SlideShare a Scribd company logo
1 of 14
Download to read offline
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
99
Exact Solutions to a Mathematical Model Representing Avascular Tumor
Growth Via Exponential Function Method
Afaf N. Yousif1, Ahmed Farooq Qasim2
1
Department of mathematics, College of Computer Sciences and Mathematics, University of
Mosul, Mosul, Iraq.
2
Department of mathematics, College of Computer Sciences and Mathematics, University of
Mosul, Mosul, Iraq, ahmednumerical@uomosul.edu.iq
Abstract
In this paper, conducted a study on avascular tumor growth of partial differential system. As has
been suggested a modification of this mathematical model was proposed, then we found the exact
solutions for this model based on the new exponential-function method Without the need to
convert the system from partial differential equations to ordinary differential equations. The
solution of the system provides us with the possibility to study the influence of parameters on the
spread of disease and how to control and then eliminate it. The effect of parameters on the spread
and growth of disease was studied, after obtaining a general formula for exact solutions for
nonlinear system, and then studying the effect of increasing or decreasing these parameters and
the effect of their absence on the disease growth.
Keywords: Exact solutions, Avascular tumor growth, Exponential-function method.
1. Introduction
Mathematical modeling is a powerful tool for testing hypotheses, confirming experiments, and
simulating the dynamics of complex systems as well as helping to understand the mechanistic
underpinnings of complex systems in a relatively quick time without the huge costs of laboratory
experiments and biological changes, particularly in oncology. It should also be noted that the
tumor is a mass of tissue formed by the division of cells at an accelerated rate [1,2,3,4,5]. There
are several mathematical models that describe natural tumor growth, scientist stein A. described
in [6] a linear model describing the natural tumor growth of renal cell carcinoma based on certain
measurements. In [7] Claret L. presented a new exponential model that assumed that the tumor
growth rate is proportional to the tumor burden as it was adopted in the process of tumor
suppression. Also Gardner S. N. in [8] relied on partial differential equations to describe the
growth of brain tumors. Among the wide applications in this field is the proliferation-invasion
model, which assumes that net proliferation and invasion contributes to tumor growth. There are
many methods that find us exact traveling wave solutions, including the tanh method, the tan-
expansion method, the exponential-function method and the 𝐺′
/𝐺 -expansion method. Malik A.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
100
et al found in [9] exact traveling wave solutions Using the (
𝐺′
𝐺
)-expansion method of the
Bogoyavlenskii equation, In [10] Raslan K. R. et al., a traveling wave solution was created for
various types of nonlinear partial differential equations using the modified extended tanh method,
reduced to ordinary differential. dish Ic U. in [11] used tan expansion method On the equation
(2 + 1) -dimensional burgers equation to find traveling wave solutions. In [12] Javeed S. et. al.
Use the exponential function method to find the exact solutions of burger’s equation, zakharov-
kuznetsov and kortewegede vries Equation. It was found that this method is useful and effective
in solving nonlinear conformable (PDEs) and simpler and more efficient than other methods. The
Exp-function method has been successfully applied to many kinds of NPDEs, such as, Kawahara
equation [13], Boussinesq equations [14], Double Sine-Gordon equation [15], Fisher equation
[16], and the other important nonlinear partial differential equations [17]. In this paper we apply
the Exp-function method to obtain exact solutions of nonlinear partial differential equations,
namely, of avascular tumor growth.
2. Mathematical Model
we will express a multicellular model of avascular tumor growth by a nonlinear system of
partial differential equations as follows: [18]
πœ•π‘
πœ•π‘‘
=
πœ•
πœ•π‘₯
[
𝑝
𝑝+π‘ž+𝑠
πœ•
πœ•π‘₯
(𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑝(1 βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) βˆ’ 𝑓(𝑐)𝑝 (1)
πœ•π‘ž
πœ•π‘‘
=
πœ•
πœ•π‘₯
[
π‘ž
𝑝+π‘ž+𝑠
πœ•
πœ•π‘₯
(𝑝 + π‘ž + 𝑠)] + 𝑓(𝑐)𝑝 βˆ’ β„Ž(𝑐)π‘ž (2)
πœ•π‘ 
πœ•π‘‘
=
πœ•
πœ•π‘₯
[
𝑠
𝑝+π‘ž+𝑠
πœ•
πœ•π‘₯
(𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑠(Π³ βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) (3)
πœ•π‘›
πœ•π‘‘
= β„Ž(𝑐)π‘ž (4)
Where
𝑐(π‘₯, 𝑑) =
𝑐0𝛾
𝑝+𝛾
(1 βˆ’ 𝛼(𝑝 + π‘ž + 𝑠 + 𝑛)) (5)
Where the model consists of four equations with four variables as 𝑝(π‘₯, 𝑑) represents proliferating
(living) cells, π‘ž(π‘₯, 𝑑) quiescent cells (live but not proliferating), 𝑠(π‘₯, 𝑑) surrounding cells, and 𝑛
necrotic cells. According to the model presented by Sherratt & Chaplain [19] , the mitosis rate
𝑔(𝑐) of proliferating cells is directly proportional to the concentration of nutrients 𝑐(π‘₯, 𝑑), and is
limited by the total number of cells in the body and cells that do not receive sufficient nutrients
turn in to quiescent cells. Many inactive cells undergo necrosis when kept away from nutrients at
a rate of 𝑓(𝑐) towards the depth of the tumor and tumor growth and development is restricted by
adjacent epithelial cells depend for mitosis on the concentration of nutrients 𝑐(π‘₯, 𝑑) as well as
β„Ž(𝑐) represents the rate of rotating quiescent cells to necrosis and the proliferating cells become
quiescent at a rate of 𝑔(𝑐), 𝑐0 is a nutrient deliberation in lack of a tumor cell population. Also 𝛼,
𝛾, Π³ are dimensionless parameters the π‘₯ denotes the coordinates of place and 𝑑 of time as well as
the 𝛼 ∈ [0,1]. With the following initial and boundary conditions [18]:
Initial conditions:
𝑝(π‘₯, 0) = 𝑝0(π‘₯) , π‘ž(π‘₯, 0) = π‘ž0(π‘₯) , 𝑠(π‘₯, 𝑑) = 𝑠0(π‘₯) , 𝑛(π‘₯, 0) = 𝑛0(π‘₯).
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
101
Boundary conditions:
πœ•π‘
πœ•π‘₯
= 0,
πœ•π‘ž
πœ•π‘₯
= 0, and
πœ•π‘ 
πœ•π‘₯
= 0 at π‘₯ = 0.
Where 𝑓(𝑐) , β„Ž(𝑐) and 𝑔(𝑐) are given functions and Π³, 𝛾 and are parameter values also given
[18].
Fig.1: the interaction between the proliferating, quiescent, surrounding and necrotic cell
densities.
3. Exponential-function method
Suppose the general form of a nonlinear partial differential equation with two independent
variables π‘₯ and 𝑑 has the following form [20]:
𝑝(𝑒, 𝑒𝑑, 𝑒π‘₯, 𝑒𝑑𝑑, 𝑒π‘₯𝑑, 𝑒π‘₯π‘₯, … ) = 0. (6)
Where 𝑒 = 𝑒(π‘₯, 𝑑), unknown function and 𝑝 is a polynomial in 𝑒(π‘₯, 𝑑). and consider the
traveling wave transformation:
𝑒(π‘₯, 𝑑) = 𝑒(πœ‰) , πœ‰ = π‘₯ + 𝑠𝑑. (7)
Where πœ‰ is the combination of π‘₯ and 𝑑, and 𝑠 is the wave speed by using equation (7), the
equation (6) becomes an ordinary differential equation:
𝑄(𝑒, 𝑠𝑒′
, 𝑒′
, 𝑠2
𝑒″
, 𝑠𝑒″
, 𝑒″
, … ) = 0 (8)
the wave solution to equation (8) is as follows:
𝑒(πœ‰) =
βˆ‘ π‘Žπ‘›exp (π‘›πœ‰)
𝑑
𝑛=βˆ’π‘
βˆ‘ π‘π‘šexp (π‘šπœ‰)
π‘ž
π‘š=βˆ’π‘
=
π‘Žβˆ’π‘ exp(βˆ’π‘πœ‰)+β‹―+π‘Žπ‘‘exp (π‘‘πœ‰)
π‘βˆ’π‘ exp(βˆ’π‘πœ‰)+β‹―+π‘π‘žexp (π‘žπœ‰)
. (9)
Where π‘Žπ‘› and 𝑏𝑛 are unknown constants and 𝑐, 𝑑, 𝑝 and q are positive integers. Equation (9) can
be reformulated as:
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
102
𝑒(πœ‰) =
π‘Žπ‘ exp(π‘πœ‰)+β‹―+π‘Žβˆ’π‘‘exp (βˆ’π‘‘πœ‰)
𝑏𝑝 exp(π‘πœ‰)+β‹―+π‘βˆ’π‘žexp (βˆ’π‘žπœ‰)
, (10)
by balance the linear and nonlinear higher order terms in equation (8) to get the values of 𝑐 and
𝑝, and balance the linear and nonlinear lowest order terms in equation (8) in order to get the
values of 𝑑 and π‘ž , we replace equation (10) with equation (8) after substituting the values of 𝑐,
𝑑, 𝑝 and π‘ž, and simplifying to get:
βˆ‘ π‘π‘˜ exp(Β±π‘˜πœ‰) = 0
π‘˜ , π‘˜ = 0,1,2, … (11)
solving the algebraic equations (11) after setting each coefficient of the π‘π‘˜ = 0, the known π‘Žπ‘
and 𝑏𝑝 substituted in the equation(10) to obtain on solution for the equation (6).
4. Modification method
The system (1-4) is difficult to solve analytically because it contains nonlinear fractions, so
we will suggest a simpler system based on some biological constraints, the aim of which is to
treat and simplify the nonlinear fractions [21].
We will replace
𝑝
𝑝+π‘ž+𝑠
,
π‘ž
𝑝+π‘ž+𝑠
and
𝑠
𝑝+π‘ž+𝑠
with π‘˜1, π‘˜2 and π‘˜3 respectively, so that we get:
πœ•π‘
πœ•π‘‘
=
πœ•
πœ•π‘₯
[π‘˜1
πœ•
πœ•π‘₯
(𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑝(1 βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) βˆ’ 𝑓(𝑐)𝑝 (12)
πœ•π‘ž
πœ•π‘‘
=
πœ•
πœ•π‘₯
[π‘˜2
πœ•
πœ•π‘₯
(𝑝 + π‘ž + 𝑠)] + 𝑓(𝑐)𝑝 βˆ’ β„Ž(𝑐)π‘ž (13)
πœ•π‘ 
πœ•π‘‘
=
πœ•
πœ•π‘₯
[π‘˜3
πœ•
πœ•π‘₯
(𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑠(Π³ βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) (14)
πœ•π‘›
πœ•π‘‘
= β„Ž(𝑐)π‘ž (15)
𝑐(π‘₯, 𝑑) =
𝑐0𝛾
𝑝+𝛾
(1 βˆ’ 𝛼(𝑝 + π‘ž + 𝑠 + 𝑛)) (16)
We will find a specific exact solution that fulfills the following hypotheses:
𝑝 = π‘˜1(𝑝 + π‘ž + 𝑠), π‘ž = π‘˜2(𝑝 + π‘ž + 𝑠), 𝑠 = π‘˜3(𝑝 + π‘ž + 𝑠), 𝑛 = π‘˜4𝑛. (17)
We replace the previous (17) assumptions with the system (12-16):
π‘˜1
πœ•
πœ•π‘‘
(𝑝 + π‘ž + 𝑠) =
πœ•
πœ•π‘₯
[π‘˜1
πœ•
πœ•π‘₯
(
𝑝
π‘˜1
)] + 𝑔(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠)(1 βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) +
π‘˜4𝑛)) βˆ’ 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (18)
π‘˜2
πœ•
πœ•π‘‘
(𝑝 + π‘ž + 𝑠) =
πœ•
πœ•π‘₯
[π‘˜2
πœ•
πœ•π‘₯
(
π‘ž
π‘˜2
)] + 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) βˆ’ β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (19)
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
103
π‘˜3
πœ•
πœ•π‘‘
(𝑝 + π‘ž + 𝑠) =
πœ•
πœ•π‘₯
[π‘˜3
πœ•
πœ•π‘₯
(
𝑠
π‘˜3
)] + 𝑔(𝑐)π‘˜3(𝑝 + π‘ž + 𝑠)(Π³ βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) +
π‘˜4𝑛)) (20)
π‘˜4
πœ•π‘›
πœ•π‘‘
= β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (21)
𝑐(π‘₯, 𝑑) =
𝑐0𝛾
π‘˜1(𝑝+π‘ž+𝑠)+𝛾
(1 βˆ’ 𝛼((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) (22)
Simplify the system (18-21):
π‘˜1
πœ•
πœ•π‘‘
(𝑝 + π‘ž + 𝑠) =
πœ•
πœ•π‘₯
[
πœ•
πœ•π‘₯
(𝑝)] + 𝑔(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (1 βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) +
π‘˜4𝑛)) βˆ’ 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (23)
π‘˜2
πœ•
πœ•π‘‘
(𝑝 + π‘ž + 𝑠) =
πœ•
πœ•π‘₯
[
πœ•
πœ•π‘₯
(π‘ž)] + 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) βˆ’ β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (24)
π‘˜3
πœ•
πœ•π‘‘
(𝑝 + π‘ž + 𝑠) =
πœ•
πœ•π‘₯
[
πœ•
πœ•π‘₯
(𝑠)] + 𝑔(𝑐)π‘˜3(𝑝 + π‘ž + 𝑠)(Π³ βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜π‘›π‘›))
(25)
π‘˜4
πœ•π‘›
πœ•π‘‘
= β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (26)
For solving the system (23-26) using Exp-Function method, above equations are transformation
to nonlinear ordinary differential equation using the hypothesis (7) to become the system in the
form:
π‘˜1𝑠 ( 𝑝́ + π‘žΜ + 𝑆
́) = 𝑝́
́ + 𝑔(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (1 βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) βˆ’
𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (27)
π‘˜2 𝑠 ( 𝑝́ + π‘žΜ + 𝑆
́) = π‘žΜ
́ + 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) βˆ’ β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (28)
π‘˜3𝑠 ( 𝑝́ + π‘žΜ + 𝑆
́) = 𝑠́
́ + 𝑔(𝑐)π‘˜3(𝑝 + π‘ž + 𝑠)(Π³ βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜π‘›π‘›)) (29)
π‘˜4 𝑠 ( 𝑛́) = β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (30)
Note from the system (27-30), The highest derived in the nonlinear system is 𝑝́
́ and the highest
order of nonlinear terms are 𝑝2
and it is the same in other equations of the system.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
104
To determine values 𝑐, 𝑑 𝑝, and π‘ž, we derivative the equation (4) twice for πœ‚:
𝑝́
́(πœ‰) =
𝑐1 𝑒π‘₯𝑝((3𝑝+𝑐)πœ‰)+β‹―
𝑐2 𝑒π‘₯𝑝(4 𝑝 πœ‰)+β‹―
(31)
and
𝑝2(πœ‰) =
𝑐3 𝑒π‘₯𝑝((4 𝑐) πœ‰)+β‹―
𝑐4 𝑒π‘₯𝑝(4 𝑝 πœ‰)+β‹―
(32)
Where 𝑐𝑖 are constants. The exp function method is assumes the equality of the denominator in
the two equations. In addition, the method depends on equal to the least term in the numerator for
the equation (31) With the least term of the numerator in the equation (32) and the largest term of
the numerator in the equation (31) With the largest term to numerator in the equation (32), then
3𝑝 + 𝑐 = 4 𝑐 and 3π‘ž + 𝑑 = 4 𝑑 that mean 𝑝 = 𝑐 and π‘ž = 𝑑. As a special case, supposed for
equation (4):
π‘π‘š = 0 β±―m = βˆ’p … … q/{0}
that mean 𝑏0 = 1, and π‘Žπ‘› = 0 β±―n = βˆ’c … … d/{0} , that mean π‘Ž0 = 𝑏 π‘Žπ‘›π‘‘ π‘Ž1 = π‘Ž , then
the general solution as follows:
𝑝 = π›Όπ‘π‘’πœ‰
+ 𝑐𝑝, π‘ž = π›Όπ‘žπ‘’πœ‰
+ π‘π‘ž, 𝑠 = 𝛼𝑠 π‘’πœ‰
+ 𝑐𝑠, 𝑛 = π›Όπ‘›π‘’πœ‰
+ 𝑐𝑛. (33)
Where 𝛼𝑝 , π›Όπ‘ž , 𝛼𝑠 , 𝛼𝑛 , 𝑐𝑝 , π‘π‘ž , 𝑐𝑠 and 𝑐𝑛 are a constants or functions in terms of π‘₯ and 𝑑.
by replace the previous assumptions (33) with equations (27-30) with some simplifications to
equations:
𝑓(𝑐)π‘˜1𝑐𝑝 + 𝑓(𝑐)π‘˜1π‘π‘ž + 𝑔(𝑐)π‘˜1
2
𝑐𝑝
2
+ 𝑔(𝑐)π‘˜1
2
𝑐𝑠
2
βˆ’ 𝑔(𝑐)π‘˜1π‘π‘ž + 𝑓(𝑐)π‘˜1𝑐𝑠 βˆ’ 𝑔(𝑐)π‘˜1𝑐𝑠 βˆ’
𝑔(𝑐)π‘˜1𝑐𝑝 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2𝛼𝑠 +
2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3𝑐𝑠 +
𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+
2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑔(𝑐)π‘˜1π‘π‘žπ‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑠 +
2𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3𝑐𝑠 + 𝑔(𝑐)π‘˜1𝛼𝑠𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜4𝑐𝑛 +
𝑔(𝑐)π‘˜1π‘π‘ π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2π›Όπ‘ž +
2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑠 +
2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3𝑐𝑝 + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3π‘π‘ž +
2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3𝑐𝑠 + 𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜4𝛼𝑛 +
𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+
2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑔(𝑐)π‘˜1π‘π‘π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 +
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
105
2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜1
2
π‘π‘ž
2
+ 𝑔(𝑐 )π‘˜1π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1𝛼𝑝
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4𝑐𝑛 +
𝑔(𝑐)π‘˜1π›Όπ‘ž
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑝
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2 +
𝑔(𝑐)π‘˜1𝛼𝑠
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2 + 𝑔(𝑐)π‘˜1π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1
2
π‘π‘žπ›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’
π›Όπ‘π‘Ž2
π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1
2
π‘π‘žπ‘π‘  + 2𝑔(𝑐)π‘˜1
2
𝑐𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1
2
π‘π‘π‘π‘ž + 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑝
2
+ 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝
2
+
𝑔(𝑐)π‘˜1π‘˜2π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑠
2
+ 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠
2
βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’
𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑔(𝑐)π‘˜1
2
𝛼𝑝
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
+ 𝑔(𝑐)π‘˜1
2
𝛼𝑠
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
+
𝑔(𝑐)π‘˜1
2
π›Όπ‘ž
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
+ 𝑓(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑓(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑓(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+
2𝑔(𝑐)π‘˜1
2
π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑠 + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑝 + 2𝑔(𝑐)π‘˜1
2
𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π›Όπ‘ž + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘π‘ž +
2𝑔(𝑐)π‘˜1
2
𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
𝛼𝑠 + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑠 + 2𝑔(𝑐)π‘˜1
2
π‘π‘π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1
2
π‘π‘π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+
2𝑔(𝑐)π‘˜1
2
π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘π‘ž + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
𝛼𝑠 + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 +
2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2𝑐𝑠 + π‘˜1π›Όπ‘π‘π‘’π‘Žπ‘₯+𝑏𝑑
+ π‘˜1π›Όπ‘žπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+
π‘˜1π›Όπ‘ π‘π‘’π‘Žπ‘₯+𝑏𝑑
= 0
π‘˜2π›Όπ‘π‘π‘’π‘Žπ‘₯+𝑏𝑑
+ π‘˜2π›Όπ‘žπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ π‘˜2π›Όπ‘ π‘π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ π›Όπ‘žπ‘Ž2
π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’
𝑓(𝑐)π‘˜1𝑐𝑝 βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ 𝑓(𝑐)π‘˜1π‘π‘ž βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ 𝑓(𝑐)π‘˜1𝑐𝑠 + β„Ž(𝑐)π‘˜2π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+
β„Ž(𝑐)π‘˜2𝑐𝑝 + β„Ž(𝑐)π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ β„Ž(𝑐)π‘˜2π‘π‘ž + β„Ž(𝑐)π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ β„Ž(𝑐)π‘˜2𝑐𝑠 = 0
𝑔(𝑐)π‘˜3
2
𝛼𝑠
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
+ 2𝑔(𝑐)π‘˜3
2
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑠 + 2𝑔(𝑐)π‘˜3
2
π‘π‘π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜3
2
π‘π‘π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’
𝑔(𝑐)π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
Π³ βˆ’ 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
Π³ βˆ’ 𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
Π³ + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3π‘π‘ž +
2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜32𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3π›Όπ‘ž +
2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜3𝑐𝑠 +
2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž +
𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3𝛼𝑝
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2 + 𝑔(𝑐)π‘˜3𝛼𝑠
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2 +
𝑔(𝑐)π‘˜3π›Όπ‘ž
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘π‘ž + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
𝛼𝑠 +
2𝑔(𝑐)π‘˜3
2
π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑠 + 2𝑔(𝑐)π‘˜3
2
π‘π‘žπ›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜3
2
π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑠 + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
𝑐𝑝 +
2𝑔(𝑐)π‘˜3
2
𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π›Όπ‘ž + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘π‘ž + 2𝑔(𝑐)π‘˜3
2
𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
𝛼𝑠 +
𝑔(𝑐)π‘˜1𝛼𝑝
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑠
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜3 +
2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2𝛼𝑠 +
𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑)
π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+
𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑠 + 𝑔(𝑐)π‘˜3𝛼𝑠𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜4𝛼𝑛 +
𝑔(𝑐)π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑝 +
2𝑔(𝑐)π‘˜3𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜2𝛼𝑠 +
2𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜2𝑐𝑠 + 𝑔(𝑐)π‘˜3𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑)
π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
π‘˜4𝑐𝑛 +
2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑔(𝑐)π‘˜3π‘π‘π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜3
2
π‘π‘žπ‘π‘  +
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
106
2𝑔(𝑐)π‘˜3
2
π‘π‘π‘π‘ž + 2𝑔(𝑐)π‘˜3
2
𝑐𝑝𝑐𝑠 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝
2
+ 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠
2
+ 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑝
2
+
𝑔(𝑐)π‘˜3π‘˜2π‘π‘ž
2
+ 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑠
2
βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑝г βˆ’ 𝑔(𝑐)π‘˜3π‘π‘žΠ³ βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑠г + 𝑔(𝑐)π‘˜3
2
𝛼𝑝
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
+
𝑔(𝑐)π‘˜3
2
π›Όπ‘ž
2
𝑒2(π‘Žπ‘₯+𝑏𝑑)
+ π‘˜3π›Όπ‘π‘π‘’π‘Žπ‘₯+𝑏𝑑
+ π‘˜3π›Όπ‘žπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ π‘˜3π›Όπ‘ π‘π‘’π‘Žπ‘₯+𝑏𝑑
+ 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 +
2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2𝑐𝑠 βˆ’ π›Όπ‘ π‘Ž2
π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑔(𝑐)π‘˜3
2
𝑐𝑝
2
+ 𝑔(𝑐)π‘˜3
2
π‘π‘ž
2
+
𝑔(𝑐)π‘˜3
2
𝑐𝑠
2
= 0
π‘˜4π›Όπ‘›π‘π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ β„Ž(𝑐)π‘˜2𝑐𝑝 βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ β„Ž(𝑐)π‘˜2π‘π‘ž βˆ’
β„Ž(𝑐)π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
βˆ’ β„Ž(𝑐)π‘˜2𝑐𝑠 = 0
π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑝 βˆ’ π‘˜1(π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑝 + π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ π‘π‘ž + π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑠) = 0
π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ π‘π‘ž βˆ’ π‘˜2(π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑝 + π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ π‘π‘ž + π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑠) = 0
π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑠 βˆ’ π‘˜3(π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑝 + π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑
+ π‘π‘ž + π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑠) = 0
π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑛 βˆ’ π‘˜4(π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑛) = 0
Setting each coefficient of exp(Β± π‘›πœ‰) , 𝑛 = 0,1,2,3, …
𝑓(𝑐)π‘˜1𝑐𝑝 + 𝑓(𝑐)π‘˜1π‘π‘ž + 𝑔(𝑐)π‘˜1
2
𝑐𝑝
2
+ 𝑔(𝑐)π‘˜1
2
𝑐𝑠
2
βˆ’ 𝑔(𝑐)π‘˜1π‘π‘ž + 𝑓(𝑐)π‘˜1𝑐𝑠 βˆ’ 𝑔(𝑐)π‘˜1𝑐𝑠 βˆ’
𝑔(𝑐)π‘˜1𝑐𝑝 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜1
2
π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4𝑐𝑛 +
𝑔(𝑐)π‘˜1π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1
2
π‘π‘žπ‘π‘  + 2𝑔(𝑐)π‘˜1
2
𝑐𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1
2
π‘π‘π‘π‘ž + 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑝
2
+ 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝
2
+
𝑔(𝑐)π‘˜1π‘˜2π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑠
2
+ 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠
2
+ 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 +
2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2𝑐𝑠 = 0 (34)
βˆ’π‘”(𝑐)π‘˜1𝛼𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘ π‘˜4𝛼𝑛 +
𝑔(𝑐)π‘˜1π›Όπ‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4𝛼𝑛 βˆ’ 𝑔(𝑐)π‘˜1𝛼𝑝 + 2𝑔(𝑐)π‘˜1
2
𝛼𝑝𝑐𝑝 + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘π‘π‘ž +
2𝑔(𝑐)π‘˜1
2
𝛼𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1
2
π‘π‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜1
2
𝑐𝑝𝛼𝑠 + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘žπ‘π‘ž + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘žπ‘π‘  +
2𝑔(𝑐)π‘˜1
2
π‘π‘žπ›Όπ‘  + 2𝑔(𝑐)π‘˜1
2
𝛼𝑠𝑐𝑠 βˆ’ π›Όπ‘π‘Ž2
βˆ’ 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜3𝑐𝑠 + π‘˜1𝛼𝑝𝑏 +
π‘˜1π›Όπ‘žπ‘ + π‘˜1𝛼𝑠𝑏 + 𝑓(𝑐)π‘˜1𝛼𝑝 + 𝑓(𝑐)π‘˜1π›Όπ‘ž + 𝑓(𝑐)π‘˜1𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3π‘π‘ž +
2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜2π‘π‘ž +
2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝛼𝑠 +
2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑝 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π‘π‘ž βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘ž = 0
(35)
2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝛼𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜4𝛼𝑛 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2π›Όπ‘ž +
2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝛼𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1𝛼𝑝
2
π‘˜3 +
𝑔(𝑐)π‘˜1π›Όπ‘ž
2
π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑝
2
π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠
2
π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠
2
π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž
2
π‘˜2 + 𝑔(𝑐)π‘˜1
2
𝛼𝑝
2
+
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
107
𝑔(𝑐)π‘˜1
2
𝛼𝑠
2
+ 𝑔(𝑐)π‘˜1
2
π›Όπ‘ž
2
+ 2𝑔(𝑐)π‘˜1
2
π›Όπ‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜1
2
𝛼𝑝𝛼𝑠 + 2𝑔(𝑐)π‘˜1
2
π›Όπ‘žπ›Όπ‘  = 0
(36)
βˆ’π‘“(𝑐)π‘˜1𝑐𝑝 βˆ’ 𝑓(𝑐)π‘˜1π‘π‘ž βˆ’ 𝑓(𝑐)π‘˜1𝑐𝑠 + β„Ž(𝑐)π‘˜2𝑐𝑝 + β„Ž(𝑐)π‘˜2π‘π‘ž + β„Ž(𝑐)π‘˜2𝑐𝑠 = 0 (35)
π‘˜2𝛼𝑝𝑏 + π‘˜2π›Όπ‘žπ‘ + π‘˜2𝛼𝑠𝑏 βˆ’ π›Όπ‘žπ‘Ž2
βˆ’ 𝑓(𝑐)π‘˜1𝛼𝑝 βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘ž βˆ’ 𝑓(𝑐)π‘˜1𝛼𝑠 + β„Ž(𝑐)π‘˜2𝛼𝑝 +
β„Ž(𝑐)π‘˜2π›Όπ‘ž + β„Ž(𝑐)π‘˜2𝛼𝑠 = 0 (37)
2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4𝑐𝑛 +
2𝑔(𝑐)π‘˜3
2
π‘π‘žπ‘π‘  + 2𝑔(𝑐)π‘˜3
2
π‘π‘π‘π‘ž + 2𝑔(𝑐)π‘˜3
2
𝑐𝑝𝑐𝑠 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝
2
+ 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž
2
+ 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠
2
+
𝑔(𝑐)π‘˜3π‘˜2𝑐𝑝
2
+ 𝑔(𝑐)π‘˜3π‘˜2π‘π‘ž
2
+ 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑠
2
βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑝г βˆ’ 𝑔(𝑐)π‘˜3π‘π‘žΠ³ βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑠г +
2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2𝑐𝑠 + 𝑔(𝑐)π‘˜3
2
𝑐𝑝
2
+
𝑔(𝑐)π‘˜3
2
π‘π‘ž
2
+ 𝑔(𝑐)π‘˜3
2
𝑐𝑠
2
= 0 (38)
βˆ’π‘”(𝑐)π‘˜3π›Όπ‘žΠ³ + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2𝛼𝑠 βˆ’ π›Όπ‘ π‘Ž2
βˆ’ 𝑔(𝑐)π‘˜3𝛼𝑠г + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜4𝑐𝑛 +
𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘ π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4𝛼𝑛 βˆ’
𝑔(𝑐)π‘˜3𝛼𝑝г + 2𝑔(𝑐)π‘˜3
2
π‘π‘žπ›Όπ‘  + 2𝑔(𝑐)π‘˜3
2
𝛼𝑠𝑐𝑠 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘žπ‘π‘  +
2𝑔(𝑐)π‘˜3
2
π›Όπ‘žπ‘π‘ž + 2𝑔(𝑐)π‘˜3
2
𝛼𝑝𝑐𝑝 + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π›Όπ‘ž +
2𝑔(𝑐)π‘˜3π‘π‘π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘π‘π‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜3
2
π‘π‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝛼𝑠 +
2𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜3
2
𝛼𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜3
2
𝑐𝑝𝛼𝑠 +
2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑝 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π‘π‘ž +
π‘˜3𝛼𝑝𝑏 + 2𝑔(𝑐)π‘˜3π›Όπ‘ π‘˜2𝑐𝑠 + π‘˜3𝛼𝑠𝑏 + π‘˜3π›Όπ‘žπ‘ = 0 (39)
𝑔(𝑐)π‘˜3
2
𝛼𝑠
2
+ 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝛼𝑠 + 𝑔(𝑐)π‘˜3𝛼𝑝
2
π‘˜2 +
𝑔(𝑐)π‘˜3𝛼𝑠
2
π‘˜2 + 𝑔(𝑐)π‘˜3π›Όπ‘ž
2
π‘˜2 + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘žπ›Όπ‘  + 2𝑔(𝑐)π‘˜3
2
π›Όπ‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜3
2
𝛼𝑝𝛼𝑠 +
𝑔(𝑐)π‘˜1𝛼𝑝
2
π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž
2
π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑠
2
π‘˜3 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜2𝛼𝑠 + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜4𝛼𝑛 +
𝑔(𝑐)π‘˜3π›Όπ‘ π‘˜4𝛼𝑛 + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2𝛼𝑠 + 𝑔(𝑐)π‘˜3π›Όπ‘π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3
2
𝛼𝑝
2
+
𝑔(𝑐)π‘˜3
2
π›Όπ‘ž
2
= 0 (40)
𝑔(𝑐)𝑐𝑠г βˆ’ 𝑔(𝑐)π‘˜π‘π‘π‘π‘  βˆ’ 𝑔(𝑐)π‘˜π‘π‘žπ‘π‘  βˆ’ 𝑔(𝑐)π‘˜π‘π‘ 
2
βˆ’ 𝑔(𝑐)π‘˜π‘›π‘π‘ π‘π‘› = 0 (41)
βˆ’β„Ž(𝑐)π‘˜2𝑐𝑝 βˆ’ β„Ž(𝑐)π‘˜2π‘π‘ž βˆ’ β„Ž(𝑐)π‘˜2𝑐𝑠 = 0 (42)
π‘˜4𝛼𝑛𝑏 βˆ’ β„Ž(𝑐)π‘˜2𝛼𝑝 βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘ž βˆ’ β„Ž(𝑐)π‘˜2𝛼𝑠 = 0 (43)
𝑐𝑝 βˆ’ π‘˜1(𝑐𝑝 + π‘π‘ž + 𝑐𝑠) = 0 (44)
𝛼𝑝 βˆ’ π‘˜1(𝛼𝑝 + π›Όπ‘ž + 𝛼𝑠) = 0 (45)
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
108
π‘π‘ž βˆ’ π‘˜2(𝑐𝑝 + π‘π‘ž + 𝑐𝑠) = 0 (46)
π›Όπ‘ž βˆ’ π‘˜2(𝛼𝑝 + π›Όπ‘ž + 𝛼𝑠) = 0 (47)
𝑐𝑠 βˆ’ π‘˜3(𝑐𝑝 + π‘π‘ž + 𝑐𝑠) = 0 (48)
𝛼𝑠 βˆ’ π‘˜3(𝛼𝑝 + π›Όπ‘ž + 𝛼𝑠) = 0 (49)
𝑐𝑛 βˆ’ π‘˜4𝑐𝑛 = 0 (50)
𝛼𝑛 βˆ’ π‘˜4𝛼𝑛 = 0 (51)
Solving nonlinear system of algebraic equations gives the following sets of non-trivial solutions.
The first set:
𝑐𝑝 = 0, π‘π‘ž = βˆ’
𝑐𝑠(π‘˜3βˆ’1)
π‘˜3
, 𝑐𝑠 = 𝑐𝑠, 𝑐𝑛 = 0, Π³ = Π³, π‘˜1 = 0, π‘˜2 = βˆ’π‘˜3 + 1, π‘˜3 = π‘˜3, π‘˜4 = π‘˜4, 𝛼𝑝 =
0, π›Όπ‘ž = βˆ’
𝛼𝑠(π‘˜3βˆ’1)
π‘˜3
, 𝛼𝑠 = 𝛼𝑠, 𝛼𝑛 = 0, β„Ž = 0, 𝑓 = 𝑓, 𝑔 = 0, π‘Ž = π‘Ž, 𝑏 = π‘Ž2
.
Substituting the above quantities into equation (33) we obtain:
𝑝(π‘₯, 𝑑) = 0 , π‘ž(π‘₯, 𝑑) = βˆ’
𝛼𝑠(π‘˜3βˆ’1)
π‘˜3
π‘’π‘Žπ‘₯+π‘Ž2𝑑
βˆ’
𝑐𝑠(π‘˜3βˆ’1)
π‘˜3
,
𝑠(π‘₯, 𝑑) = π›Όπ‘ π‘’π‘Žπ‘₯+π‘Ž2𝑑
+ 𝑐𝑠 , 𝑛(π‘₯, 𝑑) = 0.
The second set:
𝑐𝑝 = 0, π‘π‘ž = βˆ’
𝑐𝑠(π‘˜3βˆ’1)
π‘˜3
, 𝑐𝑠 = 𝑐𝑠, 𝑐𝑛 = 𝑐𝑛, Π³ = Π³, π‘˜1 = 0, π‘˜2 = βˆ’π‘˜3 + 1, π‘˜3 = π‘˜3, π‘˜4 = 1, 𝛼𝑝 =
0, π›Όπ‘ž = βˆ’
𝛼𝑠(π‘˜3βˆ’1)
π‘˜3
, 𝛼𝑠 = 𝛼𝑠, 𝛼𝑛 = 0, β„Ž = 0, 𝑓 = 𝑓, 𝑔 = 0, π‘Ž = π‘Ž, 𝑏 = π‘Ž2
.
Substituting the above quantities into equation (33) we obtain:
𝑝(π‘₯, 𝑑) = 0 , π‘ž(π‘₯, 𝑑) = βˆ’
𝛼𝑠(π‘˜3βˆ’1)
π‘˜3
π‘’π‘Žπ‘₯+π‘Ž2𝑑
βˆ’
𝑐𝑠(π‘˜3βˆ’1)
π‘˜3
,
𝑠(π‘₯, 𝑑) = π›Όπ‘ π‘’π‘Žπ‘₯+π‘Ž2𝑑
+ 𝑐𝑠 , 𝑛(π‘₯, 𝑑) = 𝑐𝑛 .
The third set:
𝑐𝑝 = 0, π‘π‘ž = 0, 𝑐𝑠 = 0, 𝑐𝑛 = 𝑐𝑛, Π³ = Π³, π‘˜1 = 0, π‘˜2 = 1, π‘˜3 = 0, π‘˜4 = 1, 𝛼𝑝 = 0, π›Όπ‘ž =
𝑏𝛼𝑛
π‘Ž2βˆ’π‘
,
𝛼𝑠 = 0, 𝛼𝑛 = 𝛼𝑛, β„Ž = π‘Ž2
βˆ’ 𝑏, 𝑓 = 𝑓, 𝑔 = 0, π‘Ž = π‘Ž, 𝑏 = 𝑏.
Substituting the above quantities into equation (33) we obtain:
𝑝(π‘₯, 𝑑) = 0 , π‘ž(π‘₯, 𝑑) =
π‘π‘Žπ‘›
π‘Ž2βˆ’π‘
π‘’π‘Žπ‘₯+𝑏𝑑
,
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
109
𝑠(π‘₯, 𝑑) = 0 , 𝑛(π‘₯, 𝑑) = π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑
+ 𝑐𝑛.
The fourth set:
assuming that π‘Ž, 𝑏 > 0, and 𝛼𝑝, π›Όπ‘ž, 𝛼𝑠, 𝛼𝑛 β‰  0, the solution of the previous system (34)-(51), we
get:
𝑐𝑝 = 0, π‘π‘ž = 0, 𝑐𝑠 = 0, 𝑐𝑛 =
1+𝑔(𝑐)π‘˜1
𝑔(𝑐)π‘˜1
, π‘˜1 = π‘˜1, π‘˜2 =
βˆ’1
β„Ž(𝑐)
,
π‘˜3 = βˆ’
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
β„Ž(𝑐)
, π‘˜4 = π‘˜4, π‘Ž = π‘Ž, 𝑏 = 𝑏, Π³ = βˆ’
1+𝑔(𝑐)π‘˜1
𝑔(𝑐)π‘˜1
,
𝛼𝑝 = βˆ’
π›Όπ‘ π‘˜1β„Ž(𝑐)
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
, π›Όπ‘ž =
𝛼𝑠
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
, 𝛼𝑠 = 𝛼𝑠,
𝛼𝑛 =
𝛼𝑠 β„Ž(𝑐)
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
, 𝑔(𝑐) = 𝑔(𝑐) , β„Ž(𝑐) = β„Ž(𝑐), 𝑓(𝑐) = βˆ’
1
π‘˜1
.
Substituting the above quantities into equation (33) we obtain:
𝑝(π‘₯, 𝑑) = βˆ’
π›Όπ‘ π‘˜1β„Ž(𝑐)
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
π‘’π‘Žπ‘₯+𝑏𝑑
, π‘ž(π‘₯, 𝑑) =
𝛼𝑠
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
π‘’π‘Žπ‘₯+𝑏𝑑
,
𝑠(π‘₯, 𝑑) = π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑
, 𝑛(π‘₯, 𝑑) =
π›Όπ‘ β„Ž(𝑐)
βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐)
π‘’π‘Žπ‘₯+𝑏𝑑
+
1+𝑔(𝑐)π‘˜1
𝑔(𝑐)π‘˜1
. (52)
Fig (2): exact solution for (a) proliferating and surrounding cells (b) quiescent and necrotic cells
with π‘Ž = 𝑏 = π‘˜1 = π‘˜4 = 1, , 𝛼 = 0.4, Π³ = 2, 𝛾 = 10
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
110
Fig (3): Shows the 𝑓(𝑐) with the proliferating (P), and quiescent (q) cells When 𝛼 = 0.4 , Π³ = 2,
𝛾 = 10 ,𝑐0 = 1 and 𝑑 = 1.
Fig (4): Shows the 𝑔(𝑐) with the proliferating (p) , and surrounding (s) cells When 𝛼 = 0.4 ,
Π³ = 2, 𝛾 = 10 , 𝑐0 = 1 and 𝑑 = 1.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
111
Fig (5): Shows the β„Ž(𝑐) with the quiescent (q) and necrotic (n) cells When 𝛼 = 0.4 , Π³ = 2, 𝛾 = 10 ,
𝑐0 = 1 and 𝑑 = 1.
Consider from figures (3-5), the effect of 𝑓(𝑐),β„Ž(𝑐) and 𝑔(𝑐), on the solutions for the system
(1)-(5), where β„Ž(𝑐) represent the rate of rotating quiescent cells to necrosis, 𝑔(𝑐) is the mitosis
amount function of the flourishing cells and 𝑓(𝑐) is the rate at which proliferating cells become
quiescent with the following parameter values, Π³ = 0 , 𝛾 = 10 , 𝑐0 = 1 and 𝛼 = 0.4, We notice
from Figure (3) that 𝑝 (proliferating cells) increases steadily when 𝑓(𝑐) (the rate at which
proliferating cells become quiescent) approaches zero (decay) and π‘ž (quiescent cells) decays for
all values of 𝑓(𝑐) in the period π‘₯. from Figure (4), show that 𝑝 (proliferating cells) and 𝑠
(surrounding cells) increases when the values of π‘₯ and 𝑔(𝑐) (is the mitosis amount function of
the flourishing cells) increase. Figure (5), show that 𝑛 (quiescent cells) increases as β„Ž(𝑐)
(represent the rate of rotating quiescent cells to necrosis) approaches zero (decay) π‘ž (necrotic
cells) approaches zero (decay) in all values of π‘₯ and β„Ž(𝑐) (represent the rate of rotating quiescent
cells to necrosis).
5. Conclusion
In this paper, a modification of the avascular tumor growth model represented by the system of
nonlinear PDEs was proposed by simplifying the nonlinear fractions, and the exact solution of
the modified system was found based on the exponential-function method. The exact solution
enables us to study the effect of parameters, (𝑐) , β„Ž(𝑐) and 𝑔(𝑐) on the spread of the disease and
how to control it. Every one of the calculations was done with the guide of Maple 18
programming.
Acknowledgments
The research is supported by College of Computer Sciences and Mathematics, University of
Mosul, Republic of Iraq.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
112
References
[1] Yin A., Moes D. J. A., van Hasselt J. G., Swen J. J. and Guchelaar H. J., CPT: pharm. Sys.
Pharm., 2019; 8(10): 720-737. DOI 10.1002/psp4.12450.
[2] Rejniak K. A. and Anderson A. R., Wil. Int. Revi. : Sys. Biolo. Medici., 2011; 1: 115-125.
DOI 10.1002/wsbm.102.
[3] Watanabe Y., Dahlman E. L. and Leder K. Z., Hui S. K., Theor. Biolo. Medic. Model.,
2016; 6: 1-20. DOI 10.1186/s12976-016-0032-7.
[4] Zainuddin N., Ibrahim Z. B., Othman K. I. and Suleiman M. (2016). Chi. Ma. J. Sci., 2016;
43: 1171-1181. DOI 10.1186/1471-2407-12-311.
[5] Ismail N., Ibrahim Z. B. and Othman, K. I., Chi. Ma. J. Sci., 2017; 44(4): 1781-1791.
[6] Stein A., Wang W., Carter A. A., Chiparus O., Hollaender N., Kim H., et al., BMC. Canc.,
2012; 12(1): 1-10. DOI 10.1186/1471-2407-12-311.
[7] Claret L., Girard P., Hoff P. M., Van Cutsem E., Zuideveld K. P., Jorga K., et al., J. Clin.
Oncolo, 2009; 27(25): 4103-4108. DOI 10.1200/JCO.2008.21.0807.
[8] Gardner S. N., J. Theor. Biolo ., 2002; 214(2): 181-207. DOI 10.1006/jtbi.2001.2459.
[9] Malik A., Chand F., Kumar H., Mishra S. C., Comp. Math. Appl., 2012; 64(9): 2850-2859.
DOI 10.1016/j.camwa.2012.04.018.
[10] Raslan K. R., Ali K. K. and Shallal M. A., Cha. Soli. Frac., 2017; 103: 404-409. DOI
10.1016/j.chaos.2017.06.029.
[11] Ic U., J. Sci. Ar., 2020; 20(1): 5-12. DOI 2423818897/se-2.
[12] Javeed S., Saleem Alimgeer K., Nawaz S., Waheed A., Suleman M., Baleanu D., et al.,
Sym., 2020; 12(1): 176. DOI 10.3390/sym12010176.
[13] Assas, L. M., J. Comp. Appl. Math., 2009; 233(2): 97–102. DOI
10.1016/j.cam.2009.07.016.
[14] Yaslan H. Γ‡. and Girgin A., Ara. J. Basi. Appl. Sci., 2019; 26(1): 163-170. DOI
10.1080/25765299.2019.1580815.
[15] Zhang S., Wang J., Peng A. X. and Cai B., Pram., 2013; 81(5), 763-773. DOI
10.1007/s12043-013-0613-5.
[16] Mendoza J. and Muriel C., Cha. Soli. Fract., 2021; 152: 111360. DOI
10.1016/j.chaos.2021.111360.
[17] Shin B. C., Darvishi M. T. and Barati A., Compu. Math. Appl., 2009; 58(11-12): 2147–
2151. DOI 10.1016/j.camwa.2009.03.006.
[18] Ali A., Hussain M., Ghaffar A., Ali Z., Nisar K. S., Alharthi M. R., et al., Alex. Eng. J.,
2021; 60(4): 3731-3740. DOI 10.1016/j.aej.2021.02.040.
[19] Sherratt J. A. and Chaplain M. A., J. Math. Biolo., 2001; 43(4): 291-312. DOI
10.1007/s002850100088.
[20] Farah A. A., Int. J. Phys. Sci., 2011; 6(29): 6706-6716. DOI 10.5897/IJPS11.1026.
[21] Cherniha R. and Davydovych V., Entro., 2020; 22(2): 154. DOI 10.3390/e22020154.

More Related Content

Similar to journal of mathematics

DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...mathsjournal
Β 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...mathsjournal
Β 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...mathsjournal
Β 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...mathsjournal
Β 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equationsinventionjournals
Β 
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...ijtsrd
Β 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...IOSR Journals
Β 
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...TELKOMNIKA JOURNAL
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
Β 
RESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATA
RESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATARESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATA
RESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATAorajjournal
Β 
Eigenvalues for HIV-1 dynamic model with two delays
Eigenvalues for HIV-1 dynamic model with two delaysEigenvalues for HIV-1 dynamic model with two delays
Eigenvalues for HIV-1 dynamic model with two delaysIOSR Journals
Β 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...IJERA Editor
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
Β 
MITx_14310_CLT
MITx_14310_CLTMITx_14310_CLT
MITx_14310_CLTRyosuke Ishii
Β 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
Β 
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical MethodsMCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical MethodsRai University
Β 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...irjes
Β 

Similar to journal of mathematics (20)

DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
Β 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
Β 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
Β 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
Β 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equations
Β 
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Time Delay and Mean Square Stochastic Differential Equations in Impetuous Sta...
Β 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Β 
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Projective and hybrid projective synchronization of 4-D hyperchaotic system v...
Β 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Β 
RESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATA
RESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATARESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATA
RESIDUALS AND INFLUENCE IN NONLINEAR REGRESSION FOR REPEATED MEASUREMENT DATA
Β 
Eigenvalues for HIV-1 dynamic model with two delays
Eigenvalues for HIV-1 dynamic model with two delaysEigenvalues for HIV-1 dynamic model with two delays
Eigenvalues for HIV-1 dynamic model with two delays
Β 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
Β 
Finite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed ProblemFinite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed Problem
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
Β 
MITx_14310_CLT
MITx_14310_CLTMITx_14310_CLT
MITx_14310_CLT
Β 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
Β 
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical MethodsMCA_UNIT-1_Computer Oriented Numerical Statistical Methods
MCA_UNIT-1_Computer Oriented Numerical Statistical Methods
Β 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
Β 

More from rikaseorika

journalism research
journalism researchjournalism research
journalism researchrikaseorika
Β 
science research journal
science research journalscience research journal
science research journalrikaseorika
Β 
scopus publications
scopus publicationsscopus publications
scopus publicationsrikaseorika
Β 
research publish journal
research publish journalresearch publish journal
research publish journalrikaseorika
Β 
ugc journal
ugc journalugc journal
ugc journalrikaseorika
Β 
journalism research
journalism researchjournalism research
journalism researchrikaseorika
Β 
publishable paper
publishable paperpublishable paper
publishable paperrikaseorika
Β 
journal publication
journal publicationjournal publication
journal publicationrikaseorika
Β 
published journals
published journalspublished journals
published journalsrikaseorika
Β 
journal for research
journal for researchjournal for research
journal for researchrikaseorika
Β 
research publish journal
research publish journalresearch publish journal
research publish journalrikaseorika
Β 
mathematica journal
mathematica journalmathematica journal
mathematica journalrikaseorika
Β 
research paper publication journals
research paper publication journalsresearch paper publication journals
research paper publication journalsrikaseorika
Β 
journal for research
journal for researchjournal for research
journal for researchrikaseorika
Β 
ugc journal
ugc journalugc journal
ugc journalrikaseorika
Β 
ugc care list
ugc care listugc care list
ugc care listrikaseorika
Β 
research paper publication
research paper publicationresearch paper publication
research paper publicationrikaseorika
Β 
published journals
published journalspublished journals
published journalsrikaseorika
Β 
journalism research paper
journalism research paperjournalism research paper
journalism research paperrikaseorika
Β 
research on journaling
research on journalingresearch on journaling
research on journalingrikaseorika
Β 

More from rikaseorika (20)

journalism research
journalism researchjournalism research
journalism research
Β 
science research journal
science research journalscience research journal
science research journal
Β 
scopus publications
scopus publicationsscopus publications
scopus publications
Β 
research publish journal
research publish journalresearch publish journal
research publish journal
Β 
ugc journal
ugc journalugc journal
ugc journal
Β 
journalism research
journalism researchjournalism research
journalism research
Β 
publishable paper
publishable paperpublishable paper
publishable paper
Β 
journal publication
journal publicationjournal publication
journal publication
Β 
published journals
published journalspublished journals
published journals
Β 
journal for research
journal for researchjournal for research
journal for research
Β 
research publish journal
research publish journalresearch publish journal
research publish journal
Β 
mathematica journal
mathematica journalmathematica journal
mathematica journal
Β 
research paper publication journals
research paper publication journalsresearch paper publication journals
research paper publication journals
Β 
journal for research
journal for researchjournal for research
journal for research
Β 
ugc journal
ugc journalugc journal
ugc journal
Β 
ugc care list
ugc care listugc care list
ugc care list
Β 
research paper publication
research paper publicationresearch paper publication
research paper publication
Β 
published journals
published journalspublished journals
published journals
Β 
journalism research paper
journalism research paperjournalism research paper
journalism research paper
Β 
research on journaling
research on journalingresearch on journaling
research on journaling
Β 

Recently uploaded

call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
Β 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdfssuser54595a
Β 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
Β 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
Β 

Recently uploaded (20)

call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
Β 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
Β 
CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1
Β 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Β 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Β 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
Β 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
Β 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
Β 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
Β 

journal of mathematics

  • 1. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 99 Exact Solutions to a Mathematical Model Representing Avascular Tumor Growth Via Exponential Function Method Afaf N. Yousif1, Ahmed Farooq Qasim2 1 Department of mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq. 2 Department of mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq, ahmednumerical@uomosul.edu.iq Abstract In this paper, conducted a study on avascular tumor growth of partial differential system. As has been suggested a modification of this mathematical model was proposed, then we found the exact solutions for this model based on the new exponential-function method Without the need to convert the system from partial differential equations to ordinary differential equations. The solution of the system provides us with the possibility to study the influence of parameters on the spread of disease and how to control and then eliminate it. The effect of parameters on the spread and growth of disease was studied, after obtaining a general formula for exact solutions for nonlinear system, and then studying the effect of increasing or decreasing these parameters and the effect of their absence on the disease growth. Keywords: Exact solutions, Avascular tumor growth, Exponential-function method. 1. Introduction Mathematical modeling is a powerful tool for testing hypotheses, confirming experiments, and simulating the dynamics of complex systems as well as helping to understand the mechanistic underpinnings of complex systems in a relatively quick time without the huge costs of laboratory experiments and biological changes, particularly in oncology. It should also be noted that the tumor is a mass of tissue formed by the division of cells at an accelerated rate [1,2,3,4,5]. There are several mathematical models that describe natural tumor growth, scientist stein A. described in [6] a linear model describing the natural tumor growth of renal cell carcinoma based on certain measurements. In [7] Claret L. presented a new exponential model that assumed that the tumor growth rate is proportional to the tumor burden as it was adopted in the process of tumor suppression. Also Gardner S. N. in [8] relied on partial differential equations to describe the growth of brain tumors. Among the wide applications in this field is the proliferation-invasion model, which assumes that net proliferation and invasion contributes to tumor growth. There are many methods that find us exact traveling wave solutions, including the tanh method, the tan- expansion method, the exponential-function method and the 𝐺′ /𝐺 -expansion method. Malik A.
  • 2. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 100 et al found in [9] exact traveling wave solutions Using the ( 𝐺′ 𝐺 )-expansion method of the Bogoyavlenskii equation, In [10] Raslan K. R. et al., a traveling wave solution was created for various types of nonlinear partial differential equations using the modified extended tanh method, reduced to ordinary differential. dish Ic U. in [11] used tan expansion method On the equation (2 + 1) -dimensional burgers equation to find traveling wave solutions. In [12] Javeed S. et. al. Use the exponential function method to find the exact solutions of burger’s equation, zakharov- kuznetsov and kortewegede vries Equation. It was found that this method is useful and effective in solving nonlinear conformable (PDEs) and simpler and more efficient than other methods. The Exp-function method has been successfully applied to many kinds of NPDEs, such as, Kawahara equation [13], Boussinesq equations [14], Double Sine-Gordon equation [15], Fisher equation [16], and the other important nonlinear partial differential equations [17]. In this paper we apply the Exp-function method to obtain exact solutions of nonlinear partial differential equations, namely, of avascular tumor growth. 2. Mathematical Model we will express a multicellular model of avascular tumor growth by a nonlinear system of partial differential equations as follows: [18] πœ•π‘ πœ•π‘‘ = πœ• πœ•π‘₯ [ 𝑝 𝑝+π‘ž+𝑠 πœ• πœ•π‘₯ (𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑝(1 βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) βˆ’ 𝑓(𝑐)𝑝 (1) πœ•π‘ž πœ•π‘‘ = πœ• πœ•π‘₯ [ π‘ž 𝑝+π‘ž+𝑠 πœ• πœ•π‘₯ (𝑝 + π‘ž + 𝑠)] + 𝑓(𝑐)𝑝 βˆ’ β„Ž(𝑐)π‘ž (2) πœ•π‘  πœ•π‘‘ = πœ• πœ•π‘₯ [ 𝑠 𝑝+π‘ž+𝑠 πœ• πœ•π‘₯ (𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑠(Π³ βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) (3) πœ•π‘› πœ•π‘‘ = β„Ž(𝑐)π‘ž (4) Where 𝑐(π‘₯, 𝑑) = 𝑐0𝛾 𝑝+𝛾 (1 βˆ’ 𝛼(𝑝 + π‘ž + 𝑠 + 𝑛)) (5) Where the model consists of four equations with four variables as 𝑝(π‘₯, 𝑑) represents proliferating (living) cells, π‘ž(π‘₯, 𝑑) quiescent cells (live but not proliferating), 𝑠(π‘₯, 𝑑) surrounding cells, and 𝑛 necrotic cells. According to the model presented by Sherratt & Chaplain [19] , the mitosis rate 𝑔(𝑐) of proliferating cells is directly proportional to the concentration of nutrients 𝑐(π‘₯, 𝑑), and is limited by the total number of cells in the body and cells that do not receive sufficient nutrients turn in to quiescent cells. Many inactive cells undergo necrosis when kept away from nutrients at a rate of 𝑓(𝑐) towards the depth of the tumor and tumor growth and development is restricted by adjacent epithelial cells depend for mitosis on the concentration of nutrients 𝑐(π‘₯, 𝑑) as well as β„Ž(𝑐) represents the rate of rotating quiescent cells to necrosis and the proliferating cells become quiescent at a rate of 𝑔(𝑐), 𝑐0 is a nutrient deliberation in lack of a tumor cell population. Also 𝛼, 𝛾, Π³ are dimensionless parameters the π‘₯ denotes the coordinates of place and 𝑑 of time as well as the 𝛼 ∈ [0,1]. With the following initial and boundary conditions [18]: Initial conditions: 𝑝(π‘₯, 0) = 𝑝0(π‘₯) , π‘ž(π‘₯, 0) = π‘ž0(π‘₯) , 𝑠(π‘₯, 𝑑) = 𝑠0(π‘₯) , 𝑛(π‘₯, 0) = 𝑛0(π‘₯).
  • 3. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 101 Boundary conditions: πœ•π‘ πœ•π‘₯ = 0, πœ•π‘ž πœ•π‘₯ = 0, and πœ•π‘  πœ•π‘₯ = 0 at π‘₯ = 0. Where 𝑓(𝑐) , β„Ž(𝑐) and 𝑔(𝑐) are given functions and Π³, 𝛾 and are parameter values also given [18]. Fig.1: the interaction between the proliferating, quiescent, surrounding and necrotic cell densities. 3. Exponential-function method Suppose the general form of a nonlinear partial differential equation with two independent variables π‘₯ and 𝑑 has the following form [20]: 𝑝(𝑒, 𝑒𝑑, 𝑒π‘₯, 𝑒𝑑𝑑, 𝑒π‘₯𝑑, 𝑒π‘₯π‘₯, … ) = 0. (6) Where 𝑒 = 𝑒(π‘₯, 𝑑), unknown function and 𝑝 is a polynomial in 𝑒(π‘₯, 𝑑). and consider the traveling wave transformation: 𝑒(π‘₯, 𝑑) = 𝑒(πœ‰) , πœ‰ = π‘₯ + 𝑠𝑑. (7) Where πœ‰ is the combination of π‘₯ and 𝑑, and 𝑠 is the wave speed by using equation (7), the equation (6) becomes an ordinary differential equation: 𝑄(𝑒, 𝑠𝑒′ , 𝑒′ , 𝑠2 𝑒″ , 𝑠𝑒″ , 𝑒″ , … ) = 0 (8) the wave solution to equation (8) is as follows: 𝑒(πœ‰) = βˆ‘ π‘Žπ‘›exp (π‘›πœ‰) 𝑑 𝑛=βˆ’π‘ βˆ‘ π‘π‘šexp (π‘šπœ‰) π‘ž π‘š=βˆ’π‘ = π‘Žβˆ’π‘ exp(βˆ’π‘πœ‰)+β‹―+π‘Žπ‘‘exp (π‘‘πœ‰) π‘βˆ’π‘ exp(βˆ’π‘πœ‰)+β‹―+π‘π‘žexp (π‘žπœ‰) . (9) Where π‘Žπ‘› and 𝑏𝑛 are unknown constants and 𝑐, 𝑑, 𝑝 and q are positive integers. Equation (9) can be reformulated as:
  • 4. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 102 𝑒(πœ‰) = π‘Žπ‘ exp(π‘πœ‰)+β‹―+π‘Žβˆ’π‘‘exp (βˆ’π‘‘πœ‰) 𝑏𝑝 exp(π‘πœ‰)+β‹―+π‘βˆ’π‘žexp (βˆ’π‘žπœ‰) , (10) by balance the linear and nonlinear higher order terms in equation (8) to get the values of 𝑐 and 𝑝, and balance the linear and nonlinear lowest order terms in equation (8) in order to get the values of 𝑑 and π‘ž , we replace equation (10) with equation (8) after substituting the values of 𝑐, 𝑑, 𝑝 and π‘ž, and simplifying to get: βˆ‘ π‘π‘˜ exp(Β±π‘˜πœ‰) = 0 π‘˜ , π‘˜ = 0,1,2, … (11) solving the algebraic equations (11) after setting each coefficient of the π‘π‘˜ = 0, the known π‘Žπ‘ and 𝑏𝑝 substituted in the equation(10) to obtain on solution for the equation (6). 4. Modification method The system (1-4) is difficult to solve analytically because it contains nonlinear fractions, so we will suggest a simpler system based on some biological constraints, the aim of which is to treat and simplify the nonlinear fractions [21]. We will replace 𝑝 𝑝+π‘ž+𝑠 , π‘ž 𝑝+π‘ž+𝑠 and 𝑠 𝑝+π‘ž+𝑠 with π‘˜1, π‘˜2 and π‘˜3 respectively, so that we get: πœ•π‘ πœ•π‘‘ = πœ• πœ•π‘₯ [π‘˜1 πœ• πœ•π‘₯ (𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑝(1 βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) βˆ’ 𝑓(𝑐)𝑝 (12) πœ•π‘ž πœ•π‘‘ = πœ• πœ•π‘₯ [π‘˜2 πœ• πœ•π‘₯ (𝑝 + π‘ž + 𝑠)] + 𝑓(𝑐)𝑝 βˆ’ β„Ž(𝑐)π‘ž (13) πœ•π‘  πœ•π‘‘ = πœ• πœ•π‘₯ [π‘˜3 πœ• πœ•π‘₯ (𝑝 + π‘ž + 𝑠)] + 𝑔(𝑐)𝑠(Π³ βˆ’ (𝑝 + π‘ž + 𝑠 + 𝑛)) (14) πœ•π‘› πœ•π‘‘ = β„Ž(𝑐)π‘ž (15) 𝑐(π‘₯, 𝑑) = 𝑐0𝛾 𝑝+𝛾 (1 βˆ’ 𝛼(𝑝 + π‘ž + 𝑠 + 𝑛)) (16) We will find a specific exact solution that fulfills the following hypotheses: 𝑝 = π‘˜1(𝑝 + π‘ž + 𝑠), π‘ž = π‘˜2(𝑝 + π‘ž + 𝑠), 𝑠 = π‘˜3(𝑝 + π‘ž + 𝑠), 𝑛 = π‘˜4𝑛. (17) We replace the previous (17) assumptions with the system (12-16): π‘˜1 πœ• πœ•π‘‘ (𝑝 + π‘ž + 𝑠) = πœ• πœ•π‘₯ [π‘˜1 πœ• πœ•π‘₯ ( 𝑝 π‘˜1 )] + 𝑔(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠)(1 βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) βˆ’ 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (18) π‘˜2 πœ• πœ•π‘‘ (𝑝 + π‘ž + 𝑠) = πœ• πœ•π‘₯ [π‘˜2 πœ• πœ•π‘₯ ( π‘ž π‘˜2 )] + 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) βˆ’ β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (19)
  • 5. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 103 π‘˜3 πœ• πœ•π‘‘ (𝑝 + π‘ž + 𝑠) = πœ• πœ•π‘₯ [π‘˜3 πœ• πœ•π‘₯ ( 𝑠 π‘˜3 )] + 𝑔(𝑐)π‘˜3(𝑝 + π‘ž + 𝑠)(Π³ βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) (20) π‘˜4 πœ•π‘› πœ•π‘‘ = β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (21) 𝑐(π‘₯, 𝑑) = 𝑐0𝛾 π‘˜1(𝑝+π‘ž+𝑠)+𝛾 (1 βˆ’ 𝛼((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) (22) Simplify the system (18-21): π‘˜1 πœ• πœ•π‘‘ (𝑝 + π‘ž + 𝑠) = πœ• πœ•π‘₯ [ πœ• πœ•π‘₯ (𝑝)] + 𝑔(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (1 βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) βˆ’ 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (23) π‘˜2 πœ• πœ•π‘‘ (𝑝 + π‘ž + 𝑠) = πœ• πœ•π‘₯ [ πœ• πœ•π‘₯ (π‘ž)] + 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) βˆ’ β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (24) π‘˜3 πœ• πœ•π‘‘ (𝑝 + π‘ž + 𝑠) = πœ• πœ•π‘₯ [ πœ• πœ•π‘₯ (𝑠)] + 𝑔(𝑐)π‘˜3(𝑝 + π‘ž + 𝑠)(Π³ βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜π‘›π‘›)) (25) π‘˜4 πœ•π‘› πœ•π‘‘ = β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (26) For solving the system (23-26) using Exp-Function method, above equations are transformation to nonlinear ordinary differential equation using the hypothesis (7) to become the system in the form: π‘˜1𝑠 ( 𝑝́ + π‘žΜ + 𝑆 ́) = 𝑝́ ́ + 𝑔(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (1 βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜4𝑛)) βˆ’ 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) (27) π‘˜2 𝑠 ( 𝑝́ + π‘žΜ + 𝑆 ́) = π‘žΜ ́ + 𝑓(𝑐)π‘˜1(𝑝 + π‘ž + 𝑠) βˆ’ β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (28) π‘˜3𝑠 ( 𝑝́ + π‘žΜ + 𝑆 ́) = 𝑠́ ́ + 𝑔(𝑐)π‘˜3(𝑝 + π‘ž + 𝑠)(Π³ βˆ’ ((π‘˜1 + π‘˜2 + π‘˜3)(𝑝 + π‘ž + 𝑠) + π‘˜π‘›π‘›)) (29) π‘˜4 𝑠 ( 𝑛́) = β„Ž(𝑐)π‘˜2(𝑝 + π‘ž + 𝑠) (30) Note from the system (27-30), The highest derived in the nonlinear system is 𝑝́ ́ and the highest order of nonlinear terms are 𝑝2 and it is the same in other equations of the system.
  • 6. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 104 To determine values 𝑐, 𝑑 𝑝, and π‘ž, we derivative the equation (4) twice for πœ‚: 𝑝́ ́(πœ‰) = 𝑐1 𝑒π‘₯𝑝((3𝑝+𝑐)πœ‰)+β‹― 𝑐2 𝑒π‘₯𝑝(4 𝑝 πœ‰)+β‹― (31) and 𝑝2(πœ‰) = 𝑐3 𝑒π‘₯𝑝((4 𝑐) πœ‰)+β‹― 𝑐4 𝑒π‘₯𝑝(4 𝑝 πœ‰)+β‹― (32) Where 𝑐𝑖 are constants. The exp function method is assumes the equality of the denominator in the two equations. In addition, the method depends on equal to the least term in the numerator for the equation (31) With the least term of the numerator in the equation (32) and the largest term of the numerator in the equation (31) With the largest term to numerator in the equation (32), then 3𝑝 + 𝑐 = 4 𝑐 and 3π‘ž + 𝑑 = 4 𝑑 that mean 𝑝 = 𝑐 and π‘ž = 𝑑. As a special case, supposed for equation (4): π‘π‘š = 0 β±―m = βˆ’p … … q/{0} that mean 𝑏0 = 1, and π‘Žπ‘› = 0 β±―n = βˆ’c … … d/{0} , that mean π‘Ž0 = 𝑏 π‘Žπ‘›π‘‘ π‘Ž1 = π‘Ž , then the general solution as follows: 𝑝 = π›Όπ‘π‘’πœ‰ + 𝑐𝑝, π‘ž = π›Όπ‘žπ‘’πœ‰ + π‘π‘ž, 𝑠 = 𝛼𝑠 π‘’πœ‰ + 𝑐𝑠, 𝑛 = π›Όπ‘›π‘’πœ‰ + 𝑐𝑛. (33) Where 𝛼𝑝 , π›Όπ‘ž , 𝛼𝑠 , 𝛼𝑛 , 𝑐𝑝 , π‘π‘ž , 𝑐𝑠 and 𝑐𝑛 are a constants or functions in terms of π‘₯ and 𝑑. by replace the previous assumptions (33) with equations (27-30) with some simplifications to equations: 𝑓(𝑐)π‘˜1𝑐𝑝 + 𝑓(𝑐)π‘˜1π‘π‘ž + 𝑔(𝑐)π‘˜1 2 𝑐𝑝 2 + 𝑔(𝑐)π‘˜1 2 𝑐𝑠 2 βˆ’ 𝑔(𝑐)π‘˜1π‘π‘ž + 𝑓(𝑐)π‘˜1𝑐𝑠 βˆ’ 𝑔(𝑐)π‘˜1𝑐𝑠 βˆ’ 𝑔(𝑐)π‘˜1𝑐𝑝 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3𝑐𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑔(𝑐)π‘˜1π‘π‘žπ‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3𝑐𝑠 + 𝑔(𝑐)π‘˜1𝛼𝑠𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘ π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3𝑐𝑝 + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3𝑐𝑠 + 𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 +
  • 7. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 105 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜1 2 π‘π‘ž 2 + 𝑔(𝑐 )π‘˜1π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1𝛼𝑝 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ž 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑝 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2 + 𝑔(𝑐)π‘˜1π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1 2 π‘π‘žπ›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ π›Όπ‘π‘Ž2 π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1 2 π‘π‘žπ‘π‘  + 2𝑔(𝑐)π‘˜1 2 𝑐𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1 2 π‘π‘π‘π‘ž + 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑝 2 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝 2 + 𝑔(𝑐)π‘˜1π‘˜2π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑠 2 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠 2 βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑔(𝑐)π‘˜1 2 𝛼𝑝 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) + 𝑔(𝑐)π‘˜1 2 𝛼𝑠 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) + 𝑔(𝑐)π‘˜1 2 π›Όπ‘ž 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) + 𝑓(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑓(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 𝑓(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑠 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑝 + 2𝑔(𝑐)π‘˜1 2 𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π›Όπ‘ž + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘π‘ž + 2𝑔(𝑐)π‘˜1 2 𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) 𝛼𝑠 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑠 + 2𝑔(𝑐)π‘˜1 2 π‘π‘π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1 2 π‘π‘π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘π‘ž + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) 𝛼𝑠 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2𝑐𝑠 + π‘˜1π›Όπ‘π‘π‘’π‘Žπ‘₯+𝑏𝑑 + π‘˜1π›Όπ‘žπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + π‘˜1π›Όπ‘ π‘π‘’π‘Žπ‘₯+𝑏𝑑 = 0 π‘˜2π›Όπ‘π‘π‘’π‘Žπ‘₯+𝑏𝑑 + π‘˜2π›Όπ‘žπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + π‘˜2π›Όπ‘ π‘π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ π›Όπ‘žπ‘Ž2 π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑓(𝑐)π‘˜1𝑐𝑝 βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑓(𝑐)π‘˜1π‘π‘ž βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑓(𝑐)π‘˜1𝑐𝑠 + β„Ž(𝑐)π‘˜2π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + β„Ž(𝑐)π‘˜2𝑐𝑝 + β„Ž(𝑐)π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + β„Ž(𝑐)π‘˜2π‘π‘ž + β„Ž(𝑐)π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + β„Ž(𝑐)π‘˜2𝑐𝑠 = 0 𝑔(𝑐)π‘˜3 2 𝛼𝑠 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑠 + 2𝑔(𝑐)π‘˜3 2 π‘π‘π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜3 2 π‘π‘π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ 𝑔(𝑐)π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 Π³ βˆ’ 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 Π³ βˆ’ 𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 Π³ + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜32𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3𝛼𝑝 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2 + 𝑔(𝑐)π‘˜3𝛼𝑠 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2 + 𝑔(𝑐)π‘˜3π›Όπ‘ž 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘π‘ž + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) 𝛼𝑠 + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑠 + 2𝑔(𝑐)π‘˜3 2 π‘π‘žπ›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑠 + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 𝑐𝑝 + 2𝑔(𝑐)π‘˜3 2 𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π›Όπ‘ž + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘π‘ž + 2𝑔(𝑐)π‘˜3 2 𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) 𝛼𝑠 + 𝑔(𝑐)π‘˜1𝛼𝑝 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑠 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜3 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) π‘˜2𝛼𝑠 + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’2(π‘Žπ‘₯+𝑏𝑑) π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑠 + 𝑔(𝑐)π‘˜3𝛼𝑠𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜3𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜2𝑐𝑠 + 𝑔(𝑐)π‘˜3𝛼𝑝𝑒2(π‘Žπ‘₯+𝑏𝑑) π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜3 2 π‘π‘žπ‘π‘  +
  • 8. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 106 2𝑔(𝑐)π‘˜3 2 π‘π‘π‘π‘ž + 2𝑔(𝑐)π‘˜3 2 𝑐𝑝𝑐𝑠 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝 2 + 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠 2 + 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑝 2 + 𝑔(𝑐)π‘˜3π‘˜2π‘π‘ž 2 + 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑠 2 βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑝г βˆ’ 𝑔(𝑐)π‘˜3π‘π‘žΠ³ βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑠г + 𝑔(𝑐)π‘˜3 2 𝛼𝑝 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) + 𝑔(𝑐)π‘˜3 2 π›Όπ‘ž 2 𝑒2(π‘Žπ‘₯+𝑏𝑑) + π‘˜3π›Όπ‘π‘π‘’π‘Žπ‘₯+𝑏𝑑 + π‘˜3π›Όπ‘žπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + π‘˜3π›Όπ‘ π‘π‘’π‘Žπ‘₯+𝑏𝑑 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2𝑐𝑠 βˆ’ π›Όπ‘ π‘Ž2 π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑔(𝑐)π‘˜3 2 𝑐𝑝 2 + 𝑔(𝑐)π‘˜3 2 π‘π‘ž 2 + 𝑔(𝑐)π‘˜3 2 𝑐𝑠 2 = 0 π‘˜4π›Όπ‘›π‘π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ β„Ž(𝑐)π‘˜2𝑐𝑝 βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ β„Ž(𝑐)π‘˜2π‘π‘ž βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 βˆ’ β„Ž(𝑐)π‘˜2𝑐𝑠 = 0 π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑝 βˆ’ π‘˜1(π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑝 + π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + π‘π‘ž + π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑠) = 0 π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + π‘π‘ž βˆ’ π‘˜2(π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑝 + π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + π‘π‘ž + π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑠) = 0 π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑠 βˆ’ π‘˜3(π›Όπ‘π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑝 + π›Όπ‘žπ‘’π‘Žπ‘₯+𝑏𝑑 + π‘π‘ž + π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑠) = 0 π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑛 βˆ’ π‘˜4(π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑛) = 0 Setting each coefficient of exp(Β± π‘›πœ‰) , 𝑛 = 0,1,2,3, … 𝑓(𝑐)π‘˜1𝑐𝑝 + 𝑓(𝑐)π‘˜1π‘π‘ž + 𝑔(𝑐)π‘˜1 2 𝑐𝑝 2 + 𝑔(𝑐)π‘˜1 2 𝑐𝑠 2 βˆ’ 𝑔(𝑐)π‘˜1π‘π‘ž + 𝑓(𝑐)π‘˜1𝑐𝑠 βˆ’ 𝑔(𝑐)π‘˜1𝑐𝑠 βˆ’ 𝑔(𝑐)π‘˜1𝑐𝑝 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜1 2 π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜1 2 π‘π‘žπ‘π‘  + 2𝑔(𝑐)π‘˜1 2 𝑐𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1 2 π‘π‘π‘π‘ž + 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑝 2 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝 2 + 𝑔(𝑐)π‘˜1π‘˜2π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘˜2𝑐𝑠 2 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠 2 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2𝑐𝑠 = 0 (34) βˆ’π‘”(𝑐)π‘˜1𝛼𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘ π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜1π‘π‘π‘˜4𝛼𝑛 βˆ’ 𝑔(𝑐)π‘˜1𝛼𝑝 + 2𝑔(𝑐)π‘˜1 2 𝛼𝑝𝑐𝑝 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘π‘π‘ž + 2𝑔(𝑐)π‘˜1 2 𝛼𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1 2 π‘π‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜1 2 𝑐𝑝𝛼𝑠 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘žπ‘π‘ž + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘žπ‘π‘  + 2𝑔(𝑐)π‘˜1 2 π‘π‘žπ›Όπ‘  + 2𝑔(𝑐)π‘˜1 2 𝛼𝑠𝑐𝑠 βˆ’ π›Όπ‘π‘Ž2 βˆ’ 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜3𝑐𝑠 + π‘˜1𝛼𝑝𝑏 + π‘˜1π›Όπ‘žπ‘ + π‘˜1𝛼𝑠𝑏 + 𝑓(𝑐)π‘˜1𝛼𝑝 + 𝑓(𝑐)π‘˜1π›Όπ‘ž + 𝑓(𝑐)π‘˜1𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑝 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π‘π‘ž βˆ’ 𝑔(𝑐)π‘˜1π›Όπ‘ž = 0 (35) 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝛼𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜4𝛼𝑛 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝛼𝑠 + 𝑔(𝑐)π‘˜1π›Όπ‘π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜1𝛼𝑝 2 π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž 2 π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑝 2 π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠 2 π‘˜2 + 𝑔(𝑐)π‘˜1𝛼𝑠 2 π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž 2 π‘˜2 + 𝑔(𝑐)π‘˜1 2 𝛼𝑝 2 +
  • 9. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 107 𝑔(𝑐)π‘˜1 2 𝛼𝑠 2 + 𝑔(𝑐)π‘˜1 2 π›Όπ‘ž 2 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜1 2 𝛼𝑝𝛼𝑠 + 2𝑔(𝑐)π‘˜1 2 π›Όπ‘žπ›Όπ‘  = 0 (36) βˆ’π‘“(𝑐)π‘˜1𝑐𝑝 βˆ’ 𝑓(𝑐)π‘˜1π‘π‘ž βˆ’ 𝑓(𝑐)π‘˜1𝑐𝑠 + β„Ž(𝑐)π‘˜2𝑐𝑝 + β„Ž(𝑐)π‘˜2π‘π‘ž + β„Ž(𝑐)π‘˜2𝑐𝑠 = 0 (35) π‘˜2𝛼𝑝𝑏 + π‘˜2π›Όπ‘žπ‘ + π‘˜2𝛼𝑠𝑏 βˆ’ π›Όπ‘žπ‘Ž2 βˆ’ 𝑓(𝑐)π‘˜1𝛼𝑝 βˆ’ 𝑓(𝑐)π‘˜1π›Όπ‘ž βˆ’ 𝑓(𝑐)π‘˜1𝛼𝑠 + β„Ž(𝑐)π‘˜2𝛼𝑝 + β„Ž(𝑐)π‘˜2π›Όπ‘ž + β„Ž(𝑐)π‘˜2𝛼𝑠 = 0 (37) 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π‘π‘ž + 𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4𝑐𝑛 + 2𝑔(𝑐)π‘˜3 2 π‘π‘žπ‘π‘  + 2𝑔(𝑐)π‘˜3 2 π‘π‘π‘π‘ž + 2𝑔(𝑐)π‘˜3 2 𝑐𝑝𝑐𝑠 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑝 2 + 𝑔(𝑐)π‘˜1π‘˜3π‘π‘ž 2 + 𝑔(𝑐)π‘˜1π‘˜3𝑐𝑠 2 + 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑝 2 + 𝑔(𝑐)π‘˜3π‘˜2π‘π‘ž 2 + 𝑔(𝑐)π‘˜3π‘˜2𝑐𝑠 2 βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑝г βˆ’ 𝑔(𝑐)π‘˜3π‘π‘žΠ³ βˆ’ 𝑔(𝑐)π‘˜3𝑐𝑠г + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2𝑐𝑠 + 𝑔(𝑐)π‘˜3 2 𝑐𝑝 2 + 𝑔(𝑐)π‘˜3 2 π‘π‘ž 2 + 𝑔(𝑐)π‘˜3 2 𝑐𝑠 2 = 0 (38) βˆ’π‘”(𝑐)π‘˜3π›Όπ‘žΠ³ + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘žπ‘˜2𝛼𝑠 βˆ’ π›Όπ‘ π‘Ž2 βˆ’ 𝑔(𝑐)π‘˜3𝛼𝑠г + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘ π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘ π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘π‘˜4𝑐𝑛 + 𝑔(𝑐)π‘˜3π‘π‘π‘˜4𝛼𝑛 βˆ’ 𝑔(𝑐)π‘˜3𝛼𝑝г + 2𝑔(𝑐)π‘˜3 2 π‘π‘žπ›Όπ‘  + 2𝑔(𝑐)π‘˜3 2 𝛼𝑠𝑐𝑠 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘žπ‘π‘  + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘žπ‘π‘ž + 2𝑔(𝑐)π‘˜3 2 𝛼𝑝𝑐𝑝 + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2π‘π‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2𝑐𝑠 + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜3π‘π‘π‘˜2𝛼𝑠 + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘π‘π‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2𝑐𝑝 + 2𝑔(𝑐)π‘˜3 2 π‘π‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π‘π‘žπ‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘ π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜3 2 𝛼𝑝𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3π‘π‘ž + 2𝑔(𝑐)π‘˜3 2 𝑐𝑝𝛼𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π‘π‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝑐𝑝 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π‘π‘ž + π‘˜3𝛼𝑝𝑏 + 2𝑔(𝑐)π‘˜3π›Όπ‘ π‘˜2𝑐𝑠 + π‘˜3𝛼𝑠𝑏 + π‘˜3π›Όπ‘žπ‘ = 0 (39) 𝑔(𝑐)π‘˜3 2 𝛼𝑠 2 + 2𝑔(𝑐)π‘˜1π›Όπ‘žπ‘˜3𝛼𝑠 + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3π›Όπ‘ž + 2𝑔(𝑐)π‘˜1π›Όπ‘π‘˜3𝛼𝑠 + 𝑔(𝑐)π‘˜3𝛼𝑝 2 π‘˜2 + 𝑔(𝑐)π‘˜3𝛼𝑠 2 π‘˜2 + 𝑔(𝑐)π‘˜3π›Όπ‘ž 2 π‘˜2 + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘žπ›Όπ‘  + 2𝑔(𝑐)π‘˜3 2 π›Όπ‘π›Όπ‘ž + 2𝑔(𝑐)π‘˜3 2 𝛼𝑝𝛼𝑠 + 𝑔(𝑐)π‘˜1𝛼𝑝 2 π‘˜3 + 𝑔(𝑐)π‘˜1π›Όπ‘ž 2 π‘˜3 + 𝑔(𝑐)π‘˜1𝛼𝑠 2 π‘˜3 + 2𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜2𝛼𝑠 + 𝑔(𝑐)π‘˜3π›Όπ‘žπ‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3π›Όπ‘ π‘˜4𝛼𝑛 + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2π›Όπ‘ž + 2𝑔(𝑐)π‘˜3π›Όπ‘π‘˜2𝛼𝑠 + 𝑔(𝑐)π‘˜3π›Όπ‘π‘˜4𝛼𝑛 + 𝑔(𝑐)π‘˜3 2 𝛼𝑝 2 + 𝑔(𝑐)π‘˜3 2 π›Όπ‘ž 2 = 0 (40) 𝑔(𝑐)𝑐𝑠г βˆ’ 𝑔(𝑐)π‘˜π‘π‘π‘π‘  βˆ’ 𝑔(𝑐)π‘˜π‘π‘žπ‘π‘  βˆ’ 𝑔(𝑐)π‘˜π‘π‘  2 βˆ’ 𝑔(𝑐)π‘˜π‘›π‘π‘ π‘π‘› = 0 (41) βˆ’β„Ž(𝑐)π‘˜2𝑐𝑝 βˆ’ β„Ž(𝑐)π‘˜2π‘π‘ž βˆ’ β„Ž(𝑐)π‘˜2𝑐𝑠 = 0 (42) π‘˜4𝛼𝑛𝑏 βˆ’ β„Ž(𝑐)π‘˜2𝛼𝑝 βˆ’ β„Ž(𝑐)π‘˜2π›Όπ‘ž βˆ’ β„Ž(𝑐)π‘˜2𝛼𝑠 = 0 (43) 𝑐𝑝 βˆ’ π‘˜1(𝑐𝑝 + π‘π‘ž + 𝑐𝑠) = 0 (44) 𝛼𝑝 βˆ’ π‘˜1(𝛼𝑝 + π›Όπ‘ž + 𝛼𝑠) = 0 (45)
  • 10. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 108 π‘π‘ž βˆ’ π‘˜2(𝑐𝑝 + π‘π‘ž + 𝑐𝑠) = 0 (46) π›Όπ‘ž βˆ’ π‘˜2(𝛼𝑝 + π›Όπ‘ž + 𝛼𝑠) = 0 (47) 𝑐𝑠 βˆ’ π‘˜3(𝑐𝑝 + π‘π‘ž + 𝑐𝑠) = 0 (48) 𝛼𝑠 βˆ’ π‘˜3(𝛼𝑝 + π›Όπ‘ž + 𝛼𝑠) = 0 (49) 𝑐𝑛 βˆ’ π‘˜4𝑐𝑛 = 0 (50) 𝛼𝑛 βˆ’ π‘˜4𝛼𝑛 = 0 (51) Solving nonlinear system of algebraic equations gives the following sets of non-trivial solutions. The first set: 𝑐𝑝 = 0, π‘π‘ž = βˆ’ 𝑐𝑠(π‘˜3βˆ’1) π‘˜3 , 𝑐𝑠 = 𝑐𝑠, 𝑐𝑛 = 0, Π³ = Π³, π‘˜1 = 0, π‘˜2 = βˆ’π‘˜3 + 1, π‘˜3 = π‘˜3, π‘˜4 = π‘˜4, 𝛼𝑝 = 0, π›Όπ‘ž = βˆ’ 𝛼𝑠(π‘˜3βˆ’1) π‘˜3 , 𝛼𝑠 = 𝛼𝑠, 𝛼𝑛 = 0, β„Ž = 0, 𝑓 = 𝑓, 𝑔 = 0, π‘Ž = π‘Ž, 𝑏 = π‘Ž2 . Substituting the above quantities into equation (33) we obtain: 𝑝(π‘₯, 𝑑) = 0 , π‘ž(π‘₯, 𝑑) = βˆ’ 𝛼𝑠(π‘˜3βˆ’1) π‘˜3 π‘’π‘Žπ‘₯+π‘Ž2𝑑 βˆ’ 𝑐𝑠(π‘˜3βˆ’1) π‘˜3 , 𝑠(π‘₯, 𝑑) = π›Όπ‘ π‘’π‘Žπ‘₯+π‘Ž2𝑑 + 𝑐𝑠 , 𝑛(π‘₯, 𝑑) = 0. The second set: 𝑐𝑝 = 0, π‘π‘ž = βˆ’ 𝑐𝑠(π‘˜3βˆ’1) π‘˜3 , 𝑐𝑠 = 𝑐𝑠, 𝑐𝑛 = 𝑐𝑛, Π³ = Π³, π‘˜1 = 0, π‘˜2 = βˆ’π‘˜3 + 1, π‘˜3 = π‘˜3, π‘˜4 = 1, 𝛼𝑝 = 0, π›Όπ‘ž = βˆ’ 𝛼𝑠(π‘˜3βˆ’1) π‘˜3 , 𝛼𝑠 = 𝛼𝑠, 𝛼𝑛 = 0, β„Ž = 0, 𝑓 = 𝑓, 𝑔 = 0, π‘Ž = π‘Ž, 𝑏 = π‘Ž2 . Substituting the above quantities into equation (33) we obtain: 𝑝(π‘₯, 𝑑) = 0 , π‘ž(π‘₯, 𝑑) = βˆ’ 𝛼𝑠(π‘˜3βˆ’1) π‘˜3 π‘’π‘Žπ‘₯+π‘Ž2𝑑 βˆ’ 𝑐𝑠(π‘˜3βˆ’1) π‘˜3 , 𝑠(π‘₯, 𝑑) = π›Όπ‘ π‘’π‘Žπ‘₯+π‘Ž2𝑑 + 𝑐𝑠 , 𝑛(π‘₯, 𝑑) = 𝑐𝑛 . The third set: 𝑐𝑝 = 0, π‘π‘ž = 0, 𝑐𝑠 = 0, 𝑐𝑛 = 𝑐𝑛, Π³ = Π³, π‘˜1 = 0, π‘˜2 = 1, π‘˜3 = 0, π‘˜4 = 1, 𝛼𝑝 = 0, π›Όπ‘ž = 𝑏𝛼𝑛 π‘Ž2βˆ’π‘ , 𝛼𝑠 = 0, 𝛼𝑛 = 𝛼𝑛, β„Ž = π‘Ž2 βˆ’ 𝑏, 𝑓 = 𝑓, 𝑔 = 0, π‘Ž = π‘Ž, 𝑏 = 𝑏. Substituting the above quantities into equation (33) we obtain: 𝑝(π‘₯, 𝑑) = 0 , π‘ž(π‘₯, 𝑑) = π‘π‘Žπ‘› π‘Ž2βˆ’π‘ π‘’π‘Žπ‘₯+𝑏𝑑 ,
  • 11. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 109 𝑠(π‘₯, 𝑑) = 0 , 𝑛(π‘₯, 𝑑) = π›Όπ‘›π‘’π‘Žπ‘₯+𝑏𝑑 + 𝑐𝑛. The fourth set: assuming that π‘Ž, 𝑏 > 0, and 𝛼𝑝, π›Όπ‘ž, 𝛼𝑠, 𝛼𝑛 β‰  0, the solution of the previous system (34)-(51), we get: 𝑐𝑝 = 0, π‘π‘ž = 0, 𝑐𝑠 = 0, 𝑐𝑛 = 1+𝑔(𝑐)π‘˜1 𝑔(𝑐)π‘˜1 , π‘˜1 = π‘˜1, π‘˜2 = βˆ’1 β„Ž(𝑐) , π‘˜3 = βˆ’ βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) β„Ž(𝑐) , π‘˜4 = π‘˜4, π‘Ž = π‘Ž, 𝑏 = 𝑏, Π³ = βˆ’ 1+𝑔(𝑐)π‘˜1 𝑔(𝑐)π‘˜1 , 𝛼𝑝 = βˆ’ π›Όπ‘ π‘˜1β„Ž(𝑐) βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) , π›Όπ‘ž = 𝛼𝑠 βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) , 𝛼𝑠 = 𝛼𝑠, 𝛼𝑛 = 𝛼𝑠 β„Ž(𝑐) βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) , 𝑔(𝑐) = 𝑔(𝑐) , β„Ž(𝑐) = β„Ž(𝑐), 𝑓(𝑐) = βˆ’ 1 π‘˜1 . Substituting the above quantities into equation (33) we obtain: 𝑝(π‘₯, 𝑑) = βˆ’ π›Όπ‘ π‘˜1β„Ž(𝑐) βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) π‘’π‘Žπ‘₯+𝑏𝑑 , π‘ž(π‘₯, 𝑑) = 𝛼𝑠 βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) π‘’π‘Žπ‘₯+𝑏𝑑 , 𝑠(π‘₯, 𝑑) = π›Όπ‘ π‘’π‘Žπ‘₯+𝑏𝑑 , 𝑛(π‘₯, 𝑑) = π›Όπ‘ β„Ž(𝑐) βˆ’β„Ž(𝑐)βˆ’1+π‘˜1β„Ž(𝑐) π‘’π‘Žπ‘₯+𝑏𝑑 + 1+𝑔(𝑐)π‘˜1 𝑔(𝑐)π‘˜1 . (52) Fig (2): exact solution for (a) proliferating and surrounding cells (b) quiescent and necrotic cells with π‘Ž = 𝑏 = π‘˜1 = π‘˜4 = 1, , 𝛼 = 0.4, Π³ = 2, 𝛾 = 10
  • 12. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 110 Fig (3): Shows the 𝑓(𝑐) with the proliferating (P), and quiescent (q) cells When 𝛼 = 0.4 , Π³ = 2, 𝛾 = 10 ,𝑐0 = 1 and 𝑑 = 1. Fig (4): Shows the 𝑔(𝑐) with the proliferating (p) , and surrounding (s) cells When 𝛼 = 0.4 , Π³ = 2, 𝛾 = 10 , 𝑐0 = 1 and 𝑑 = 1.
  • 13. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 111 Fig (5): Shows the β„Ž(𝑐) with the quiescent (q) and necrotic (n) cells When 𝛼 = 0.4 , Π³ = 2, 𝛾 = 10 , 𝑐0 = 1 and 𝑑 = 1. Consider from figures (3-5), the effect of 𝑓(𝑐),β„Ž(𝑐) and 𝑔(𝑐), on the solutions for the system (1)-(5), where β„Ž(𝑐) represent the rate of rotating quiescent cells to necrosis, 𝑔(𝑐) is the mitosis amount function of the flourishing cells and 𝑓(𝑐) is the rate at which proliferating cells become quiescent with the following parameter values, Π³ = 0 , 𝛾 = 10 , 𝑐0 = 1 and 𝛼 = 0.4, We notice from Figure (3) that 𝑝 (proliferating cells) increases steadily when 𝑓(𝑐) (the rate at which proliferating cells become quiescent) approaches zero (decay) and π‘ž (quiescent cells) decays for all values of 𝑓(𝑐) in the period π‘₯. from Figure (4), show that 𝑝 (proliferating cells) and 𝑠 (surrounding cells) increases when the values of π‘₯ and 𝑔(𝑐) (is the mitosis amount function of the flourishing cells) increase. Figure (5), show that 𝑛 (quiescent cells) increases as β„Ž(𝑐) (represent the rate of rotating quiescent cells to necrosis) approaches zero (decay) π‘ž (necrotic cells) approaches zero (decay) in all values of π‘₯ and β„Ž(𝑐) (represent the rate of rotating quiescent cells to necrosis). 5. Conclusion In this paper, a modification of the avascular tumor growth model represented by the system of nonlinear PDEs was proposed by simplifying the nonlinear fractions, and the exact solution of the modified system was found based on the exponential-function method. The exact solution enables us to study the effect of parameters, (𝑐) , β„Ž(𝑐) and 𝑔(𝑐) on the spread of the disease and how to control it. Every one of the calculations was done with the guide of Maple 18 programming. Acknowledgments The research is supported by College of Computer Sciences and Mathematics, University of Mosul, Republic of Iraq.
  • 14. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 112 References [1] Yin A., Moes D. J. A., van Hasselt J. G., Swen J. J. and Guchelaar H. J., CPT: pharm. Sys. Pharm., 2019; 8(10): 720-737. DOI 10.1002/psp4.12450. [2] Rejniak K. A. and Anderson A. R., Wil. Int. Revi. : Sys. Biolo. Medici., 2011; 1: 115-125. DOI 10.1002/wsbm.102. [3] Watanabe Y., Dahlman E. L. and Leder K. Z., Hui S. K., Theor. Biolo. Medic. Model., 2016; 6: 1-20. DOI 10.1186/s12976-016-0032-7. [4] Zainuddin N., Ibrahim Z. B., Othman K. I. and Suleiman M. (2016). Chi. Ma. J. Sci., 2016; 43: 1171-1181. DOI 10.1186/1471-2407-12-311. [5] Ismail N., Ibrahim Z. B. and Othman, K. I., Chi. Ma. J. Sci., 2017; 44(4): 1781-1791. [6] Stein A., Wang W., Carter A. A., Chiparus O., Hollaender N., Kim H., et al., BMC. Canc., 2012; 12(1): 1-10. DOI 10.1186/1471-2407-12-311. [7] Claret L., Girard P., Hoff P. M., Van Cutsem E., Zuideveld K. P., Jorga K., et al., J. Clin. Oncolo, 2009; 27(25): 4103-4108. DOI 10.1200/JCO.2008.21.0807. [8] Gardner S. N., J. Theor. Biolo ., 2002; 214(2): 181-207. DOI 10.1006/jtbi.2001.2459. [9] Malik A., Chand F., Kumar H., Mishra S. C., Comp. Math. Appl., 2012; 64(9): 2850-2859. DOI 10.1016/j.camwa.2012.04.018. [10] Raslan K. R., Ali K. K. and Shallal M. A., Cha. Soli. Frac., 2017; 103: 404-409. DOI 10.1016/j.chaos.2017.06.029. [11] Ic U., J. Sci. Ar., 2020; 20(1): 5-12. DOI 2423818897/se-2. [12] Javeed S., Saleem Alimgeer K., Nawaz S., Waheed A., Suleman M., Baleanu D., et al., Sym., 2020; 12(1): 176. DOI 10.3390/sym12010176. [13] Assas, L. M., J. Comp. Appl. Math., 2009; 233(2): 97–102. DOI 10.1016/j.cam.2009.07.016. [14] Yaslan H. Γ‡. and Girgin A., Ara. J. Basi. Appl. Sci., 2019; 26(1): 163-170. DOI 10.1080/25765299.2019.1580815. [15] Zhang S., Wang J., Peng A. X. and Cai B., Pram., 2013; 81(5), 763-773. DOI 10.1007/s12043-013-0613-5. [16] Mendoza J. and Muriel C., Cha. Soli. Fract., 2021; 152: 111360. DOI 10.1016/j.chaos.2021.111360. [17] Shin B. C., Darvishi M. T. and Barati A., Compu. Math. Appl., 2009; 58(11-12): 2147– 2151. DOI 10.1016/j.camwa.2009.03.006. [18] Ali A., Hussain M., Ghaffar A., Ali Z., Nisar K. S., Alharthi M. R., et al., Alex. Eng. J., 2021; 60(4): 3731-3740. DOI 10.1016/j.aej.2021.02.040. [19] Sherratt J. A. and Chaplain M. A., J. Math. Biolo., 2001; 43(4): 291-312. DOI 10.1007/s002850100088. [20] Farah A. A., Int. J. Phys. Sci., 2011; 6(29): 6706-6716. DOI 10.5897/IJPS11.1026. [21] Cherniha R. and Davydovych V., Entro., 2020; 22(2): 154. DOI 10.3390/e22020154.