This document summarizes research on image denoising using spatial statistics on pixel values. It begins with an abstract describing an approach that uses adaptive anisotropic weighted similarity functions between local neighborhoods derived from Mexican Hat wavelets to improve perceptual quality over existing methods. It then reviews literature on various denoising techniques including non-local means, non-uniform triangular partitioning, undecimated wavelet transforms, anisotropic diffusion, and support vector regression. Key types of image noise like Gaussian, salt and pepper, Poisson, and speckle noise are described. Limitations of blurring and noise in digital images are discussed. In conclusion, the document provides an overview of image denoising research using spatial and transform domain techniques.