ANSWERS TO QUESTIONS FOR REVISION
CLASS XII : MATHEMATICS
TOPICS: INTEGRAL CALCULUS
PREPARED BY
M SRINIVASAN, PGT(MATHS), KVS
𝟏. ‫׬‬ 𝒆𝒙
𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 𝒅𝒙 is equal to
𝒂) 𝒆𝒙 𝒄𝒐𝒔 𝒙 + C b) 𝒆𝒙 𝒔𝒊𝒏 𝒙 + C c) −𝒆𝒙 𝒄𝒐𝒔 𝒙 + 𝑪 d) −𝒆𝒙 𝒔𝒊𝒏 𝒙 + 𝑪
‫׬‬ 𝒆𝒙
𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 𝒅𝒙
‫׬‬ 𝒆𝒙
𝒇 𝒙 + 𝒇′(𝒙) 𝒅𝒙 = 𝒆𝒙
𝒇 𝒙 + 𝑪
‫׬‬ 𝒆𝒙
𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 𝒅𝒙 = ‫׬‬ 𝒆𝒙
𝒄𝒐𝒔 𝒙 + (− 𝒔𝒊𝒏 𝒙 𝒅𝒙
𝒇 𝒙 = 𝐜𝐨𝐬 𝒙 𝒇′ 𝒙 = −𝐬𝐢𝐧 𝒙
න 𝒆𝒙
𝒄𝒐𝒔 𝒙 + (− 𝒔𝒊𝒏 𝒙 𝒅𝒙 = 𝒆𝒙
𝒄𝒐𝒔 𝒙 + C
𝒂) 𝒆𝒙
𝒄𝒐𝒔 𝒙 + C
2. ‫׬‬−𝟏
𝟏 𝒙−𝟐
𝒙−𝟐
𝒅𝒙, 𝒙 ≠ 𝟎 is equal to
a)1 b −𝟏 c) 2 d) −𝟐
න
−𝟏
𝟏
𝒙 − 𝟐
𝒙 − 𝟐
𝒅𝒙
𝒙 − 𝟐 = ቊ
𝒙 − 𝟐 , 𝒙 − 𝟐 ≥ 𝟎
− 𝒙 − 𝟐 , 𝒙 − 𝟐 < 𝟎
𝒙 − 𝟐 = ቊ
𝒙 − 𝟐 , 𝒙 ≥ 𝟐
− 𝒙 − 𝟐 , 𝒙 < 𝟐
න
−𝟏
𝟏
𝒙 − 𝟐
𝒙 − 𝟐
𝒅𝒙 = න
−𝟏
𝟏
−(𝒙 − 𝟐)
𝒙 − 𝟐
𝒅𝒙
= − න
−𝟏
𝟏
𝒅𝒙 = − 𝑥 −1
1 = − 1 − (−1)
= −2 𝒅) − 𝟐
3. The value of ‫׬‬ 𝑺𝒊𝒏−𝟏 𝒄𝒐𝒔
𝝅
𝟐
− 𝟑𝒙 𝒅𝒙 is equal to
a)
𝒙𝟐
𝟐
+ 𝑪 b)
𝟑𝒙𝟐
𝟐
+ 𝑪 c)
𝑺𝒊𝒏 (𝟑𝒙𝟐)
𝟐
+ 𝑪 d)
𝑪𝒐𝒔 (𝟑𝒙𝟐)
𝟐
+ 𝑪
න 𝑺𝒊𝒏−𝟏 𝒄𝒐𝒔
𝝅
𝟐
− 𝟑𝒙 𝒅𝒙
= න 𝑺𝒊𝒏−𝟏
𝒔𝒊𝒏 𝟑𝒙 𝒅𝒙
= න 𝟑𝒙 𝒅𝒙
=
𝟑𝒙𝟐
𝟐
+ 𝑪
b)
𝟑𝒙𝟐
𝟐
+ 𝑪
4. ‫׬‬
𝟐
𝒆𝒙+𝒆−𝒙 𝟐 𝒅𝒙 is equal to
a)
− 𝒆𝒙
𝒆𝒙+𝒆−𝒙 + 𝑪 b)
𝟏
𝒆𝒙+𝒆−𝒙 + 𝑪 c)
𝟏
𝒆𝒙+𝟏 𝟐 + 𝑪 d) −
𝟏
𝒆𝒙+𝒆−𝒙 + 𝑪
න
𝟐
𝒆𝒙 + 𝒆−𝒙 𝟐
𝒅𝒙
= න
𝟐
𝒆𝒙 +
𝟏
𝒆𝒙
𝟐
𝒅𝒙
‫׬‬
𝟐
𝒆𝒙+𝒆−𝒙 𝟐 𝒅𝒙 = ‫׬‬
𝟐𝒆𝟐𝒙
𝒆𝟐𝒙+𝟏
𝟐 𝒅𝒙
𝒖 = 𝒆𝟐𝒙
+ 𝟏 𝒅𝒖 = 𝟐 𝒆𝟐𝒙
𝒅𝒙
න
𝟐𝒆𝟐𝒙
𝒆𝟐𝒙 + 𝟏 𝟐
𝒅𝒙 = න
𝒅𝒖
𝒖 𝟐
𝒅𝒙
‫׬‬
𝟐
𝒆𝒙+𝒆−𝒙 𝟐 𝒅𝒙 = ‫׬‬
𝟐𝒆𝟐𝒙
𝒆𝟐𝒙+𝟏
𝟐 𝒅𝒙
= −
𝟏
𝒖
+ 𝑪 = −
𝟏
𝒆𝟐𝒙 + 𝟏
+ 𝑪
= −
𝒆−𝒙
𝒆𝒙 + 𝒆−𝒙
+ 𝑪
a)
− 𝒆𝒙
𝒆𝒙 + 𝒆−𝒙
+ 𝑪
Multiply and
divide by 𝒆−𝒙
5. The value of is‫׬‬
𝟎
𝝅
𝟐 𝒍𝒐𝒈
𝟒+𝟑 𝒔𝒊𝒏 𝒙
𝟒+𝟑 𝒄𝒐𝒔 𝒙
𝒅𝒙
a) 2 b)
𝟑
𝟒
c) 0 d) −𝟐
න
𝟎
𝝅
𝟐
𝒍𝒐𝒈
𝟒 + 𝟑 𝒔𝒊𝒏 𝒙
𝟒 + 𝟑 𝒄𝒐𝒔 𝒙
𝒅𝒙 = න
𝟎
𝝅
𝟐
𝒍𝒐𝒈
𝟒 + 𝟑 𝒔𝒊𝒏
𝝅
𝟐
− 𝒙
𝟒 + 𝟑 𝒄𝒐𝒔
𝝅
𝟐
− 𝒙
𝒅𝒙
න
𝟎
𝝅
𝟐
𝒍𝒐𝒈
𝟒 + 𝟑 𝒔𝒊𝒏 𝒙
𝟒 + 𝟑 𝒄𝒐𝒔 𝒙
𝒅𝒙 = න
𝟎
𝝅
𝟐
𝒍𝒐𝒈
𝟒 + 𝟑 𝒄𝒐𝒔 𝒙
𝟒 + 𝟑 𝒔𝒊𝒏 𝒙
𝒅𝒙
‫׬‬
𝟎
𝝅
𝟐 𝒍𝒐𝒈
𝟒+𝟑 𝒔𝒊𝒏 𝒙
𝟒+𝟑 𝒄𝒐𝒔 𝒙
𝒅𝒙 =
𝟏
𝟐
‫׬‬
𝟎
𝝅
𝟐 𝒍𝒐𝒈
𝟒+𝟑 𝒔𝒊𝒏 𝒙
𝟒+𝟑 𝒄𝒐𝒔 𝒙
+ 𝒍𝒐𝒈
𝟒+𝟑 𝒄𝒐𝒔 𝒙
𝟒+𝟑 𝒔𝒊𝒏 𝒙
𝒅𝒙
=
𝟏
𝟐
‫׬‬
𝟎
𝝅
𝟐 𝒍𝒐𝒈
𝟒+𝟑 𝒔𝒊𝒏 𝒙
𝟒+𝟑 𝒄𝒐𝒔 𝒙
×
𝟒+𝟑 𝒄𝒐𝒔 𝒙
𝟒+𝟑 𝒔𝒊𝒏 𝒙
𝒅𝒙 =
𝟏
𝟐
‫׬‬
𝟎
𝝅
𝟐 𝒍𝒐𝒈 𝟏 𝒅𝒙
=
𝟏
𝟐
‫׬‬
𝟎
𝝅
𝟐 𝟎 𝒅𝒙 c) 𝟎
6. Assertion : ‫׬‬
𝟐
𝟖 𝟏𝟎−𝒙
𝒙+ 𝟏𝟎−𝒙
𝒅𝒙 = 𝟑
Reason : ‫׬‬
𝒂
𝒃
𝒇 𝒙 𝒅𝒙 = ‫׬‬
𝒂
𝒃
𝒇(𝒂 + 𝒃 − 𝒙) 𝒅𝒙
Assertion
න
𝟐
𝟖
𝟏𝟎 − 𝒙
𝒙 + 𝟏𝟎 − 𝒙
𝒅𝒙 = න
𝟐
𝟖
𝟏𝟎 − 𝟐 + 𝟖 − 𝒙
𝟐 + 𝟖 − 𝒙 + 𝟏𝟎 − 𝟐 + 𝟖 − 𝒙
𝒅𝒙
= න
𝟐
𝟖
𝟏𝟎 − 𝟏𝟎 − 𝒙
𝟏𝟎 − 𝒙 + 𝟏𝟎 − 𝟏𝟎 − 𝒙
𝒅𝒙
න
𝟐
𝟖
𝟏𝟎 − 𝒙
𝒙 + 𝟏𝟎 − 𝒙
𝒅𝒙 = න
𝟐
𝟖
𝒙
𝟏𝟎 − 𝒙 + 𝒙
𝒅𝒙
න
𝟐
𝟖
𝟏𝟎 − 𝒙
𝒙 + 𝟏𝟎 − 𝒙
𝒅𝒙 = න
𝟐
𝟖
𝒙
𝟏𝟎 − 𝒙 + 𝒙
𝒅𝒙
න
𝟐
𝟖
𝟏𝟎 − 𝒙
𝒙 + 𝟏𝟎 − 𝒙
𝒅𝒙 =
𝟏
𝟐
න
𝟐
𝟖
𝟏𝟎 − 𝒙
𝒙 + 𝟏𝟎 − 𝒙
+
𝒙
𝟏𝟎 − 𝒙 + 𝒙
𝒅𝒙
=
𝟏
𝟐
න
𝟐
𝟖
𝟏𝟎 − 𝒙 + 𝒙
𝒙 + 𝟏𝟎 − 𝒙
𝒅𝒙
=
𝟏
𝟐
න
𝟐
𝟖
𝒅𝒙
=
𝟏
𝟐
𝒙 𝟐
𝟖
=
𝟏
𝟐
𝟖 − 𝟐 =
𝟏
𝟐
𝟔 = 𝟑
න
𝟐
𝟖
𝟏𝟎 − 𝒙
𝒙 + 𝟏𝟎 − 𝒙
𝒅𝒙 = 𝟑
Assertion is True
Reason
න
𝒂
𝒃
𝒇 𝒙 𝒅𝒙 = න
𝒂
𝒃
𝒇(𝒂 + 𝒃 − 𝒙) 𝒅𝒙
Reason is True Reason is the correct explanation of Assertion
a) Both A and R are True and R is the correct explanation of A
7. Assertion : If 𝒇′
𝒙 = 𝒙 +
𝟏
𝟏+𝒙𝟐 and 𝒇(𝟎) = 𝟎 then 𝒇 𝒙 =
𝒙𝟐
𝟐
+ 𝒕𝒂𝒏−𝟏
𝒙
Reason : ‫׬‬ 𝒕𝒂𝒏 𝒙 𝒅𝒙 = 𝐥𝐨𝐠(𝒔𝒆𝒄 𝒙) + 𝑪.
Assertion 𝒇′
𝒙 = 𝒙 +
𝟏
𝟏 + 𝒙𝟐
⟹ 𝒇 𝒙 = න 𝒇′(𝒙) 𝒅𝒙
𝒇 𝒙 = න 𝒙 +
𝟏
𝟏 + 𝒙𝟐
𝒅𝒙 𝒇 𝒙 =
𝒙𝟐
𝟐
+ 𝒕𝒂𝒏−𝟏
𝒙 + 𝑪
𝒇 𝟎 = 𝟎 ⟹ 𝒇 𝟎 =
𝟎
𝟐
+ 𝒕𝒂𝒏−𝟏 𝟎 + 𝑪 = 𝟎
𝑪 = 𝟎
𝒇 𝒙 =
𝒙𝟐
𝟐
+ 𝒕𝒂𝒏−𝟏
𝒙
Assertion is True
Reason
Reason is True Reason is not used to prove Assertion
න 𝒕𝒂𝒏 𝒙 𝒅𝒙 = 𝐥𝐨𝐠(𝒔𝒆𝒄 𝒙) + 𝑪
b) Both A and R are True and R is not the correct explanation of A
8. Evaluate: ‫׬‬
𝒙𝟗
𝟒𝒙𝟐+𝟏
𝟔 𝒅𝒙
න
𝒙𝟗
𝟒𝒙𝟐 + 𝟏 𝟔
= න
𝒙𝟗
𝒙𝟐 𝟔 𝟒 +
𝟏
𝒙𝟐
𝟔
𝒅𝒙
= න
𝒙𝟗
𝒙𝟏𝟐 𝟒 +
𝟏
𝒙𝟐
𝟔
𝒅𝒙
න
𝒙𝟗
𝟒𝒙𝟐 + 𝟏 𝟔
= න
𝟏
𝒙𝟑 𝟒 +
𝟏
𝒙𝟐
𝟔
න
𝒙𝟗
𝟒𝒙𝟐 + 𝟏 𝟔
𝒅𝒙 = න
𝒅𝒙
𝒙𝟑 𝟒 +
𝟏
𝒙𝟐
𝟔
𝒖 =
𝟏
𝒙𝟐
𝒅𝒖 =
−𝟐
𝒙𝟑
𝒅𝒙
𝒅𝒙
𝒙𝟑
= −
𝟏
𝟐
𝒅𝒖
න
𝒅𝒙
𝒙𝟑 𝟒 +
𝟏
𝒙𝟐
𝟔 = න
−
𝟏
𝟐
𝒅𝒖
𝟒 + 𝒖 𝟔
= −
𝟏
𝟐
𝟒 + 𝒖 −𝟓
−𝟓
= −
𝟏
𝟐
න 𝟒 + 𝒖 −𝟔𝒅𝒖
න
𝒙𝟗
𝟒𝒙𝟐 + 𝟏 𝟔
𝒅𝒙 =
𝟏
𝟏𝟎
𝟒 +
𝟏
𝒙𝟐
−𝟓
+ 𝑪
9. Evaluate: ‫׬‬
𝒔𝒊𝒏 𝒙−𝒙 𝒄𝒐𝒔 𝒙
𝒙 (𝒙+𝒔𝒊𝒏 𝒙)
𝒅𝒙
න
𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙 = න
𝒙 + 𝒔𝒊𝒏 𝒙 − 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙
= න
𝒙 + 𝒔𝒊𝒏 𝒙 − 𝒙 𝟏 + 𝒄𝒐𝒔 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙
= න
𝒙 + 𝒔𝒊𝒏 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
−
𝒙 (𝟏 + 𝒄𝒐𝒔 𝒙)
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙
= න
𝟏
𝒙
−
(𝟏 + 𝒄𝒐𝒔 𝒙)
(𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙
= න
𝟏
𝒙
𝒅𝒙 − න
(𝟏 + 𝒄𝒐𝒔 𝒙)
(𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙
න
𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙 = න
𝟏
𝒙
𝒅𝒙 − න
(𝟏 + 𝒄𝒐𝒔 𝒙)
(𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙
𝑳𝒆𝒕 𝒖 = 𝒙 + 𝐬𝐢𝐧 𝒙 𝒅𝒖 = 𝟏 + 𝒄𝒐𝒔 𝒙 𝒅𝒙
න
𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙 = 𝒍𝒐𝒈 𝒙 − න
𝒅𝒖
𝒖
= 𝒍𝒐𝒈 𝒙 − 𝒍𝒐𝒈 𝒖 + 𝑪
= 𝒍𝒐𝒈 𝒙 − 𝒍𝒐𝒈 (𝒙 + 𝒔𝒊𝒏 𝒙) + 𝑪
න
𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙
𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙)
𝒅𝒙 = 𝒍𝒐𝒈 𝒙 − 𝒍𝒐𝒈 (𝒙 + 𝒔𝒊𝒏 𝒙) + 𝑪
10. Evaluate: ‫׬‬ 𝒔𝒊𝒏 𝟐𝒙 𝒕𝒂𝒏−𝟏
𝒔𝒊𝒏 𝒙 𝒅𝒙
න 𝒔𝒊𝒏 𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 𝒅𝒙
= න 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒕𝒂𝒏−𝟏
(𝒔𝒊𝒏 𝒙) 𝒅𝒙 = 𝟐 න 𝒔𝒊𝒏 𝒙 𝒕𝒂𝒏−𝟏(𝒔𝒊𝒏 𝒙) 𝒄𝒐𝒔 𝒙𝒅𝒙
𝒕 = 𝒔𝒊𝒏 𝒙 𝒅𝒕 = 𝒄𝒐𝒔 𝒙 𝒅𝒙
𝟐 න 𝒔𝒊𝒏 𝒙 𝒕𝒂𝒏−𝟏(𝒔𝒊𝒏 𝒙) 𝒄𝒐𝒔 𝒙 𝒅𝒙 = 𝟐 න 𝒕 𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒕
Let 𝒖 = 𝒕𝒂𝒏−𝟏
𝒕 𝒅𝒗 = 𝒕 𝒅𝒕
𝒅𝒖 =
𝒅𝒕
𝟏 + 𝒕𝟐 𝒗 =
𝒕𝟐
𝟐
𝟐 න 𝒕 𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒕 = 𝟐
𝒕𝟐
𝟐
𝒕𝒂𝒏−𝟏 𝒕 − න
𝒕𝟐
𝟐
𝒅𝒕
𝟏 + 𝒕𝟐
𝟐 න 𝒕 𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒕 = 𝟐
𝒕𝟐
𝟐
𝒕𝒂𝒏−𝟏
𝒕 − න
𝒕𝟐
𝟐
𝒅𝒕
𝟏 + 𝒕𝟐
= 𝒕𝟐𝒕𝒂𝒏−𝟏 𝒕 − න
𝒕𝟐
𝟏 + 𝒕𝟐
𝒅𝒕
= 𝒕𝟐𝒕𝒂𝒏−𝟏 𝒕 − න
𝒕𝟐 + 𝟏 − 𝟏
𝟏 + 𝒕𝟐
𝒅𝒕
= 𝒕𝟐
𝒕𝒂𝒏−𝟏
𝒕 − න
𝒕𝟐 + 𝟏
𝟏 + 𝒕𝟐
−
𝟏
𝟏 + 𝒕𝟐
𝒅𝒕
= 𝒕𝟐𝒕𝒂𝒏−𝟏 𝒕 − න 𝟏 −
𝟏
𝟏 + 𝒕𝟐
𝒅𝒕
= 𝒕𝟐
𝒕𝒂𝒏−𝟏
𝒕 − 𝒕 + 𝒕𝒂𝒏−𝟏
𝒕 + 𝑪
න 𝒔𝒊𝒏 𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 𝒅𝒙 = 𝒔𝒊𝒏𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏𝒙 − 𝒔𝒊𝒏 𝒙 + 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 + 𝑪
11. Evaluate: ‫׬‬ 𝒆𝒙 𝟏+𝒔𝒊𝒏 𝟐𝒙
𝟏+𝒄𝒐𝒔 𝟐𝒙
𝒅𝒙
න 𝒆𝒙
𝟏 + 𝒔𝒊𝒏 𝟐𝒙
𝟏 + 𝒄𝒐𝒔 𝟐𝒙
𝒅𝒙
= න 𝒆𝒙
𝒔𝒊𝒏𝟐𝒙 + 𝒄𝒐𝒔𝟐𝒙 + 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝟐 𝒄𝒐𝒔𝟐𝒙
𝒅𝒙
= න 𝒆𝒙
𝒔𝒊𝒏 𝒙 + 𝒄𝒐𝒔 𝒙 𝟐
𝟐 𝒄𝒐𝒔𝟐𝒙
𝒅𝒙
= න 𝒆𝒙
𝒔𝒊𝒏 𝒙 + 𝒄𝒐𝒔 𝒙
𝟐 𝒄𝒐𝒔𝟐𝒙
𝒅𝒙
‫׬‬ 𝒆𝒙 𝟏+𝒔𝒊𝒏 𝟐𝒙
𝟏+𝒄𝒐𝒔 𝟐𝒙
𝒅𝒙 = ‫׬‬ 𝒆𝒙 𝒔𝒊𝒏 𝒙+𝒄𝒐𝒔 𝒙
𝟐 𝒄𝒐𝒔𝟐𝒙
𝒅𝒙
=
𝟏
𝟐
න 𝒆𝒙
𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔𝟐𝒙
+
𝒄𝒐𝒔 𝒙
𝒄𝒐𝒔𝟐𝒙
𝒅𝒙
=
𝟏
𝟐
න 𝒆𝒙
𝒔𝒆𝒄 𝒙 𝒕𝒂𝒏 𝒙 + 𝒔𝒆𝒄 𝒙 𝒅𝒙
‫׬‬ 𝒆𝒙
𝒇 𝒙 + 𝒇′(𝒙) 𝒅𝒙 = 𝒆𝒙
𝒇 𝒙 + 𝑪
𝒇 𝒙 = 𝐬𝐞𝐜 𝒙 𝒇′ 𝒙 = 𝐬𝐞𝐜 𝒙 𝒕𝒂𝒏 𝒙
‫׬‬ 𝒆𝒙 𝟏+𝒔𝒊𝒏 𝟐𝒙
𝟏+𝒄𝒐𝒔 𝟐𝒙
𝒅𝒙 = 𝒆𝒙
𝒔𝒆𝒄 𝒙 + 𝑪
12. Evaluate: ‫׬‬𝟎
𝝅
𝟐 𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙
න
𝟎
𝝅
𝟐
𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 + 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 (𝒄𝒐𝒔 𝒙 ) 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈 𝒔𝒊𝒏𝒙 − 𝒍𝒐𝒈(𝒄𝒐𝒔 𝒙 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈(𝒄𝒐𝒔 𝒙 𝒅𝒙
න
𝟎
𝝅
𝟐
𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙 = න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈(𝒄𝒐𝒔 𝒙 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 𝒅𝒙 − න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝟐 𝒅𝒙 − න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒄𝒐𝒔 𝒙 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 𝒅𝒙 − 𝒍𝒐𝒈 𝟐 න
𝟎
𝝅
𝟐
𝒅𝒙 − න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒄𝒐𝒔
𝝅
𝟐
− 𝒙 𝒅𝒙
= න
𝟎
𝝅
𝟐
𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 𝒅𝒙 − 𝒍𝒐𝒈 𝟐 න
𝟎
𝝅
𝟐
𝒅𝒙 − න
𝟎
𝝅
𝟐
𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) 𝒅𝒙
= −𝒍𝒐𝒈 𝟐 × 𝒙 𝟎
𝝅
𝟐 = −𝒍𝒐𝒈 𝟐 ×
𝝅
𝟐
− 𝟎
න
𝟎
𝝅
𝟐
𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙 = −
𝝅
𝟐
𝒍𝒐𝒈 𝟐
13. Evaluate: ‫׬‬
𝟎
𝝅
𝟐
𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙+𝒄𝒐𝒔𝟒𝒙
𝒅𝒙
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙
= න
𝟎
𝝅
𝟐
𝝅
𝟐
− 𝒙 𝒔𝒊𝒏
𝝅
𝟐
− 𝒙 𝒄𝒐𝒔
𝝅
𝟐
− 𝒙
𝒔𝒊𝒏 𝟒 𝝅
𝟐
− 𝒙 + 𝒄𝒐𝒔𝟒 𝝅
𝟐
− 𝒙
𝒅𝒙
= න
𝟎
𝝅
𝟐
𝝅
𝟐
− 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙
𝒅𝒙
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 = න
𝟎
𝝅
𝟐
𝝅
𝟐
− 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙
𝒅𝒙
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 = න
𝟎
𝝅
𝟐
𝝅
𝟐
− 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙
𝒅𝒙
Each integral =
𝟏
𝟐
(sum of the two integrant)
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 =
𝟏
𝟐
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
+
𝝅
𝟐
− 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙
𝒅𝒙
=
𝟏
𝟐
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 +
𝝅
𝟐
𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 − 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙
=
𝝅
𝟒
න
𝟎
𝝅
𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 =
𝝅
𝟒
න
𝟎
𝝅
𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙
Dividing Numerator and Denominator by 𝒄𝒐𝒔𝟒𝒙
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 =
𝝅
𝟒
න
𝟎
𝝅
𝟐
𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒄𝒐𝒔𝟒𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 =
𝝅
𝟒
න
𝟎
𝝅
𝟐 𝒕𝒂𝒏 𝒙 𝒔𝒆𝒄𝟐𝒙
𝟏 + 𝒕𝒂𝒏𝟒𝒙
𝒅𝒙
Let 𝒖 = 𝒕𝒂𝒏𝟐
𝒙 Let 𝒅𝒖 = 𝟐 𝒕𝒂𝒏𝒙 𝒔𝒆𝒄𝟐
𝒙 𝒅𝒙 𝐭𝐚𝐧 𝒙 𝒔𝒆𝒄𝟐
𝒙 =
𝟏
𝟐
𝒅𝒖
When 𝒙 = 𝟎, 𝒖 = 𝒕𝒂𝒏𝟐
𝟎 = 𝟎 When 𝒙 =
𝝅
𝟐
, 𝒖 = 𝒕𝒂𝒏𝟐 𝝅
𝟐
= ∞
𝝅
𝟒
න
𝟎
𝝅
𝟐 𝒕𝒂𝒏 𝒙 𝒔𝒆𝒄𝟐
𝒙
𝟏 + 𝒕𝒂𝒏𝟐𝒙 𝟐
𝒅𝒙 =
𝝅
𝟒
න
𝟎
∞
𝟏
𝟐
𝒅𝒖
𝟏 + 𝒖𝟐
𝝅
𝟒
න
𝟎
𝝅
𝟐 𝒕𝒂𝒏 𝒙 𝒔𝒆𝒄𝟐𝒙
𝟏 + 𝒕𝒂𝒏𝟐𝒙 𝟐
𝒅𝒙 =
𝝅
𝟒
න
𝟎
∞
𝟏
𝟐
𝒅𝒖
𝟏 + 𝒖𝟐
=
𝝅
𝟖
𝒕𝒂𝒏−𝟏
(𝒖) 𝟎
∞
=
𝝅
𝟖
𝒕𝒂𝒏−𝟏
∞ − 𝒕𝒂𝒏−𝟏
𝟎
=
𝝅
𝟖
𝝅
𝟐
− 𝟎
න
𝟎
𝝅
𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙
𝒅𝒙 =
𝝅𝟐
𝟏𝟔
𝟏𝟒. 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆: න
𝒙𝟐 + 𝟏 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝟐 𝒍𝒐𝒈 𝒙
𝒙𝟒
𝒅𝒙
න
𝒙𝟐 + 𝟏 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝟐 𝒍𝒐𝒈 𝒙
𝒙𝟒
𝒅𝒙
= න
𝒙𝟐 + 𝟏
𝒙𝟒
𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝒍𝒐𝒈 𝒙𝟐 𝒅𝒙
= න
𝒙𝟐 + 𝟏
𝒙𝟒
𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝒍𝒐𝒈 𝒙𝟐 𝒅𝒙
= න
𝒙𝟐 + 𝟏
𝒙
𝟏
𝒙𝟑
𝒍𝒐𝒈
𝒙𝟐
+ 𝟏
𝒙𝟐
𝒅𝒙
= න
𝟏 + 𝒙𝟐
𝒙𝟐
𝟏
𝒙𝟑
𝒍𝒐𝒈
𝒙𝟐 + 𝟏
𝒙𝟐
𝒅𝒙
න
𝒙𝟐 + 𝟏 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝟐 𝒍𝒐𝒈 𝒙
𝒙𝟒
𝒅𝒙 = න
𝟏 + 𝒙𝟐
𝒙𝟐
𝟏
𝒙𝟑
𝒍𝒐𝒈
𝒙𝟐
+ 𝟏
𝒙𝟐
𝒅𝒙
= න 𝟏 +
𝟏
𝒙𝟐
𝒍𝒐𝒈 𝟏 +
𝟏
𝒙𝟐
𝟏
𝒙𝟑
𝒅𝒙
Let 𝒕 = 𝟏 +
𝟏
𝒙𝟐 𝒅𝒕 =
−𝟐
𝒙𝟑
𝒅𝒙
𝟏
𝒙𝟑
𝒅𝒙 = −
𝟏
𝟐
𝒅𝒕
න 𝟏 +
𝟏
𝒙𝟐
𝒍𝒐𝒈 𝟏 +
𝟏
𝒙𝟐
𝟏
𝒙𝟑
𝒅𝒙 = න 𝒕 𝒍𝒐𝒈 𝒕
−𝟏
𝟐
𝒅𝒕
= −
𝟏
𝟐
න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕
න 𝟏 +
𝟏
𝒙𝟐
𝒍𝒐𝒈 𝟏 +
𝟏
𝒙𝟐
𝟏
𝒙𝟑
𝒅𝒙 = −
𝟏
𝟐
න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕
Let 𝒖 = 𝒍𝒐𝒈 𝒕 𝒅𝒗 = 𝒕 𝒅𝒕
𝒅𝒖 =
𝒅𝒕
𝒕
𝒗 =
𝟐
𝟑
𝒕
𝟑
𝟐
−
𝟏
𝟐
න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕 = −
𝟏
𝟐
𝟐
𝟑
𝒕
𝟑
𝟐 × 𝐥𝐨𝐠 𝒕 − න
𝟐
𝟑
𝒕
𝟑
𝟐
𝒅𝒕
𝒕
= −
𝟏
𝟑
𝒕
𝟑
𝟐 × 𝒍𝒐𝒈 𝒕 +
𝟏
𝟑
න 𝒕
𝟏
𝟐𝒅𝒕
= −
𝟏
𝟑
𝒕
𝟑
𝟐 × 𝒍𝒐𝒈 𝒕 +
𝟏
𝟑
𝟐
𝟑
𝒕
𝟑
𝟐
−
𝟏
𝟐
න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕 = −
𝟏
𝟑
𝒕
𝟑
𝟐 × 𝒍𝒐𝒈 𝒕 +
𝟏
𝟑
𝟐
𝟑
𝒕
𝟑
𝟐
= −
𝟏
𝟑
𝒕
𝟑
𝟐 × 𝒍𝒐𝒈 𝒕 +
𝟐
𝟗
𝒕
𝟑
𝟐
= −
𝟏
𝟑
𝟏 +
𝟏
𝒙𝟐
𝟑
𝟐
× 𝒍𝒐𝒈 𝟏 +
𝟏
𝒙𝟐 +
𝟐
𝟗
𝟏 +
𝟏
𝒙𝟐
𝟑
𝟐
‫׬‬
𝒙𝟐+𝟏 𝒍𝒐𝒈 𝒙𝟐+𝟏 −𝟐 𝒍𝒐𝒈 𝒙
𝒙𝟒 𝒅𝒙 =
𝟏
𝟑
𝟏 +
𝟏
𝒙𝟐
𝟑
𝟐 𝟐
𝟑
− 𝒍𝒐𝒈 𝟏 +
𝟏
𝒙𝟐
15. A function 𝑭(𝒙) is called the anti-derivative or primitive of a given function 𝒇(𝒙)
with respect to 𝒙 if
𝒅
𝒅𝒙
𝑭 𝒙 = 𝒇 𝒙 . The anti-derivative of function is not unique.
If 𝑭(𝒙) is anti-derivative of 𝒇(𝒙) then 𝑭(𝒙) + 𝑪 is also anti-derivative of 𝒇(𝒙)
We represent anti-derivative of 𝒇(𝒙) by ‫׬‬ 𝒇(𝒙) 𝒅𝒙
a) Find the anti-derivative of 𝒇 𝒙 =
𝒕𝒂𝒏𝟑𝒙
𝒄𝒐𝒔𝟑𝒙
Anti-derivative of
𝒕𝒂𝒏𝟑𝒙
𝒄𝒐𝒔𝟑𝒙
= ‫׬‬
𝒕𝒂𝒏𝟑𝒙
𝒄𝒐𝒔𝟑𝒙
𝒅𝒙
= න
𝒔𝒊𝒏𝟑
𝒙
𝒄𝒐𝒔𝟑𝒙
𝒄𝒐𝒔𝟑𝒙
𝒅𝒙
= න
𝒔𝒊𝒏𝟑
𝒙
𝒄𝒐𝒔𝟔𝒙
𝒅𝒙
Anti-derivative of
𝒕𝒂𝒏𝟑𝒙
𝒄𝒐𝒔𝟑𝒙
= ‫׬‬
𝒔𝒊𝒏𝟑𝒙
𝒄𝒐𝒔𝟔𝒙
𝒅𝒙
= න
𝒔𝒊𝒏𝟐
𝒙 𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔𝟔𝒙
𝒅𝒙
= න
𝟏 − 𝒄𝒐𝒔𝟐𝒙 𝒔𝒊𝒏 𝒙
𝒄𝒐𝒔𝟔𝒙
𝒅𝒙
= න
𝟏
𝒄𝒐𝒔𝟔𝒙
−
𝟏
𝒄𝒐𝒔𝟒𝒙
𝒔𝒊𝒏 𝒙 𝒅𝒙
Let 𝒕 = 𝐜𝐨𝐬 𝒙 𝒅𝒕 = −𝒔𝒊𝒏 𝒙 𝒅𝒙 𝒔𝒊𝒏 𝒙 𝒅𝒙 = −𝒅𝒕
න
𝟏
𝒄𝒐𝒔𝟔𝒙
−
𝟏
𝒄𝒐𝒔𝟒𝒙
𝒔𝒊𝒏 𝒙 𝒅𝒙 = න
𝟏
𝒕𝟔
−
𝟏
𝒕𝟒
(−𝒅𝒕)
න
𝟏
𝒄𝒐𝒔𝟔𝒙
−
𝟏
𝒄𝒐𝒔𝟒𝒙
𝒔𝒊𝒏 𝒙 𝒅𝒙 = න
𝟏
𝒕𝟔
−
𝟏
𝒕𝟒
(−𝒅𝒕)
= −
𝒕−𝟓
−𝟓
−
𝒕−𝟑
−𝟑
+ 𝑪
=
𝟏
𝟓
×
𝟏
𝒕𝟓
−
𝟏
𝟑
×
𝟏
𝒕𝟑
+ 𝑪
=
𝟏
𝟓
×
𝟏
𝒄𝒐𝒔𝟓𝒙
−
𝟏
𝟑
×
𝟏
𝒄𝒐𝒔𝟑𝒙
+ 𝑪
Anti-derivative of
𝒕𝒂𝒏𝟑𝒙
𝒄𝒐𝒔𝟑𝒙
=
𝒔𝒆𝒄𝟓𝒙
𝟓
−
𝒔𝒆𝒄𝟑𝒙
𝟑
+ 𝑪
b) If the primitive of 𝒇 𝒙 =
𝒙𝟑
𝟏+𝒙𝟐
is 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪, find the value of
𝒂 and 𝒃
Primitive of
𝒙𝟑
𝟏+𝒙𝟐
= 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
න
𝒙𝟑
𝟏 + 𝒙𝟐
𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
න
𝒙𝟑
𝟏 + 𝒙𝟐
𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
න
𝒙𝟐
(𝒙)
𝟏 + 𝒙𝟐
𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
න
𝒙𝟐(𝒙)
𝟏 + 𝒙𝟐
𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
Let 𝒖 = 𝟏 + 𝒙𝟐
𝒅𝒖 = 𝟐𝒙𝒅𝒙 𝒙 𝒅𝒙 =
𝟏
𝟐
𝒅𝒖
න
𝒖 − 𝟏
𝟏
𝟐
𝒅𝒖
𝒖
= 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝟏
𝟐
න
𝒖
𝒖
−
𝟏
𝒖
𝒅𝒖 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝟏
𝟐
න 𝒖
𝟏
𝟐 − 𝒖−
𝟏
𝟐 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝟏
𝟐
න 𝒖
𝟏
𝟐 − 𝒖−
𝟏
𝟐 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝟏
𝟐
𝒖
𝟑
𝟐
𝟑
𝟐
−
𝒖
𝟏
𝟐
𝟏
𝟐
= 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝟏
𝟐
𝟐
𝟑
𝟏 + 𝒙𝟐
𝟑
𝟐 − 𝟐 𝟏 + 𝒙𝟐 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝟏
𝟑
𝟏 + 𝒙𝟐
𝟑
𝟐 − 𝟏 + 𝒙𝟐 = 𝒂 𝟏 + 𝒙𝟐
𝟑
𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
𝒂 =
𝟏
𝟑
𝒃 = −𝟏

INTEGRAL CALCULUS .pdf hahahahahahhwwhhwh

  • 1.
    ANSWERS TO QUESTIONSFOR REVISION CLASS XII : MATHEMATICS TOPICS: INTEGRAL CALCULUS PREPARED BY M SRINIVASAN, PGT(MATHS), KVS
  • 2.
    𝟏. ‫׬‬ 𝒆𝒙 𝒄𝒐𝒔𝒙 − 𝒔𝒊𝒏 𝒙 𝒅𝒙 is equal to 𝒂) 𝒆𝒙 𝒄𝒐𝒔 𝒙 + C b) 𝒆𝒙 𝒔𝒊𝒏 𝒙 + C c) −𝒆𝒙 𝒄𝒐𝒔 𝒙 + 𝑪 d) −𝒆𝒙 𝒔𝒊𝒏 𝒙 + 𝑪 ‫׬‬ 𝒆𝒙 𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 𝒅𝒙 ‫׬‬ 𝒆𝒙 𝒇 𝒙 + 𝒇′(𝒙) 𝒅𝒙 = 𝒆𝒙 𝒇 𝒙 + 𝑪 ‫׬‬ 𝒆𝒙 𝒄𝒐𝒔 𝒙 − 𝒔𝒊𝒏 𝒙 𝒅𝒙 = ‫׬‬ 𝒆𝒙 𝒄𝒐𝒔 𝒙 + (− 𝒔𝒊𝒏 𝒙 𝒅𝒙 𝒇 𝒙 = 𝐜𝐨𝐬 𝒙 𝒇′ 𝒙 = −𝐬𝐢𝐧 𝒙 න 𝒆𝒙 𝒄𝒐𝒔 𝒙 + (− 𝒔𝒊𝒏 𝒙 𝒅𝒙 = 𝒆𝒙 𝒄𝒐𝒔 𝒙 + C 𝒂) 𝒆𝒙 𝒄𝒐𝒔 𝒙 + C
  • 3.
    2. ‫׬‬−𝟏 𝟏 𝒙−𝟐 𝒙−𝟐 𝒅𝒙,𝒙 ≠ 𝟎 is equal to a)1 b −𝟏 c) 2 d) −𝟐 න −𝟏 𝟏 𝒙 − 𝟐 𝒙 − 𝟐 𝒅𝒙 𝒙 − 𝟐 = ቊ 𝒙 − 𝟐 , 𝒙 − 𝟐 ≥ 𝟎 − 𝒙 − 𝟐 , 𝒙 − 𝟐 < 𝟎 𝒙 − 𝟐 = ቊ 𝒙 − 𝟐 , 𝒙 ≥ 𝟐 − 𝒙 − 𝟐 , 𝒙 < 𝟐 න −𝟏 𝟏 𝒙 − 𝟐 𝒙 − 𝟐 𝒅𝒙 = න −𝟏 𝟏 −(𝒙 − 𝟐) 𝒙 − 𝟐 𝒅𝒙 = − න −𝟏 𝟏 𝒅𝒙 = − 𝑥 −1 1 = − 1 − (−1) = −2 𝒅) − 𝟐
  • 4.
    3. The valueof ‫׬‬ 𝑺𝒊𝒏−𝟏 𝒄𝒐𝒔 𝝅 𝟐 − 𝟑𝒙 𝒅𝒙 is equal to a) 𝒙𝟐 𝟐 + 𝑪 b) 𝟑𝒙𝟐 𝟐 + 𝑪 c) 𝑺𝒊𝒏 (𝟑𝒙𝟐) 𝟐 + 𝑪 d) 𝑪𝒐𝒔 (𝟑𝒙𝟐) 𝟐 + 𝑪 න 𝑺𝒊𝒏−𝟏 𝒄𝒐𝒔 𝝅 𝟐 − 𝟑𝒙 𝒅𝒙 = න 𝑺𝒊𝒏−𝟏 𝒔𝒊𝒏 𝟑𝒙 𝒅𝒙 = න 𝟑𝒙 𝒅𝒙 = 𝟑𝒙𝟐 𝟐 + 𝑪 b) 𝟑𝒙𝟐 𝟐 + 𝑪
  • 5.
    4. ‫׬‬ 𝟐 𝒆𝒙+𝒆−𝒙 𝟐𝒅𝒙 is equal to a) − 𝒆𝒙 𝒆𝒙+𝒆−𝒙 + 𝑪 b) 𝟏 𝒆𝒙+𝒆−𝒙 + 𝑪 c) 𝟏 𝒆𝒙+𝟏 𝟐 + 𝑪 d) − 𝟏 𝒆𝒙+𝒆−𝒙 + 𝑪 න 𝟐 𝒆𝒙 + 𝒆−𝒙 𝟐 𝒅𝒙 = න 𝟐 𝒆𝒙 + 𝟏 𝒆𝒙 𝟐 𝒅𝒙 ‫׬‬ 𝟐 𝒆𝒙+𝒆−𝒙 𝟐 𝒅𝒙 = ‫׬‬ 𝟐𝒆𝟐𝒙 𝒆𝟐𝒙+𝟏 𝟐 𝒅𝒙
  • 6.
    𝒖 = 𝒆𝟐𝒙 +𝟏 𝒅𝒖 = 𝟐 𝒆𝟐𝒙 𝒅𝒙 න 𝟐𝒆𝟐𝒙 𝒆𝟐𝒙 + 𝟏 𝟐 𝒅𝒙 = න 𝒅𝒖 𝒖 𝟐 𝒅𝒙 ‫׬‬ 𝟐 𝒆𝒙+𝒆−𝒙 𝟐 𝒅𝒙 = ‫׬‬ 𝟐𝒆𝟐𝒙 𝒆𝟐𝒙+𝟏 𝟐 𝒅𝒙 = − 𝟏 𝒖 + 𝑪 = − 𝟏 𝒆𝟐𝒙 + 𝟏 + 𝑪 = − 𝒆−𝒙 𝒆𝒙 + 𝒆−𝒙 + 𝑪 a) − 𝒆𝒙 𝒆𝒙 + 𝒆−𝒙 + 𝑪 Multiply and divide by 𝒆−𝒙
  • 7.
    5. The valueof is‫׬‬ 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒+𝟑 𝒔𝒊𝒏 𝒙 𝟒+𝟑 𝒄𝒐𝒔 𝒙 𝒅𝒙 a) 2 b) 𝟑 𝟒 c) 0 d) −𝟐 න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒 + 𝟑 𝒔𝒊𝒏 𝒙 𝟒 + 𝟑 𝒄𝒐𝒔 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒 + 𝟑 𝒔𝒊𝒏 𝝅 𝟐 − 𝒙 𝟒 + 𝟑 𝒄𝒐𝒔 𝝅 𝟐 − 𝒙 𝒅𝒙 න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒 + 𝟑 𝒔𝒊𝒏 𝒙 𝟒 + 𝟑 𝒄𝒐𝒔 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒 + 𝟑 𝒄𝒐𝒔 𝒙 𝟒 + 𝟑 𝒔𝒊𝒏 𝒙 𝒅𝒙 ‫׬‬ 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒+𝟑 𝒔𝒊𝒏 𝒙 𝟒+𝟑 𝒄𝒐𝒔 𝒙 𝒅𝒙 = 𝟏 𝟐 ‫׬‬ 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒+𝟑 𝒔𝒊𝒏 𝒙 𝟒+𝟑 𝒄𝒐𝒔 𝒙 + 𝒍𝒐𝒈 𝟒+𝟑 𝒄𝒐𝒔 𝒙 𝟒+𝟑 𝒔𝒊𝒏 𝒙 𝒅𝒙 = 𝟏 𝟐 ‫׬‬ 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟒+𝟑 𝒔𝒊𝒏 𝒙 𝟒+𝟑 𝒄𝒐𝒔 𝒙 × 𝟒+𝟑 𝒄𝒐𝒔 𝒙 𝟒+𝟑 𝒔𝒊𝒏 𝒙 𝒅𝒙 = 𝟏 𝟐 ‫׬‬ 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟏 𝒅𝒙 = 𝟏 𝟐 ‫׬‬ 𝟎 𝝅 𝟐 𝟎 𝒅𝒙 c) 𝟎
  • 8.
    6. Assertion :‫׬‬ 𝟐 𝟖 𝟏𝟎−𝒙 𝒙+ 𝟏𝟎−𝒙 𝒅𝒙 = 𝟑 Reason : ‫׬‬ 𝒂 𝒃 𝒇 𝒙 𝒅𝒙 = ‫׬‬ 𝒂 𝒃 𝒇(𝒂 + 𝒃 − 𝒙) 𝒅𝒙 Assertion න 𝟐 𝟖 𝟏𝟎 − 𝒙 𝒙 + 𝟏𝟎 − 𝒙 𝒅𝒙 = න 𝟐 𝟖 𝟏𝟎 − 𝟐 + 𝟖 − 𝒙 𝟐 + 𝟖 − 𝒙 + 𝟏𝟎 − 𝟐 + 𝟖 − 𝒙 𝒅𝒙 = න 𝟐 𝟖 𝟏𝟎 − 𝟏𝟎 − 𝒙 𝟏𝟎 − 𝒙 + 𝟏𝟎 − 𝟏𝟎 − 𝒙 𝒅𝒙 න 𝟐 𝟖 𝟏𝟎 − 𝒙 𝒙 + 𝟏𝟎 − 𝒙 𝒅𝒙 = න 𝟐 𝟖 𝒙 𝟏𝟎 − 𝒙 + 𝒙 𝒅𝒙
  • 9.
    න 𝟐 𝟖 𝟏𝟎 − 𝒙 𝒙+ 𝟏𝟎 − 𝒙 𝒅𝒙 = න 𝟐 𝟖 𝒙 𝟏𝟎 − 𝒙 + 𝒙 𝒅𝒙 න 𝟐 𝟖 𝟏𝟎 − 𝒙 𝒙 + 𝟏𝟎 − 𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝟐 𝟖 𝟏𝟎 − 𝒙 𝒙 + 𝟏𝟎 − 𝒙 + 𝒙 𝟏𝟎 − 𝒙 + 𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝟐 𝟖 𝟏𝟎 − 𝒙 + 𝒙 𝒙 + 𝟏𝟎 − 𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝟐 𝟖 𝒅𝒙 = 𝟏 𝟐 𝒙 𝟐 𝟖 = 𝟏 𝟐 𝟖 − 𝟐 = 𝟏 𝟐 𝟔 = 𝟑
  • 10.
    න 𝟐 𝟖 𝟏𝟎 − 𝒙 𝒙+ 𝟏𝟎 − 𝒙 𝒅𝒙 = 𝟑 Assertion is True Reason න 𝒂 𝒃 𝒇 𝒙 𝒅𝒙 = න 𝒂 𝒃 𝒇(𝒂 + 𝒃 − 𝒙) 𝒅𝒙 Reason is True Reason is the correct explanation of Assertion a) Both A and R are True and R is the correct explanation of A
  • 11.
    7. Assertion :If 𝒇′ 𝒙 = 𝒙 + 𝟏 𝟏+𝒙𝟐 and 𝒇(𝟎) = 𝟎 then 𝒇 𝒙 = 𝒙𝟐 𝟐 + 𝒕𝒂𝒏−𝟏 𝒙 Reason : ‫׬‬ 𝒕𝒂𝒏 𝒙 𝒅𝒙 = 𝐥𝐨𝐠(𝒔𝒆𝒄 𝒙) + 𝑪. Assertion 𝒇′ 𝒙 = 𝒙 + 𝟏 𝟏 + 𝒙𝟐 ⟹ 𝒇 𝒙 = න 𝒇′(𝒙) 𝒅𝒙 𝒇 𝒙 = න 𝒙 + 𝟏 𝟏 + 𝒙𝟐 𝒅𝒙 𝒇 𝒙 = 𝒙𝟐 𝟐 + 𝒕𝒂𝒏−𝟏 𝒙 + 𝑪 𝒇 𝟎 = 𝟎 ⟹ 𝒇 𝟎 = 𝟎 𝟐 + 𝒕𝒂𝒏−𝟏 𝟎 + 𝑪 = 𝟎 𝑪 = 𝟎 𝒇 𝒙 = 𝒙𝟐 𝟐 + 𝒕𝒂𝒏−𝟏 𝒙 Assertion is True
  • 12.
    Reason Reason is TrueReason is not used to prove Assertion න 𝒕𝒂𝒏 𝒙 𝒅𝒙 = 𝐥𝐨𝐠(𝒔𝒆𝒄 𝒙) + 𝑪 b) Both A and R are True and R is not the correct explanation of A
  • 13.
    8. Evaluate: ‫׬‬ 𝒙𝟗 𝟒𝒙𝟐+𝟏 𝟔𝒅𝒙 න 𝒙𝟗 𝟒𝒙𝟐 + 𝟏 𝟔 = න 𝒙𝟗 𝒙𝟐 𝟔 𝟒 + 𝟏 𝒙𝟐 𝟔 𝒅𝒙 = න 𝒙𝟗 𝒙𝟏𝟐 𝟒 + 𝟏 𝒙𝟐 𝟔 𝒅𝒙 න 𝒙𝟗 𝟒𝒙𝟐 + 𝟏 𝟔 = න 𝟏 𝒙𝟑 𝟒 + 𝟏 𝒙𝟐 𝟔
  • 14.
    න 𝒙𝟗 𝟒𝒙𝟐 + 𝟏𝟔 𝒅𝒙 = න 𝒅𝒙 𝒙𝟑 𝟒 + 𝟏 𝒙𝟐 𝟔 𝒖 = 𝟏 𝒙𝟐 𝒅𝒖 = −𝟐 𝒙𝟑 𝒅𝒙 𝒅𝒙 𝒙𝟑 = − 𝟏 𝟐 𝒅𝒖 න 𝒅𝒙 𝒙𝟑 𝟒 + 𝟏 𝒙𝟐 𝟔 = න − 𝟏 𝟐 𝒅𝒖 𝟒 + 𝒖 𝟔 = − 𝟏 𝟐 𝟒 + 𝒖 −𝟓 −𝟓 = − 𝟏 𝟐 න 𝟒 + 𝒖 −𝟔𝒅𝒖 න 𝒙𝟗 𝟒𝒙𝟐 + 𝟏 𝟔 𝒅𝒙 = 𝟏 𝟏𝟎 𝟒 + 𝟏 𝒙𝟐 −𝟓 + 𝑪
  • 15.
    9. Evaluate: ‫׬‬ 𝒔𝒊𝒏𝒙−𝒙 𝒄𝒐𝒔 𝒙 𝒙 (𝒙+𝒔𝒊𝒏 𝒙) 𝒅𝒙 න 𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = න 𝒙 + 𝒔𝒊𝒏 𝒙 − 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = න 𝒙 + 𝒔𝒊𝒏 𝒙 − 𝒙 𝟏 + 𝒄𝒐𝒔 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = න 𝒙 + 𝒔𝒊𝒏 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) − 𝒙 (𝟏 + 𝒄𝒐𝒔 𝒙) 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = න 𝟏 𝒙 − (𝟏 + 𝒄𝒐𝒔 𝒙) (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = න 𝟏 𝒙 𝒅𝒙 − න (𝟏 + 𝒄𝒐𝒔 𝒙) (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙
  • 16.
    න 𝒔𝒊𝒏 𝒙 −𝒙 𝒄𝒐𝒔 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = න 𝟏 𝒙 𝒅𝒙 − න (𝟏 + 𝒄𝒐𝒔 𝒙) (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 𝑳𝒆𝒕 𝒖 = 𝒙 + 𝐬𝐢𝐧 𝒙 𝒅𝒖 = 𝟏 + 𝒄𝒐𝒔 𝒙 𝒅𝒙 න 𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = 𝒍𝒐𝒈 𝒙 − න 𝒅𝒖 𝒖 = 𝒍𝒐𝒈 𝒙 − 𝒍𝒐𝒈 𝒖 + 𝑪 = 𝒍𝒐𝒈 𝒙 − 𝒍𝒐𝒈 (𝒙 + 𝒔𝒊𝒏 𝒙) + 𝑪 න 𝒔𝒊𝒏 𝒙 − 𝒙 𝒄𝒐𝒔 𝒙 𝒙 (𝒙 + 𝒔𝒊𝒏 𝒙) 𝒅𝒙 = 𝒍𝒐𝒈 𝒙 − 𝒍𝒐𝒈 (𝒙 + 𝒔𝒊𝒏 𝒙) + 𝑪
  • 17.
    10. Evaluate: ‫׬‬𝒔𝒊𝒏 𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 𝒅𝒙 න 𝒔𝒊𝒏 𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 𝒅𝒙 = න 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒕𝒂𝒏−𝟏 (𝒔𝒊𝒏 𝒙) 𝒅𝒙 = 𝟐 න 𝒔𝒊𝒏 𝒙 𝒕𝒂𝒏−𝟏(𝒔𝒊𝒏 𝒙) 𝒄𝒐𝒔 𝒙𝒅𝒙 𝒕 = 𝒔𝒊𝒏 𝒙 𝒅𝒕 = 𝒄𝒐𝒔 𝒙 𝒅𝒙 𝟐 න 𝒔𝒊𝒏 𝒙 𝒕𝒂𝒏−𝟏(𝒔𝒊𝒏 𝒙) 𝒄𝒐𝒔 𝒙 𝒅𝒙 = 𝟐 න 𝒕 𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒕 Let 𝒖 = 𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒗 = 𝒕 𝒅𝒕 𝒅𝒖 = 𝒅𝒕 𝟏 + 𝒕𝟐 𝒗 = 𝒕𝟐 𝟐 𝟐 න 𝒕 𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒕 = 𝟐 𝒕𝟐 𝟐 𝒕𝒂𝒏−𝟏 𝒕 − න 𝒕𝟐 𝟐 𝒅𝒕 𝟏 + 𝒕𝟐
  • 18.
    𝟐 න 𝒕𝒕𝒂𝒏−𝟏 𝒕 𝒅𝒕 = 𝟐 𝒕𝟐 𝟐 𝒕𝒂𝒏−𝟏 𝒕 − න 𝒕𝟐 𝟐 𝒅𝒕 𝟏 + 𝒕𝟐 = 𝒕𝟐𝒕𝒂𝒏−𝟏 𝒕 − න 𝒕𝟐 𝟏 + 𝒕𝟐 𝒅𝒕 = 𝒕𝟐𝒕𝒂𝒏−𝟏 𝒕 − න 𝒕𝟐 + 𝟏 − 𝟏 𝟏 + 𝒕𝟐 𝒅𝒕 = 𝒕𝟐 𝒕𝒂𝒏−𝟏 𝒕 − න 𝒕𝟐 + 𝟏 𝟏 + 𝒕𝟐 − 𝟏 𝟏 + 𝒕𝟐 𝒅𝒕 = 𝒕𝟐𝒕𝒂𝒏−𝟏 𝒕 − න 𝟏 − 𝟏 𝟏 + 𝒕𝟐 𝒅𝒕 = 𝒕𝟐 𝒕𝒂𝒏−𝟏 𝒕 − 𝒕 + 𝒕𝒂𝒏−𝟏 𝒕 + 𝑪 න 𝒔𝒊𝒏 𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 𝒅𝒙 = 𝒔𝒊𝒏𝟐𝒙 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏𝒙 − 𝒔𝒊𝒏 𝒙 + 𝒕𝒂𝒏−𝟏 𝒔𝒊𝒏 𝒙 + 𝑪
  • 19.
    11. Evaluate: ‫׬‬𝒆𝒙 𝟏+𝒔𝒊𝒏 𝟐𝒙 𝟏+𝒄𝒐𝒔 𝟐𝒙 𝒅𝒙 න 𝒆𝒙 𝟏 + 𝒔𝒊𝒏 𝟐𝒙 𝟏 + 𝒄𝒐𝒔 𝟐𝒙 𝒅𝒙 = න 𝒆𝒙 𝒔𝒊𝒏𝟐𝒙 + 𝒄𝒐𝒔𝟐𝒙 + 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝟐 𝒄𝒐𝒔𝟐𝒙 𝒅𝒙 = න 𝒆𝒙 𝒔𝒊𝒏 𝒙 + 𝒄𝒐𝒔 𝒙 𝟐 𝟐 𝒄𝒐𝒔𝟐𝒙 𝒅𝒙 = න 𝒆𝒙 𝒔𝒊𝒏 𝒙 + 𝒄𝒐𝒔 𝒙 𝟐 𝒄𝒐𝒔𝟐𝒙 𝒅𝒙
  • 20.
    ‫׬‬ 𝒆𝒙 𝟏+𝒔𝒊𝒏𝟐𝒙 𝟏+𝒄𝒐𝒔 𝟐𝒙 𝒅𝒙 = ‫׬‬ 𝒆𝒙 𝒔𝒊𝒏 𝒙+𝒄𝒐𝒔 𝒙 𝟐 𝒄𝒐𝒔𝟐𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝒆𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔𝟐𝒙 + 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔𝟐𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝒆𝒙 𝒔𝒆𝒄 𝒙 𝒕𝒂𝒏 𝒙 + 𝒔𝒆𝒄 𝒙 𝒅𝒙 ‫׬‬ 𝒆𝒙 𝒇 𝒙 + 𝒇′(𝒙) 𝒅𝒙 = 𝒆𝒙 𝒇 𝒙 + 𝑪 𝒇 𝒙 = 𝐬𝐞𝐜 𝒙 𝒇′ 𝒙 = 𝐬𝐞𝐜 𝒙 𝒕𝒂𝒏 𝒙 ‫׬‬ 𝒆𝒙 𝟏+𝒔𝒊𝒏 𝟐𝒙 𝟏+𝒄𝒐𝒔 𝟐𝒙 𝒅𝒙 = 𝒆𝒙 𝒔𝒆𝒄 𝒙 + 𝑪
  • 21.
    12. Evaluate: ‫׬‬𝟎 𝝅 𝟐𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙 න 𝟎 𝝅 𝟐 𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 + 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 (𝒄𝒐𝒔 𝒙 ) 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈 𝒔𝒊𝒏𝒙 − 𝒍𝒐𝒈(𝒄𝒐𝒔 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈(𝒄𝒐𝒔 𝒙 𝒅𝒙
  • 22.
    න 𝟎 𝝅 𝟐 𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙)− 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 − 𝒍𝒐𝒈 𝟐 − 𝒍𝒐𝒈(𝒄𝒐𝒔 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 𝒅𝒙 − න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝟐 𝒅𝒙 − න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒄𝒐𝒔 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 𝒅𝒙 − 𝒍𝒐𝒈 𝟐 න 𝟎 𝝅 𝟐 𝒅𝒙 − න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒄𝒐𝒔 𝝅 𝟐 − 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝒍𝒐𝒈 𝒔𝒊𝒏 𝒙 𝒅𝒙 − 𝒍𝒐𝒈 𝟐 න 𝟎 𝝅 𝟐 𝒅𝒙 − න 𝟎 𝝅 𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) 𝒅𝒙 = −𝒍𝒐𝒈 𝟐 × 𝒙 𝟎 𝝅 𝟐 = −𝒍𝒐𝒈 𝟐 × 𝝅 𝟐 − 𝟎 න 𝟎 𝝅 𝟐 𝟐 𝒍𝒐𝒈(𝒔𝒊𝒏 𝒙) − 𝒍𝒐𝒈(𝒔𝒊𝒏 𝟐𝒙) 𝒅𝒙 = − 𝝅 𝟐 𝒍𝒐𝒈 𝟐
  • 23.
    13. Evaluate: ‫׬‬ 𝟎 𝝅 𝟐 𝒙𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙+𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝝅 𝟐 − 𝒙 𝒔𝒊𝒏 𝝅 𝟐 − 𝒙 𝒄𝒐𝒔 𝝅 𝟐 − 𝒙 𝒔𝒊𝒏 𝟒 𝝅 𝟐 − 𝒙 + 𝒄𝒐𝒔𝟒 𝝅 𝟐 − 𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝝅 𝟐 − 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙 𝒅𝒙 න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝝅 𝟐 − 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙 𝒅𝒙
  • 24.
    න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = න 𝟎 𝝅 𝟐 𝝅 𝟐 − 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙 𝒅𝒙 Each integral = 𝟏 𝟐 (sum of the two integrant) න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 + 𝝅 𝟐 − 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝟒𝒙 + 𝒔𝒊𝒏𝟒𝒙 𝒅𝒙 = 𝟏 𝟐 න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 + 𝝅 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 − 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = 𝝅 𝟒 න 𝟎 𝝅 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙
  • 25.
    න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = 𝝅 𝟒 න 𝟎 𝝅 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 Dividing Numerator and Denominator by 𝒄𝒐𝒔𝟒𝒙 න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = 𝝅 𝟒 න 𝟎 𝝅 𝟐 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒄𝒐𝒔𝟒𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = 𝝅 𝟒 න 𝟎 𝝅 𝟐 𝒕𝒂𝒏 𝒙 𝒔𝒆𝒄𝟐𝒙 𝟏 + 𝒕𝒂𝒏𝟒𝒙 𝒅𝒙 Let 𝒖 = 𝒕𝒂𝒏𝟐 𝒙 Let 𝒅𝒖 = 𝟐 𝒕𝒂𝒏𝒙 𝒔𝒆𝒄𝟐 𝒙 𝒅𝒙 𝐭𝐚𝐧 𝒙 𝒔𝒆𝒄𝟐 𝒙 = 𝟏 𝟐 𝒅𝒖 When 𝒙 = 𝟎, 𝒖 = 𝒕𝒂𝒏𝟐 𝟎 = 𝟎 When 𝒙 = 𝝅 𝟐 , 𝒖 = 𝒕𝒂𝒏𝟐 𝝅 𝟐 = ∞ 𝝅 𝟒 න 𝟎 𝝅 𝟐 𝒕𝒂𝒏 𝒙 𝒔𝒆𝒄𝟐 𝒙 𝟏 + 𝒕𝒂𝒏𝟐𝒙 𝟐 𝒅𝒙 = 𝝅 𝟒 න 𝟎 ∞ 𝟏 𝟐 𝒅𝒖 𝟏 + 𝒖𝟐
  • 26.
    𝝅 𝟒 න 𝟎 𝝅 𝟐 𝒕𝒂𝒏 𝒙𝒔𝒆𝒄𝟐𝒙 𝟏 + 𝒕𝒂𝒏𝟐𝒙 𝟐 𝒅𝒙 = 𝝅 𝟒 න 𝟎 ∞ 𝟏 𝟐 𝒅𝒖 𝟏 + 𝒖𝟐 = 𝝅 𝟖 𝒕𝒂𝒏−𝟏 (𝒖) 𝟎 ∞ = 𝝅 𝟖 𝒕𝒂𝒏−𝟏 ∞ − 𝒕𝒂𝒏−𝟏 𝟎 = 𝝅 𝟖 𝝅 𝟐 − 𝟎 න 𝟎 𝝅 𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 𝒔𝒊𝒏 𝟒𝒙 + 𝒄𝒐𝒔𝟒𝒙 𝒅𝒙 = 𝝅𝟐 𝟏𝟔
  • 27.
    𝟏𝟒. 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆: න 𝒙𝟐+ 𝟏 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝟐 𝒍𝒐𝒈 𝒙 𝒙𝟒 𝒅𝒙 න 𝒙𝟐 + 𝟏 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝟐 𝒍𝒐𝒈 𝒙 𝒙𝟒 𝒅𝒙 = න 𝒙𝟐 + 𝟏 𝒙𝟒 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝒍𝒐𝒈 𝒙𝟐 𝒅𝒙 = න 𝒙𝟐 + 𝟏 𝒙𝟒 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝒍𝒐𝒈 𝒙𝟐 𝒅𝒙 = න 𝒙𝟐 + 𝟏 𝒙 𝟏 𝒙𝟑 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 𝒙𝟐 𝒅𝒙 = න 𝟏 + 𝒙𝟐 𝒙𝟐 𝟏 𝒙𝟑 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 𝒙𝟐 𝒅𝒙
  • 28.
    න 𝒙𝟐 + 𝟏𝒍𝒐𝒈 𝒙𝟐 + 𝟏 − 𝟐 𝒍𝒐𝒈 𝒙 𝒙𝟒 𝒅𝒙 = න 𝟏 + 𝒙𝟐 𝒙𝟐 𝟏 𝒙𝟑 𝒍𝒐𝒈 𝒙𝟐 + 𝟏 𝒙𝟐 𝒅𝒙 = න 𝟏 + 𝟏 𝒙𝟐 𝒍𝒐𝒈 𝟏 + 𝟏 𝒙𝟐 𝟏 𝒙𝟑 𝒅𝒙 Let 𝒕 = 𝟏 + 𝟏 𝒙𝟐 𝒅𝒕 = −𝟐 𝒙𝟑 𝒅𝒙 𝟏 𝒙𝟑 𝒅𝒙 = − 𝟏 𝟐 𝒅𝒕 න 𝟏 + 𝟏 𝒙𝟐 𝒍𝒐𝒈 𝟏 + 𝟏 𝒙𝟐 𝟏 𝒙𝟑 𝒅𝒙 = න 𝒕 𝒍𝒐𝒈 𝒕 −𝟏 𝟐 𝒅𝒕 = − 𝟏 𝟐 න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕
  • 29.
    න 𝟏 + 𝟏 𝒙𝟐 𝒍𝒐𝒈𝟏 + 𝟏 𝒙𝟐 𝟏 𝒙𝟑 𝒅𝒙 = − 𝟏 𝟐 න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕 Let 𝒖 = 𝒍𝒐𝒈 𝒕 𝒅𝒗 = 𝒕 𝒅𝒕 𝒅𝒖 = 𝒅𝒕 𝒕 𝒗 = 𝟐 𝟑 𝒕 𝟑 𝟐 − 𝟏 𝟐 න 𝒕 𝒍𝒐𝒈 𝒕 𝒅𝒕 = − 𝟏 𝟐 𝟐 𝟑 𝒕 𝟑 𝟐 × 𝐥𝐨𝐠 𝒕 − න 𝟐 𝟑 𝒕 𝟑 𝟐 𝒅𝒕 𝒕 = − 𝟏 𝟑 𝒕 𝟑 𝟐 × 𝒍𝒐𝒈 𝒕 + 𝟏 𝟑 න 𝒕 𝟏 𝟐𝒅𝒕 = − 𝟏 𝟑 𝒕 𝟑 𝟐 × 𝒍𝒐𝒈 𝒕 + 𝟏 𝟑 𝟐 𝟑 𝒕 𝟑 𝟐
  • 30.
    − 𝟏 𝟐 න 𝒕 𝒍𝒐𝒈𝒕 𝒅𝒕 = − 𝟏 𝟑 𝒕 𝟑 𝟐 × 𝒍𝒐𝒈 𝒕 + 𝟏 𝟑 𝟐 𝟑 𝒕 𝟑 𝟐 = − 𝟏 𝟑 𝒕 𝟑 𝟐 × 𝒍𝒐𝒈 𝒕 + 𝟐 𝟗 𝒕 𝟑 𝟐 = − 𝟏 𝟑 𝟏 + 𝟏 𝒙𝟐 𝟑 𝟐 × 𝒍𝒐𝒈 𝟏 + 𝟏 𝒙𝟐 + 𝟐 𝟗 𝟏 + 𝟏 𝒙𝟐 𝟑 𝟐 ‫׬‬ 𝒙𝟐+𝟏 𝒍𝒐𝒈 𝒙𝟐+𝟏 −𝟐 𝒍𝒐𝒈 𝒙 𝒙𝟒 𝒅𝒙 = 𝟏 𝟑 𝟏 + 𝟏 𝒙𝟐 𝟑 𝟐 𝟐 𝟑 − 𝒍𝒐𝒈 𝟏 + 𝟏 𝒙𝟐
  • 31.
    15. A function𝑭(𝒙) is called the anti-derivative or primitive of a given function 𝒇(𝒙) with respect to 𝒙 if 𝒅 𝒅𝒙 𝑭 𝒙 = 𝒇 𝒙 . The anti-derivative of function is not unique. If 𝑭(𝒙) is anti-derivative of 𝒇(𝒙) then 𝑭(𝒙) + 𝑪 is also anti-derivative of 𝒇(𝒙) We represent anti-derivative of 𝒇(𝒙) by ‫׬‬ 𝒇(𝒙) 𝒅𝒙 a) Find the anti-derivative of 𝒇 𝒙 = 𝒕𝒂𝒏𝟑𝒙 𝒄𝒐𝒔𝟑𝒙 Anti-derivative of 𝒕𝒂𝒏𝟑𝒙 𝒄𝒐𝒔𝟑𝒙 = ‫׬‬ 𝒕𝒂𝒏𝟑𝒙 𝒄𝒐𝒔𝟑𝒙 𝒅𝒙 = න 𝒔𝒊𝒏𝟑 𝒙 𝒄𝒐𝒔𝟑𝒙 𝒄𝒐𝒔𝟑𝒙 𝒅𝒙 = න 𝒔𝒊𝒏𝟑 𝒙 𝒄𝒐𝒔𝟔𝒙 𝒅𝒙
  • 32.
    Anti-derivative of 𝒕𝒂𝒏𝟑𝒙 𝒄𝒐𝒔𝟑𝒙 = ‫׬‬ 𝒔𝒊𝒏𝟑𝒙 𝒄𝒐𝒔𝟔𝒙 𝒅𝒙 =න 𝒔𝒊𝒏𝟐 𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔𝟔𝒙 𝒅𝒙 = න 𝟏 − 𝒄𝒐𝒔𝟐𝒙 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔𝟔𝒙 𝒅𝒙 = න 𝟏 𝒄𝒐𝒔𝟔𝒙 − 𝟏 𝒄𝒐𝒔𝟒𝒙 𝒔𝒊𝒏 𝒙 𝒅𝒙 Let 𝒕 = 𝐜𝐨𝐬 𝒙 𝒅𝒕 = −𝒔𝒊𝒏 𝒙 𝒅𝒙 𝒔𝒊𝒏 𝒙 𝒅𝒙 = −𝒅𝒕 න 𝟏 𝒄𝒐𝒔𝟔𝒙 − 𝟏 𝒄𝒐𝒔𝟒𝒙 𝒔𝒊𝒏 𝒙 𝒅𝒙 = න 𝟏 𝒕𝟔 − 𝟏 𝒕𝟒 (−𝒅𝒕)
  • 33.
    න 𝟏 𝒄𝒐𝒔𝟔𝒙 − 𝟏 𝒄𝒐𝒔𝟒𝒙 𝒔𝒊𝒏 𝒙 𝒅𝒙= න 𝟏 𝒕𝟔 − 𝟏 𝒕𝟒 (−𝒅𝒕) = − 𝒕−𝟓 −𝟓 − 𝒕−𝟑 −𝟑 + 𝑪 = 𝟏 𝟓 × 𝟏 𝒕𝟓 − 𝟏 𝟑 × 𝟏 𝒕𝟑 + 𝑪 = 𝟏 𝟓 × 𝟏 𝒄𝒐𝒔𝟓𝒙 − 𝟏 𝟑 × 𝟏 𝒄𝒐𝒔𝟑𝒙 + 𝑪 Anti-derivative of 𝒕𝒂𝒏𝟑𝒙 𝒄𝒐𝒔𝟑𝒙 = 𝒔𝒆𝒄𝟓𝒙 𝟓 − 𝒔𝒆𝒄𝟑𝒙 𝟑 + 𝑪
  • 34.
    b) If theprimitive of 𝒇 𝒙 = 𝒙𝟑 𝟏+𝒙𝟐 is 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪, find the value of 𝒂 and 𝒃 Primitive of 𝒙𝟑 𝟏+𝒙𝟐 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 න 𝒙𝟑 𝟏 + 𝒙𝟐 𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 න 𝒙𝟑 𝟏 + 𝒙𝟐 𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 න 𝒙𝟐 (𝒙) 𝟏 + 𝒙𝟐 𝒅𝒙 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
  • 35.
    න 𝒙𝟐(𝒙) 𝟏 + 𝒙𝟐 𝒅𝒙= 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 Let 𝒖 = 𝟏 + 𝒙𝟐 𝒅𝒖 = 𝟐𝒙𝒅𝒙 𝒙 𝒅𝒙 = 𝟏 𝟐 𝒅𝒖 න 𝒖 − 𝟏 𝟏 𝟐 𝒅𝒖 𝒖 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 𝟏 𝟐 න 𝒖 𝒖 − 𝟏 𝒖 𝒅𝒖 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 𝟏 𝟐 න 𝒖 𝟏 𝟐 − 𝒖− 𝟏 𝟐 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪
  • 36.
    𝟏 𝟐 න 𝒖 𝟏 𝟐 −𝒖− 𝟏 𝟐 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 𝟏 𝟐 𝒖 𝟑 𝟐 𝟑 𝟐 − 𝒖 𝟏 𝟐 𝟏 𝟐 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 𝟏 𝟐 𝟐 𝟑 𝟏 + 𝒙𝟐 𝟑 𝟐 − 𝟐 𝟏 + 𝒙𝟐 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 𝟏 𝟑 𝟏 + 𝒙𝟐 𝟑 𝟐 − 𝟏 + 𝒙𝟐 = 𝒂 𝟏 + 𝒙𝟐 𝟑 𝟐 + 𝒃 𝟏 + 𝒙𝟐 + 𝑪 𝒂 = 𝟏 𝟑 𝒃 = −𝟏