This document presents research on classifying music genres using machine learning algorithms. The researchers built multiple classification models using the Free Music Archive dataset and compared the models' performance in predicting genre accuracy. Some models were trained on mel-spectrograms of songs and their audio features, while others used only spectrograms. The researchers found that a convolutional neural network model trained solely on spectrograms achieved the highest accuracy among the tested models. The goal of the research was to develop a machine learning approach for automatic music genre classification that performs better than existing methods.