GAE/Go
ミリシタを支える GAE/Go
Google Cloud Platform - Japan
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
Masahiro Suzuki
 
If文から機械学習への道
If文から機械学習への道If文から機械学習への道
If文から機械学習への道
nishio
 
シリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのかシリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのか
Atsushi Nakada
 

Viewers also liked (20)

アドテクスタジオのデータ分析基盤について
アドテクスタジオのデータ分析基盤についてアドテクスタジオのデータ分析基盤について
アドテクスタジオのデータ分析基盤について
 
最新版Hadoopクラスタを運用して得られたもの
最新版Hadoopクラスタを運用して得られたもの最新版Hadoopクラスタを運用して得られたもの
最新版Hadoopクラスタを運用して得られたもの
 
AbemaTV モバイルアプリの開発体制と開発プロセスの話
AbemaTV モバイルアプリの開発体制と開発プロセスの話AbemaTV モバイルアプリの開発体制と開発プロセスの話
AbemaTV モバイルアプリの開発体制と開発プロセスの話
 
AbemaTV デザインのBefore & After
AbemaTV デザインのBefore & AfterAbemaTV デザインのBefore & After
AbemaTV デザインのBefore & After
 
広告プラットフォーム立ち上げ百鬼夜行
広告プラットフォーム立ち上げ百鬼夜行広告プラットフォーム立ち上げ百鬼夜行
広告プラットフォーム立ち上げ百鬼夜行
 
Jap2017 ss65 優しいベイズ統計への導入法
Jap2017 ss65 優しいベイズ統計への導入法Jap2017 ss65 優しいベイズ統計への導入法
Jap2017 ss65 優しいベイズ統計への導入法
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスLyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
 
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
多腕バンディット問題: 定式化と応用 (第13回ステアラボ人工知能セミナー)
 
日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"
日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"
日本音響学会2017秋 ビギナーズセミナー "深層学習を深く学習するための基礎"
 
VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0
VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0
VentureCafe_第2回:SIerでのキャリアパスを考える_ござ先輩発表資料 V1.0
 
Amebaにおけるレコメンデーションシステムの紹介
Amebaにおけるレコメンデーションシステムの紹介Amebaにおけるレコメンデーションシステムの紹介
Amebaにおけるレコメンデーションシステムの紹介
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
 
Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
Jaccard係数の計算式と特徴(1)
Jaccard係数の計算式と特徴(1)Jaccard係数の計算式と特徴(1)
Jaccard係数の計算式と特徴(1)
 
最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く
 
ミリシタを支える GAE/Go
ミリシタを支える GAE/Goミリシタを支える GAE/Go
ミリシタを支える GAE/Go
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
 
If文から機械学習への道
If文から機械学習への道If文から機械学習への道
If文から機械学習への道
 
シリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのかシリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのか
 

Similar to マッチングサービスにおけるKPIの話

Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ
Kenji Noguchi
 
杉並診断士会向けKintoneご紹介コンテンツr2
杉並診断士会向けKintoneご紹介コンテンツr2杉並診断士会向けKintoneご紹介コンテンツr2
杉並診断士会向けKintoneご紹介コンテンツr2
junji kumooka
 
エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?
エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?
エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?
BrainPad Inc.
 
Yappli customer success-rd-event_190725_share
Yappli customer success-rd-event_190725_shareYappli customer success-rd-event_190725_share
Yappli customer success-rd-event_190725_share
Masashi Ichikawa
 
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
Leading Edge Co.,Ltd.
 
楽天のデータサイエンティスト@SAS Forum 2019
楽天のデータサイエンティスト@SAS Forum 2019楽天のデータサイエンティスト@SAS Forum 2019
楽天のデータサイエンティスト@SAS Forum 2019
Rakuten Group, Inc.
 
AI学習データ作成支援サービス”Annotation One”のご紹介.pdf
AI学習データ作成支援サービス”Annotation One”のご紹介.pdfAI学習データ作成支援サービス”Annotation One”のご紹介.pdf
AI学習データ作成支援サービス”Annotation One”のご紹介.pdf
Nakashima @Global Walkers
 
「R」による従業員満足度調査(ES)事例
「R」による従業員満足度調査(ES)事例「R」による従業員満足度調査(ES)事例
「R」による従業員満足度調査(ES)事例
良治 富田
 
楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用
Rakuten Group, Inc.
 
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
Rakuten Group, Inc.
 
Photon Enterprise Cloud 事例
Photon Enterprise Cloud 事例Photon Enterprise Cloud 事例
Photon Enterprise Cloud 事例
Tomotsune Murata
 
AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部
AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部
AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部
Sumio Ebisawa
 
全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり
全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり
全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり
Masakazu Matsushita
 
情報処理学会 AI tech talk Ridge-i
情報処理学会 AI tech talk Ridge-i情報処理学会 AI tech talk Ridge-i
情報処理学会 AI tech talk Ridge-i
Ridge-i
 
ディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Day
ディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Dayディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Day
ディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Day
Deep Learning Lab(ディープラーニング・ラボ)
 
高田工業所はcybozuになれるのか?
高田工業所はcybozuになれるのか?高田工業所はcybozuになれるのか?
高田工業所はcybozuになれるのか?
Cybozucommunity
 
180507 rpa community_walt_fix_open
180507 rpa community_walt_fix_open180507 rpa community_walt_fix_open
180507 rpa community_walt_fix_open
Hironobu Tsuji
 
TechTarget新サービス
TechTarget新サービスTechTarget新サービス
TechTarget新サービス
リード研究所 / Lead Lab
 
20180826 learn languages 2018 in odc
20180826 learn languages 2018 in odc20180826 learn languages 2018 in odc
20180826 learn languages 2018 in odc
TakayukiTakahashi4
 

Similar to マッチングサービスにおけるKPIの話 (20)

Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ
 
杉並診断士会向けKintoneご紹介コンテンツr2
杉並診断士会向けKintoneご紹介コンテンツr2杉並診断士会向けKintoneご紹介コンテンツr2
杉並診断士会向けKintoneご紹介コンテンツr2
 
エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?
エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?
エンジニア勉強会資料_①ブレインパッドの中で僕たちは何を開発しているのか?
 
Yappli customer success-rd-event_190725_share
Yappli customer success-rd-event_190725_shareYappli customer success-rd-event_190725_share
Yappli customer success-rd-event_190725_share
 
Tdc 20181121
Tdc 20181121Tdc 20181121
Tdc 20181121
 
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク  榊 剛史
「今後現場で求められるAIエンジニア像とは?」株式会社ホットリンク 榊 剛史
 
楽天のデータサイエンティスト@SAS Forum 2019
楽天のデータサイエンティスト@SAS Forum 2019楽天のデータサイエンティスト@SAS Forum 2019
楽天のデータサイエンティスト@SAS Forum 2019
 
AI学習データ作成支援サービス”Annotation One”のご紹介.pdf
AI学習データ作成支援サービス”Annotation One”のご紹介.pdfAI学習データ作成支援サービス”Annotation One”のご紹介.pdf
AI学習データ作成支援サービス”Annotation One”のご紹介.pdf
 
「R」による従業員満足度調査(ES)事例
「R」による従業員満足度調査(ES)事例「R」による従業員満足度調査(ES)事例
「R」による従業員満足度調査(ES)事例
 
楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用
 
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
 
Photon Enterprise Cloud 事例
Photon Enterprise Cloud 事例Photon Enterprise Cloud 事例
Photon Enterprise Cloud 事例
 
AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部
AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部
AdTruthが生み出すGoogle アナリティクス プレミアムの新しい活用方法 第1部
 
全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり
全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり
全世界6,500万DL突破!ヒットゲームを作り上げたチームの道のり
 
情報処理学会 AI tech talk Ridge-i
情報処理学会 AI tech talk Ridge-i情報処理学会 AI tech talk Ridge-i
情報処理学会 AI tech talk Ridge-i
 
ディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Day
ディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Dayディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Day
ディープラーニング開発組織のつくり方と運営ノウハウ_DLLAB Case Study Day
 
高田工業所はcybozuになれるのか?
高田工業所はcybozuになれるのか?高田工業所はcybozuになれるのか?
高田工業所はcybozuになれるのか?
 
180507 rpa community_walt_fix_open
180507 rpa community_walt_fix_open180507 rpa community_walt_fix_open
180507 rpa community_walt_fix_open
 
TechTarget新サービス
TechTarget新サービスTechTarget新サービス
TechTarget新サービス
 
20180826 learn languages 2018 in odc
20180826 learn languages 2018 in odc20180826 learn languages 2018 in odc
20180826 learn languages 2018 in odc
 

More from cyberagent

WWW2019で見るモバイルコンピューティングの技術と動向 山本悠ニ
WWW2019で見るモバイルコンピューティングの技術と動向    山本悠ニWWW2019で見るモバイルコンピューティングの技術と動向    山本悠ニ
WWW2019で見るモバイルコンピューティングの技術と動向 山本悠ニ
cyberagent
 
Web フィルタリング最前線: 「「検閲回避」回避」 角田孝昭
Web フィルタリング最前線: 「「検閲回避」回避」    角田孝昭Web フィルタリング最前線: 「「検閲回避」回避」    角田孝昭
Web フィルタリング最前線: 「「検閲回避」回避」 角田孝昭
cyberagent
 
WebにおけるHuman Dynamics 武内慎
WebにおけるHuman Dynamics    武内慎WebにおけるHuman Dynamics    武内慎
WebにおけるHuman Dynamics 武内慎
cyberagent
 
Webと経済学 數見拓朗
Webと経済学    數見拓朗Webと経済学    數見拓朗
Webと経済学 數見拓朗
cyberagent
 
Data Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組み
Data Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組みData Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組み
Data Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組み
cyberagent
 
継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話
継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話
継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話
cyberagent
 
AbemaTVにおける推薦システム
AbemaTVにおける推薦システムAbemaTVにおける推薦システム
AbemaTVにおける推薦システム
cyberagent
 
AbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポート
AbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポートAbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポート
AbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポート
cyberagent
 
機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜
機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜
機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜
cyberagent
 
インターネットテレビ局「AbemaTV」プロダクトの変遷
インターネットテレビ局「AbemaTV」プロダクトの変遷インターネットテレビ局「AbemaTV」プロダクトの変遷
インターネットテレビ局「AbemaTV」プロダクトの変遷
cyberagent
 
番組宣伝に関するAbemaTV分析事例の紹介
番組宣伝に関するAbemaTV分析事例の紹介番組宣伝に関するAbemaTV分析事例の紹介
番組宣伝に関するAbemaTV分析事例の紹介
cyberagent
 
WWW2018 論文読み会  Webと経済学
 WWW2018 論文読み会  Webと経済学 WWW2018 論文読み会  Webと経済学
WWW2018 論文読み会  Webと経済学
cyberagent
 
WWW2018 論文読み会 WebにおけるHuman Dynamics
WWW2018 論文読み会 WebにおけるHuman DynamicsWWW2018 論文読み会 WebにおけるHuman Dynamics
WWW2018 論文読み会 WebにおけるHuman Dynamics
cyberagent
 
WWW2018 論文読み会 Web Search and Mining
WWW2018 論文読み会 Web Search and MiningWWW2018 論文読み会 Web Search and Mining
WWW2018 論文読み会 Web Search and Mining
cyberagent
 
サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018
サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018
サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018
cyberagent
 
ログ解析基盤におけるストリーム処理パイプラインについて
ログ解析基盤におけるストリーム処理パイプラインについてログ解析基盤におけるストリーム処理パイプラインについて
ログ解析基盤におけるストリーム処理パイプラインについて
cyberagent
 
Orion an integrated multimedia content moderation system for web services
Orion  an integrated multimedia content moderation system for web servicesOrion  an integrated multimedia content moderation system for web services
Orion an integrated multimedia content moderation system for web services
cyberagent
 
Orion an integrated multimedia content moderation system for web services
Orion  an integrated multimedia content moderation system for web servicesOrion  an integrated multimedia content moderation system for web services
Orion an integrated multimedia content moderation system for web services
cyberagent
 
「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018
「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018
「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018
cyberagent
 
"マルチメディア機械学習" の取り組み
"マルチメディア機械学習"  の取り組み"マルチメディア機械学習"  の取り組み
"マルチメディア機械学習" の取り組み
cyberagent
 

More from cyberagent (20)

WWW2019で見るモバイルコンピューティングの技術と動向 山本悠ニ
WWW2019で見るモバイルコンピューティングの技術と動向    山本悠ニWWW2019で見るモバイルコンピューティングの技術と動向    山本悠ニ
WWW2019で見るモバイルコンピューティングの技術と動向 山本悠ニ
 
Web フィルタリング最前線: 「「検閲回避」回避」 角田孝昭
Web フィルタリング最前線: 「「検閲回避」回避」    角田孝昭Web フィルタリング最前線: 「「検閲回避」回避」    角田孝昭
Web フィルタリング最前線: 「「検閲回避」回避」 角田孝昭
 
WebにおけるHuman Dynamics 武内慎
WebにおけるHuman Dynamics    武内慎WebにおけるHuman Dynamics    武内慎
WebにおけるHuman Dynamics 武内慎
 
Webと経済学 數見拓朗
Webと経済学    數見拓朗Webと経済学    數見拓朗
Webと経済学 數見拓朗
 
Data Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組み
Data Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組みData Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組み
Data Engineering Meetup #1 持続可能なデータ基盤のためのデータの多様性に対する取り組み
 
継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話
継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話
継続的な開発スタイル AbemaTVのiOSアプリを週1でリリースしている話
 
AbemaTVにおける推薦システム
AbemaTVにおける推薦システムAbemaTVにおける推薦システム
AbemaTVにおける推薦システム
 
AbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポート
AbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポートAbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポート
AbemaTV レコメンド開発エンジニアによる RecSys 2018 参加レポート
 
機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜
機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜
機械学習エンジニアを見せたAWSの再:発明とは? 〜re:Invent 2018 参加レポート〜
 
インターネットテレビ局「AbemaTV」プロダクトの変遷
インターネットテレビ局「AbemaTV」プロダクトの変遷インターネットテレビ局「AbemaTV」プロダクトの変遷
インターネットテレビ局「AbemaTV」プロダクトの変遷
 
番組宣伝に関するAbemaTV分析事例の紹介
番組宣伝に関するAbemaTV分析事例の紹介番組宣伝に関するAbemaTV分析事例の紹介
番組宣伝に関するAbemaTV分析事例の紹介
 
WWW2018 論文読み会  Webと経済学
 WWW2018 論文読み会  Webと経済学 WWW2018 論文読み会  Webと経済学
WWW2018 論文読み会  Webと経済学
 
WWW2018 論文読み会 WebにおけるHuman Dynamics
WWW2018 論文読み会 WebにおけるHuman DynamicsWWW2018 論文読み会 WebにおけるHuman Dynamics
WWW2018 論文読み会 WebにおけるHuman Dynamics
 
WWW2018 論文読み会 Web Search and Mining
WWW2018 論文読み会 Web Search and MiningWWW2018 論文読み会 Web Search and Mining
WWW2018 論文読み会 Web Search and Mining
 
サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018
サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018
サイバーエージェントの機械学習エンジニアが体験したGoogle I/O 2018
 
ログ解析基盤におけるストリーム処理パイプラインについて
ログ解析基盤におけるストリーム処理パイプラインについてログ解析基盤におけるストリーム処理パイプラインについて
ログ解析基盤におけるストリーム処理パイプラインについて
 
Orion an integrated multimedia content moderation system for web services
Orion  an integrated multimedia content moderation system for web servicesOrion  an integrated multimedia content moderation system for web services
Orion an integrated multimedia content moderation system for web services
 
Orion an integrated multimedia content moderation system for web services
Orion  an integrated multimedia content moderation system for web servicesOrion  an integrated multimedia content moderation system for web services
Orion an integrated multimedia content moderation system for web services
 
「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018
「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018
「これ危ない設定じゃないでしょうか」とヒアリングするための仕組み @AWS Summit Tokyo 2018
 
"マルチメディア機械学習" の取り組み
"マルチメディア機械学習"  の取り組み"マルチメディア機械学習"  の取り組み
"マルチメディア機械学習" の取り組み
 

マッチングサービスにおけるKPIの話