Mathematics
Lecture -
01
By – Ashish Agarwal
Sir
1. Graphs of y = f(x) and y = f–1(x) are mirror images of each other about line y = x.
(T/F)
2. If ( ,
α )
β lies on grape of y = f(x) then ( ,
β )
α lies on the graph of y = f–1(x).
(T/F)
3. All solutions of f(x) = f–1(x) lie on the line y = x. (T/F)
4. All solutions of f(x) = f–1(x) lie on the line y = x or on a line with slope –1.
(T/F)
5. Solutions of f(x) = f–1(x) not lying on the line y = x can only arise in cases where (a,
b) & (b, a) a ≠ b both lie on graph of y = f(x). (T/F)
6. Solutions of f(x) = f–1(x) not lying on the line y = x can only arise in cases where
f(a) = b & f(b) = a, a ≠ b, a, b ∈ Df. (T/F)
7. Solutions of f(x) = f–1(x) not lying on line y = x can only arise in case graph of y = f(x)
crosses y = x. (T/F)
8. Solutions of f(x) = f–1(x) not lying on the line y = x will always arise in cases where (a,
b) & (b, a), a ≠ b both lie on grape of y = f(x). (T/F)
9. For a function to be invertible it should be
= x ∀ x ∈
A
10. If f: A → B is a bijection and g: B → A be a function such that g
f x
then g =
= x ∀ x ∈
B
11. If f: A → B is a bijection and g: B → A be a function such that f
g x
then g =
Write explicitly, functions of y defined by the following equations and also find the
domains of definition of the given implicit functions :
(a) 10x + 10y = 10 (b) x + |y| = 2y
QUESTION
= x 4 − x then find f−1(x) and solve the equation,
f: 2, ∞ → −∞, 4 ,where f
x f−1(x) = f(x).
QUESTION
f: 1
, ∞ → 3
,
∞
2 4
is the function given by f(x) = x2 − x + 1. Show that f is bijective,
Find
2 1
2
f−1. Hence solve for real x, x − x + 1 =
+
x
−
3
4
QUESTION
x +
p2,
Let a function f defined from R → R as f(x) = ቈ
px + 5,
for x ≤
2
for x >
2
If the function is surjective, then find the sum of all possible integral values of p in [–
100, 100].
QUESTIO
N
MB 2
Find the following:
2
(i) sin π
−
sin−1
−
32
(ii) cos
cos−1
2
− 3
+
π
6
(iii) tan−1 tan
3π
4
QUESTION
cos−1 cos 2
cot−1
2 − 1 is equal to
π
4
3
π
4
none of these
A 2 −
1
B
C
D
QUESTIO
N
The value of sin−1 cot
sin−1
2
− 4
3
+
cos−1
4
12
+ sec−1 2 is
0
π
2
π
3
none of these
A
B
C
D
QUESTIO
N
A lion moves in the region given by the graph y − |y| − x + |x| = 0. Then on which of the
following curve a person can move so that he does not encounter lion -
y = e−
x
1
y =
x
y = signum
(x)
y = − 4 +
x
A
B
C
D
QUESTIO
N
QUESTION
1. Fill in the Table
[Ans. D]
f(x) g(x) f(x) + g(x) f(x) − g(x) f(x) ⋅ g(x)
f x
g x g ∘ f x (f ∘ g)(x)
odd odd
even even
odd even
even odd
2. Suppose that f is an even, periodic function with period 2, and that f(x) = x for all x
in interval [0, 1]. Find the value of f(3.14).
x+
1 n
times
3. Let f(x) = x−3
, x ≠ −1. Then f 2010(2014) [where f n(x) = f ∘ f
… .∘ f (x)] is:
(A) 2010 (B) 4020 (C) 4028 (D) 2014
[Ans. 0.86]
KTK
4. Find the inverse of f(x) = 2log10 x + 8 and hence solve the equation f(x) =
f−1(x).
5. For a > 0, if f(x + a)
=
1
2
2
+ f(x) − f(x), prove that f is periodic.
QUESTIO
N
KTK
1. Find the principal value of each of the following:
1
3
(i) tan−1 (ii)
tan−1
−
1
3
(iii) tan−1 cos
π
2
(iv) tan−1 2 cos
2π
3
2. For the principal values, evaluate each of the following:
(i) tan−1 −1 +
cos−1
−
1
2
(ii) tan−1 2 sin 4
cos−1
3
2
3. Evaluate each of the following:
(i) tan−1 1 +
cos−1
−
1
2
+
sin−1
−
1
2
(ii)
tan−1
−
1
3 −
π
2
(iii) tan−1 tan
5π
6
+ tan−1 − 3 + tan−1
sin
+ cos−1 cos
13
π6
Bumper Practice Problems
(BPP)
π
6
(ii) −
π
6
(iii) 0 (iv) −
π
4
π
2
(ii)
π
3
1. (i)
2. (i)
3. (i)
3
π
4
(ii) −
3π
4
(iii) 0
BPP
Answers
Mathematics
Lecture -
02
By – Ashish Agarwal
Sir
1. ITF Domain Range
sin−1 x
cos−1 x
tan−1x
cot−1 x
sec−1 x
cosec−1x
2. sin−1 x |max = ,
sin−1 x |min =
cos−1 x |max = ,
cos−1 x |min = ,
3. ITF Inc. Dec. Even Odd
𝐬in−1x
cos−1 x
tan−1 x
cot−1 x
4. sin−1 −x =
tan−1 −x =
5. Domain of f x = sin−1 x + tan−1 x +
sec−1 x is
6. cos–1 (0.3) > cos–1 (0.5) (T/F)
sin–1 (0.3) > sin–1 (0.2)
cot–1 (5) > cot–1 (2)
tan–1 (7) < tan–1 (3)
(T/F)
(T/F)
(T/F)
7. sin−1 1 = , cos−1 1 = , cot−
1
3 = ,
tan−1 3
=
,
sec−1
2
3
=
8. If f is increasing bijective function then solutions of f(x) = f−1(x) can only lie on
line y = x. (T/F)
9. lim tan x =
x→∞
lim cot x =
x→∞
lim tan−1 x =
,
x→−∞
lim cot−1 x =
x→−∞
Nichod !!
S. No. f(x) Domain Range
1 sin−1x |x| ≤ 1
π π
− ,
2 2
2 cos−1x |x| ≤ 1 [0, π]
3 tan−1x x ∈ R
π π
− ,
2 2
4 sec−1x |x| ≥ 1 [0, π] − π
or 0, π
∪ π
, π
2 2
2
5 cosec−1x |x| ≥ 1
π π
− , − {0}
2 2
6 cot−1x x ∈ R (0, π)
Find the following:
2
(i) tan cos−1 1
+
tan−1
−
13
(ii) cos−1 cos
7π
6
(iii) cos tan−1
3
4
(iv) tan sin−1 3
+ cot−1
3
5
2
QUESTION
9
16
25
23
The value of tan2 sec−1
3
+
cot2
cosec−1 4 is -
QUESTIO
N
A
B
C
D
Evaluate:
1. sin arc
sin
3
5
− arc
cos
3
5
2. tan 1
cos−1
5
2
3
3. sin tan−1 cos
cot−1
−
1
3
4. sin tan−1 2 + cos
tan−1 2
5. tan 2 tan−1 1
− π
5
4
QUESTIO
N
π
2
π
3
π
6
π
4
tan−
1
1 +
3
3 +
3
+
sec−1
8 + 4
3
6 + 3
3
is equal to :
QUESTION [JEE Mains 2023
(Jan)]
A
B
C
D
(a)
sin−1
−
1
2
+
cos−1
−
1
2
−
tan−1(−
3) +
cot−1
−
1
3
(b) sin 2 sin−1
3
(c)
5
cos 2 tan−1
2
+ sin 2 tan−1
3
QUESTION
1
7
2 2 −
1
7 −
1
1
2
2
4
A possible value of tan 1
sin−1
6
3
8
is :
QUESTION [JEE Mains 2021
(Feb)]
A
B
C
D
(a) Domain & range of cos−1
x
ex
(b)
(c)
(d)
Domain & range of y = sin−1
Domain & range of cos−1 x
Domain & range of cot−1
sgnx
(e) Domain & range of
1
(f) Domain & range of
ln cot x
1
sgn sec−1
ex
QUESTIO
N
The domain of definition of the function f
x
= sin−1
log
3
x
3
is
[1, 9]
[–1, 9]
[–9, 1]
[–9, –1]
A
B
C
D
Ans. A
QUESTIO
N
[0,
2π]
[0,
2π)
[0,
π)
[0,
π]
The range of f x = 4
sin−1
x2
x2 +
1
is
QUESTION [JEE Mains 2023 (13
April)]
A
B
C
D
3x2 + bx + 3 , x ∈ R is
0,
π
2
, then square of sum of
If range of the function f(x) =
tan−1
all possible values of b will be
0
18
72
None of these
A
B
C
D
QUESTION
Solve:
(1) log2 tan−1 x >
1
(2) cot−1 x 2 − 5 cot−1 x + 6
> 0
QUESTIO
N
The number of real roots of the equation
4
tan−1 x(x + 1) + sin−1x2 + x + 1 = π
is :
1
2
4
0
QUESTION [JEE Mains 2021
(July)]
A
B
C
D
Let f(x) = a + b cos−1 x (b > 0). If domain and range of f(x) are the same set then (b
− a)
is equal to
QUESTIO
N
A 1 −
1
π
2
+ 1
π
2
1 −
π
2
B
C
D
(−∞,
0)
(−∞,
0]
(0,
∞)
[0,
∞)
f ∶ R → R is defined as f(x) = ቈx2 + 2mx
− 1
for x ≤
0.
mx − 1
for x > 0
If f(x) is one-one then m must lies in the interval
Mind
Bender
A
B
C
D
1. The number of solutions of equation 2 sin−1 x 2 − 5 sin−1 x + 2 = 0 is
(A) 2 (B) 1 (C) 3 (D) None of
these
2. sec−1 sec
−30∘
(A) –60°
is equal to
(B) –30° (C) 30° (D) 150°
3. sin 2 sin−1
0.8
(A) 0.96
is equal to
(B) 0.48 (C) 0.64 (D) None of these
QUESTIO
N
[Ans. A]
[Ans. B]
[Ans. C]
KTK
1. Evaluate each of the following:
(i) sin sin−1
7
2
5
(ii) sin cos−1 5
1
3
(iii) sin tan−1
24
7
(iv) cosec cos−1
3
5
(v) sec sin−1
12
1
3
1
7
(vii) cot cos−1
3
5
(vi) tan cos−1 8
(viii) cos tan−1
24
7
2. Prove the following results:
(i) tan cos−1 4
+ tan−1
2
5
3
=
17
6
(ii) cos sin−1 3
+ cot−1 3
=
5
2
6
5
13
(iii) tan sin−1 5
+ cos−1
3
13
=
63
1
6
(iv)
sin
cos−1 3
+ sin−1
5
5
=
63
6
5
Basic Practice Problems
(BPP)
[CBSE 2012]
1. (i)
7
(ii)
1
2 (iii)
2
4 (iv)
(v)
2
5
1
3
5
(vi)
1
3
1
5
8
(vii)
2
5
3
4
(viii)
5
4
7
2
5
BPP
Answers
Mathematics
Lecture -
03
By – Ashish Agarwal
Sir
1. tan−1 x > 1 ⇒ ⇒ x ∈
3
4
2. sin−1 x > ⇒ ⇒ x ∈
1
4
3. cos−1 x > ⇒ ⇒ x ∈
3
2
4. cot−1 x > ⇒ ⇒ x ∈
5. 2 < cot−1 x < 3 ⇒ x ∈
6. −1 < tan−1 x < 1 ⇒ x ∈
7. cot−1 x 2 − 4 cot−1 x − 5 > 0 then x ∈
8. 6 sin−1 x 2 − 5 sin−1 x + 1 < 0 then x ∈
9. cos−1 x 2 − 5 cos−1 x + 6 > 0 then x ∈
10. Range of f
x
= cos−1x + cot−1 x + cosec−1x is
1
2
11. sin−1 x = ⇒ x = 2
sin−1 1
=
tan−1 x = π
⇒ x
=
2 + 1
=
8
cos−1 x = 2 ⇒ x
=
1
2
=
tan−1
cos−1
cot−1 3 =
cot−1 x = 4 ⇒ x =
3
4
sin−1 x = − ⇒ x = co
s
−
1
1
2
=
tan−1 1 =
cot−1 x = 3 ⇒ x =
tan−1 x = 1 ⇒ x =
cos−
1
−
1
2
=
cos−1 x
=
1
2
⇒ x
=
cot−1 x = 3 ⇒ x =
1
2
cos−1 x = − ⇒ x =
1
7
2 2 −
1
7 −
1
1
2
2
4
A possible value of tan 1
sin−1
6
3
8
is :
QUESTION [JEE Mains 2021
(Feb)]
A
B
C
D
(a) Domain & range of cos−1
x
ex
(b)
(c)
(d)
Domain & range of y = sin−1
Domain & range of cos−1 x
Domain & range of cot−1
sgnx
(e) Domain & range of
1
(f) Domain & range of
ln cot x
1
sgn sec−1
ex
QUESTIO
N
Let f(x) = a + b cos−1 x (b > 0). If domain and range of f(x) are the same set then (b
− a)
is equal to
QUESTIO
N
A 1 −
1
π
2
+ 1
π
2
1 −
π
2
B
C
D
[0,
2π]
[0,
2π)
[0,
π)
[0,
π]
The range of f x = 4
sin−1
x2
x2 +
1
is
QUESTION [JEE Mains 2023 (13
April)]
A
B
C
D
(−∞,
0)
(−∞,
0]
(0,
∞)
[0,
∞)
f ∶ R → R is defined as f(x) = ቈx2 + 2mx
− 1
for x ≤
0.
mx − 1
for x > 0
If f(x) is one-one then m must lies in the interval
Mind
Bender
A
B
C
D
Range of the function f(x) =
cos−1
1
ex+e−x
is
0,
π
,
,
π
π
6
2
π
π
3
2
,
π
2π
2
3
A
B
C
D
QUESTIO
N
The domain of the function cosec−1
1 +
x x
is :
−1, −
1
2
∪ (0,
∞)
1
− , 0 ∪ [1,
∞)
2
1
− , ∞ −
{0}
2
1
− , ∞ −
{0}
2
QUESTIO
N
A
B
C
D
Let x denote the greatest integer less than or equal to x. Then the domain of
f x = sec−1 2 x + 1 is:
−∞, ∞
−∞, ∞ − 0
−∞, −1 ∪ 0,
∞
−∞, −1 ∪ 1,
∞
A
B
C
D
Ans. A
QUESTION [JEE Mains 2025 (28
Jan)]
If cos−1 x + cos−1 y + cos−1 z = 3π then the
value of
x2014 + y2014 + z2014
+
6
x2013 + y2013 +
z2013
QUESTIO
N
Find the values of:
(i) sin−1
sin 3
(ii) sin−1
sin 53
(iii) sin−1
sin 7
(iv) sin−1
sin 10
(v) sin−1
sin 20
QUESTIO
N
Find the values of:
(i) cos−1
cos 2
(ii) cos−1
cos 3
(iii) cos−1
cos 5
(iv) cos−1
cos 7
(v) cos−1
cos 10
QUESTIO
N
Find the values of:
(i) tan−1
tan 3
(ii) tan−1
tan 5
(iii) tan−1
tan 7
(iv) tan−1
tan 10
(v) tan−1
tan 15
QUESTIO
N
Mathematics
Lecture -
04
By – Ashish Agarwal
Sir
1. Function Period Yaad Rakho
sin−1(sin x) sin−1(sin x) = ൝
cos−1(cos x) cos−1(cos x) = ൝
tan−1(tan x) tan−1(tan x) = ൝
2. (a) y = sin–1 x (b) y = cos–1 x
(c) y = tan–1 x (d) y = cot–1 x
3.
sin−1
1 1
2
2
= = cos−1 hence graph of y = sin–1 x and y = cos–1 x
intersect at x = , y =
4.
sin–1 x > cos–1 x has solution
sin–1 x < cos–1 x has solution
5. tan−1 1 = = cot−1 1 hence graph of y = tan–1 x and y = cot–1 x
intersect at x = , y =
6.
(a) tan–1 x > cot–1 x if x 
(b) tan–1 x < cot–1 x if x 
cos–1 (cos 100) =
7. sin–1 (sin 100) = tan–1 (tan
100) =
8. (a) y = sin–1 (sin x)
8. (b) y = cos–1 (cos x)
(c) y = tan–1 (tan x)
9. sin−1 x
=
1
2
⇒ x
∈
1 < tan−1 x < 2 ⇒ x ∈
cos−1 x > 2 ⇒ x ∈
tan−1 x > 2 ⇒ x ∈
cot−1 x > 2 ⇒ x ∈
Integral solution of the inequality 3x2 + 8x < 2
sin−1
sin 4 −
cos−1
cos 4 is
1
–1
0
2
A
B
C
D
QUESTIO
N
If x = sin–1 (sin10) and y = cos–1 (cos10), they y – x is equal to
QUESTION [JEE Mains
2019]
A. 10
B. 0
C. 
D. 7

If a = sin−1sin 5 and b =
cos−1
cos 5 , then a2 + b2 is equal
to
QUESTION [JEE Mains 2024 (31
Jan)]
Ans. C
25
4π2 +
25
8π2 − 40π +
50
4π2 − 20π +
50
A
B
C
D
3π −
11
4π −
9
4π −
11
3π +
1
cos−1 cos −5 + sin−1 sin 6 − tan−1 tan 12 is equal to:
(The inverse trigonometric function take the principals values)
QUESTION [JEE Mains
2021]
A
B
C
D
Value of sin−1 sin 7 +
cos−1
cos 13is
21 −
5π
20 −
6π
20 −
5π
21 −
6π
A
B
C
D
QUESTIO
N
10
π7
+ cot−1
cot
26
π5
(a) Solve : cos−1
cos
(b) Prove that cos−1
cos
1000π
7
+
sin−1
sin
601π
1
4
=
13π
1
4
QUESTION
Show that:
sin−
1
sin
33π
7
+
cos−1
cos
46π
7 8
+ tan−1 − tan 13π
+ cot−1
cot
−
19π
8 =
13π
7
QUESTION
α
α −
2
α +
2
2 −
α
If f(x) = x11 + x9 − x7 + x3 + 1 and f sin−1(sin 8) =
α, α is constant, then
f tan−1(tan 8) is
equal to
QUESTIO
N
A
B
C
D
Let f: [0, 4π] → [0, π] be defined by f(x) = cos−1(cos x). The number of points x ∈
[0, 4π]
1
0
satisfying the equation f(x) = 10−x
is
QUESTION [JEE Advanced
2014]
Let f x = x + 1 x + 2 x + 3 x + 4 + 5 where x ∈−6, 6 . If the range of the
function is a, b where a, b ∈ N then find the value ofa + b .
Ans. 5049
Mind Bender
1. If cos−1 x + cos−1 y + cos−1 z = 3π, then find the
value of
x2013+y2013+z2013+
6
x2014+y2014+z201
4
sin−1 w + sin−1
z
= π2 then compute the value of
2. If sin−1 x +
sin−1 y (x + y)(w
+ z).
QUESTION
[Ans. 1]
[Ans. 4]
3. Let 'f' be an even periodic function with period '4' such that f x = 2x − 1, 0 ≤ x
≤ 2.
The number of solutions of the equation f(x) = 1 in [–10, 20] are
[Ans. 15]
KTK
4. If x1, x2 and x3 are the positive roots of the equation x3 − 6x2 + 3px − 2p = 0, p
∈ Rthen the value of sin−1
x1 x2 x2
x3
1
+
1 1
+
1 1
+
1
x3
x1
+ cos−1 − tan−1 is equal to
(A) π
4
(B) π
2
(C) 3π
4
(D)
π
5. The domain of the function f(x) =
1
logπ sin−1 x
−1
4
, is
(A) −1, 1
(B) 0,
1
2
2
(C) 0,
1
2
(D) −1,
1
2
x2 − 5x −
11
2
= π, then
6. If α and β are the two zeroes of the equation 3
cos−1
α3 + β3 equals
(A) 255 (B) 215 (C) –215
(D) –217 [Ans. B]
QUESTIO
N
KTK
[Ans. A]
[Ans. B]
[Ans. 2π −
4]
1. sin−1 sin 1 + sin−1 sin 2 + sin−1 sin
3
2. sin−1 sin 10+ sin−1 sin 20+ sin−1
sin 30
+ sin−1 sin
40
[Ans. 0]
[Ans. 2π +
2]
[Ans. 20 −
4π]
[Ans. 7π −
20]
[Ans. 0]
3. cos−1 cos 1 + cos−1 cos 2 + cos−1 cos 3 + cos−1 cos
4
4. cos−1 cos 10+ cos−1 cos 20+ cos−1 cos 30+ cos−1
cos 40
5. sin−1sin 10 + cos−1 cos 10
6. sin−1sin 50 + cos−1 cos 50
7. sin−1sin 100 + cos−1 cos 100
[Ans. 0]
Bumper Practice Problems
(BPP)
Mathematics
Lecture -
05
By – Ashish Agarwal
Sir
1. cot–1 x = ቐ
if x >
0
,
if x <
0
tan–1 x = ቐ
if x >
0
ifx <
0
2. sec–1 x = , if |x|
cosec–1 x = , if |x|
3. sin–1 x = , if |x|
–1
4. cos–1 (–x) = , sec–1 (–x) =
cot–1 (–x) =
5. sin–1 (–x) = , tan–1 (–x) =
cosec–1 (–x) =
6. sin–1 x + cos–1 x = , tan–1 x + cot–1 x =
sec–1 x + cosec–1 x =
7. y = sec–1 x y = cosec–1 x
8. y = sec–1 (sec x) Domain =
Range =
9. y = cosec–1 (cosec x)
Domain =
10. y = cot–1 (cot x) 11. y = tan–1 (tan x)
4. If x1, x2 and x3 are the positive roots of the equation x3 − 6x2 + 3px − 2p = 0, p
∈ Rthen the value of sin−1
x1 x2 x2
x3
1
+
1 1
+
1 1
+
1
x3
x1
+ cos−1 − tan−1 is equal to
(A) π
4
(B) π
2
(C) 3π
4
(D)
π
5. The domain of the function f(x) =
1
logπ sin−1 x
−1
4
, is
(A) −1, 1
(B) 0,
1
2
2
(C) 0,
1
2
(D) −1,
1
2
x2 − 5x −
11
2
= π, then
6. If α and β are the two zeroes of the equation 3
cos−1
α3 + β3 equals
(A) 255 (B) 215 (C) –215
(D) –217 [Ans. B]
QUESTIO
N
KTK
[Ans. A]
[Ans. B]
1. If cos−1 x + cos−1 y + cos−1 z = 3π, then find the
value of
x2013+y2013+z2013+
6
x2014+y2014+z201
4
sin−1 w + sin−1
z
= π2 then compute the value of
2. If sin−1 x +
sin−1 y (x + y)(w
+ z).
QUESTION
[Ans. 1]
[Ans. 4]
3. Let 'f' be an even periodic function with period '4' such that f x = 2x − 1, 0 ≤ x
≤ 2.
The number of solutions of the equation f(x) = 1 in [–10, 20] are
[Ans. 15]
KTK
Let f x = x + 1 x + 2 x + 3 x + 4 + 5 where x ∈−6, 6 . If the range of the
function is a, b where a, b ∈ N then find the value ofa + b .
Ans. 5049
Mind Bender
Find x
if
1. 4 sin−1 x + cos−1 x =
3π
4
2. 5 tan−1 x + 3 cot−1 x
= 7π
4
QUESTIO
N
(a) Solve for x : 2 sin–1 x + 3 cos–1 x =
3π
2
(b) Solve for x : cot–1 x + 2 tan–1 x =
3π
4
QUESTIO
N
Find the range of
8
1. f(x) = sin−1 x + cos−1 x + tan−1 x
2. f(x) = sin−1 x + tan−1 x + sec−1 x
2
3. If tan−1 x 2 + cot−1 x2 = 5π
then find the value
of x.
QUESTIO
N
Maximum & Minimum value of
f x = sin−1 x 3 +cos−1 x3
QUESTION
Using the principal values of the inverse trigonometric functions, the sum of the
maximum and the minimum values of 16 sec−1 x 2 +cosec−1x 2is:
24π
2
18π
2
22π
2
31π
2
A
B
C
D
Ans. C
QUESTION [JEE Mains 2025 (22
Jan)]
The set of all values of k for which tan−1 x 3 +cot−1 x 3 = kπ3, x ∈ R, is the
interval :
1
,
7
32
8
1
,
13
24
16
1
,
13
48
16
1
,
9
32
8
QUESTION [JEE Mains 2022
(June)]
A
B
C
D
4 1 − x2 1 − 2x2
4x 1 − x2 1 −
2x2
2x 1 − x2 1 −
4x2
4 1 − x2 1 − 4x2
If 0 < x
<
1
2
−1 −1
and sin x
= cos x
, then the value of sin
𝝰 β
2π
𝝰
𝝰+
β
is
QUESTION [JEE Mains
2022]
A
B
C
D
−1 −1 −1
If sin x
= cos x
= tan y
; 0 < x < 1 then the value of
cos
a b c
π
c
a+
b
is
1 − y2
y y
1 − y2
1 −
y2
1 +
y2
1 −
y2
2
𝑦
QUESTION [JEE Mains
2021]
A
B
C
D
tan−1
α
+
cosec2
cot−1
β
= 36, then α2 +
β
If for some α, β; α ≤ β, α + β = 8 and
sec2
is
Ans. 14
QUESTION [JEE Mains 2025 (24
Jan)]
The value of cot−1
1 + tan22 −
1 tan
2
−
cot−1
1 +
tan2
1
2
+
1
ta
n
1
2
is equal to
3
π −
2
5
π +
2
5
π −
4
3
π +
2
A
B
C
D
Ans. C
QUESTION [JEE Mains 2025 (8
April)]
Prove that the function defined as, f(x) = ൥e−
ln
x
ln
x
− {x}
;
x
;
where ever it exists
otherwise, then
f(x) is odd as well as even. (where {x} denotes the fractional part function)
Mind
Bender
π
,
π
6
4
defined by f(x) =
tan−1
x2+1
x2+
3
. Then f(x)
is
(A) injective and surjective
(B) injective but not surjective
(C) surjective but not injective
(D) neither injective nor surjective
2. The value of 3 sin 1
arc cos 1
+ 4 cos
1
arc cos 1
2 9 2
8
is equal to
(A) 5 (B) 4 (C) 1 (D) 0
1
1+cos2 x
3
= pπ
have
a
3. The true set of values of p for which the equation cos−1
solution is
(A) [0, 1] (B) [0, 2] (C) [1, 2] (D) [1, 3/2]
QUESTION
1. Let f ∶ R
→
[Ans. C]
[Ans. A]
[Ans. A]
KTK
4. The value of p ∈ R for which the equation
sin−1 log10 x 2 − 2 log10 x + 2 + tan−1
log10 x 2 − 2 log10 x + 2 + cos−1
log10 x 2 − 2 log10 x = p possess solution is
(A) 5π
4
(B) 3π
(C) 3π
(D) 7π
4 2
4
6. Consider a real-valued function f
x
The range of f(x) is
(A) 0, 3 (B) 1,
3
= sin−1 x + 2 +1 − sin−1
x.
(C) 1, 6
(D) 3,
6
QUESTIO
N
[Ans. D]
5. Consider a real-valued function f x = sin−1 x + 2 +1 − sin−1 x.
The domain of definition of f(x) is
(A) [–1, 1] (B) [sin 1, 1] (C) [–1, sin 1] (D) [–1, 0]
[Ans. C]
KTK
[Ans. D]
Mathematics
Lecture -
06
By – Ashish Agarwal
Sir
1. sin–1 x + cos–1 x =
2. tan–1 x + cot–1 x =
3. sec–1 x + cosec–1 x =
4. cot–1 x =
if x > o cot–1 x =
if x < o
5. tan–1 x =
6. tan–1 x + tan–1 y = if
= if
7. sin–1 (sin x) = if π
< x ≤
3π
2
2
8. tan–1 (tan x) = if π
< x <
3π
2
2
9. cos–1 (cos x) = if −π ≤ x <
0
10. tan–1 x – tan–1 y = if x, y > 0.
11. f(x) = sec–1 x + cosec–1 x + tan–1 x then range of f(x) is
12. f(x) = sin–1 x + cos–1 x + cot–1 x then range of f(x) is
x
13. Graph of y = x +
1
is
14. y = sin–1 (sin (–5)) + cos–1 (cos (–10)) then value of y is
Homework Discussion
π
,
π
6
4
defined by f(x) =
tan−1
x2+1
x2+
3
. Then f(x)
is
(A) injective and surjective
(B) injective but not surjective
(C) surjective but not injective
(D) neither injective nor surjective
2. The value of 3 sin 1
arc cos 1
+ 4 cos
1
arc cos 1
2 9 2
8
is equal to
(A) 5 (B) 4 (C) 1 (D) 0
1
1+cos2 x
3
= pπ
have
a
3. The true set of values of p for which the equation cos−1
solution is
(A) [0, 1] (B) [0, 2] (C) [1, 2] (D) [1, 3/2]
QUESTION
1. Let f ∶ R
→
[Ans. C]
[Ans. A]
[Ans. A]
KTK
4. The value of p ∈ R for which the equation
sin−1 log10 x 2 − 2 log10 x + 2 + tan−1
log10 x 2 − 2 log10 x + 2 + cos−1
log10 x 2 − 2 log10 x = p possess solution is
(A) 5π
4
(B) 3π
(C) 3π
(D) 7π
4 2
4
6. Consider a real-valued function f
x
The range of f(x) is
(A) 0, 3 (B) 1,
3
= sin−1 x + 2 +1 − sin−1
x.
(C) 1, 6
(D) 3,
6
QUESTIO
N
[Ans. D]
5. Consider a real-valued function f x = sin−1 x + 2 +1 − sin−1 x.
The domain of definition of f(x) is
(A) [–1, 1] (B) [sin 1, 1] (C) [–1, sin 1] (D) [–1, 0]
[Ans. C]
KTK
[Ans. D]
Prove that the function defined as, f(x) = ൥e−
ln
x
ln
x
− {x}
;
x
;
where ever it exists
otherwise, then
f(x) is odd as well as even. (where {x} denotes the fractional part function)
Mind
Bender
The value of cot−1
1 + tan22 −
1 tan
2
−
cot−1
1 +
tan2
1
2
+
1
ta
n
1
2
is equal to
3
π −
2
5
π +
2
5
π −
4
3
π +
2
A
B
C
D
Ans. C
QUESTION [JEE Mains 2025 (8
April)]
If the inverse trigonometric functions take principal values then
1
0
cos−1 3
cos
tan−
1
4
3
+
2
5
sin
tan
−
1
4
3
is equal to:
QUESTION [JEE Mains 2022 (26
June)]
Ans. C
0
π
4
π
3
π
6
A
B
C
D
50 tan 3
tan−1
1
1
2
5
+ 2 cos−1 +
4
2
2 tan 1
tan−1
2 2 is equal to
QUESTION [JEE Mains 2022 (29
June)]
Ans. 29
Considering only the principal values of the inverse trigonometric functions, the value
of tan
sin−1
3
2
5
5
− 2 cos−1 is
QUESTION [JEE Advanced 2024 (Paper
2)]
Ans. B
7
24
−
7
2
4
−
5
2
4
5
2
4
A
B
C
D
cosec 2 cot−15 +
cos−1
4
5
is equal to:
QUESTION [JEE Mains 2021 (25
Feb)]
Ans. B
7
5
5
6
6
5
5
6
5
6
3
3
6
5
3
3
A
B
C
D
5
tan 2 tan−1 1
+
sec−1
5
+ 2 tan−1
1
2 8
is equal to :
QUESTION [JEE Mains 2022 (26
July)]
Ans. B
2
1
4
5
4
A 1
B
C
D
15x2 − 8x − 7
= 0
5x2 − 12x + 7
= 0
25x2 − 18x − 7
= 0
25x2 − 32x + 7
= 0
Let α = tan 5π
sin
2cos−1
1
16
5
and β = cos
sin−1
4
5
+
sec−1
5
3
where the inverse
trigonometric functions take principal values. Then, the equation whose roots are α and β
is :
QUESTION [JEE Mains 2022
(June)]
A
B
C
D
Find the solution of following equations :
5
(i) 2 cot−1 2 − cos−1 4
=
cosec−1 x
QUESTION
Find the solution of following equations :
(ii) cos−1 x − sin−1 x = cos−1(x
3)
QUESTION
cos sin−1 3
+ sin−1 5
+
sin−1 33
5 13
65
is equal to:
3
3
6
5
1
3
2
6
5
A
B
C
D 0
Ans. D
QUESTION [JEE Mains 2025 (28
Jan)]
The domain of the function f(x) =
sin−1
|x|+5
x2+1
is (−∞, −a] ∪ [a, ∞). Then a is equal
to:
2
17
+
1
17−
12
1
7
2
1+
172
QUESTION [JEE Mains 2020]
A
B
C
D
1. If the equation 5 arc tan x2 + x
+ k
solutions, then the range of k, is
(A) 0, 5
(B) −∞,
5
4
4
(C) 5
, ∞ (D) −∞,
5
4
4
2. If
sin−1
3
9
4 6
x2 − x
+ x
… +
cos−1
3, then
number of values of 'x' is equal to
8 12
x4 − x
+ x
… = π
, where 0 ≤ |x|
<
3 9 2
(C) 3 (D) 4
(A) 1 (B) 2
3. A value of α for which sin
cot−1
1 + α = costan−1 α ,
is
(A) −1
2
(B) 0 (C) 1
2
(D) 1
b
2
cos−1 x 2 is equal to aπ
(a and b are coprime),
4. If maximum value of sin−1 x 2
+
then (a + b) equals (C) 4 (D) 9
QUESTIO
N
[Ans. B]
[Ans. C]
KTK
+ 3 arc cot x2 + x + k =
2π, has two distinct
[Ans. A]
[Ans. D]
5. Column I contains functions and column II contains their range. Match the entries of
column I with the entries of column II.
Column-I Column-II
x
(P) 0,
π
1+
x
x (Q) π
,
3π
4
4
1+
x
x
(R) −
,
π
π
4
4
(A) f x =
sin−1
(B) g x =
cos−1
(C) h x =
tan−1
(D) k x =
cot−1
1+
x
x
1+
x
(S) −
,
π
π
2
2
QUESTIO
N
[Ans.(A) S, (B) P, (C) R, (D) Q]
KTK
Mathematics
Lecture -
07
By – Ashish Agarwal
Sir
1. If x < 0 then cot–1 x in terms of arc sin is
2. If x < 0 then cos–1 x in terms of arc tan is
3. If x > 1 sec–1 x = sin–1
= tan–1
4. If α = β ⇒ sin α =
sin β
(T/F)
5. If sin α = sin β ⇒ α
= β
(T/F)
6. tan–1 x + tan–1 y = ቐ
if
if
7. tan–1 x – tan–1 y = if
1. If the equation 5 arc tan x2 + x
+ k
solutions, then the range of k, is
(A) 0, 5
(B) −∞,
5
4
4
(C) 5
, ∞ (D) −∞,
5
4
4
2. If
sin−1
3
9
4 6
x2 − x
+ x
… +
cos−1
3, then
number of values of 'x' is equal to
8 12
x4 − x
+ x
… = π
, where 0 ≤ |x|
<
3 9 2
(C) 3 (D) 4
(A) 1 (B) 2
3. A value of α for which sin
cot−1
1 + α = costan−1 α ,
is
(A) −1
2
(B) 0 (C) 1
2
(D) 1
b
2
cos−1 x 2 is equal to aπ
(a and b are coprime),
4. If maximum value of sin−1 x 2
+
then (a + b) equals (C) 4 (D) 9
QUESTIO
N
[Ans. B]
[Ans. C]
KTK
+ 3 arc cot x2 + x + k =
2π, has two distinct
[Ans. A]
[Ans. D]
5. Column I contains functions and column II contains their range. Match the entries of
column I with the entries of column II.
Column-I Column-II
x
(P) 0,
π
1+
x
x (Q) π
,
3π
4
4
1+
x
x
(R) −
,
π
π
4
4
(A) f x =
sin−1
(B) g x =
cos−1
(C) h x =
tan−1
(D) k x =
cot−1
1+
x
x
1+
x
(S) −
,
π
π
2
2
QUESTIO
N
[Ans.(A) S, (B) P, (C) R, (D) Q]
KTK
Let S = x: cos−1 x = π + sin−1 x + sin−1
2x + 1
. Then ෍ 2x − 1 2 is equal to
x∈S
Ans. 5
QUESTION [JEE Mains 2025 (29
Jan)]
Let x ∗ y = x2 + y3 and (x ∗ 1) ∗ 1 = x ∗ (1 ∗ 1). Then a value
of 2 sin−1
x4+x2−
2
x4+x2+
2
is
π
4
π
3
π
2
π
6
QUESTION [JEE Mains 2022
(June)]
A
B
C
D
+ sin cot−1
x
2 − 1 1/2
=
QUESTION [IIT-JEE 2008 (Paper 1)]
If 0 < x < 1, then 1 + x2 x cos
cot−1 x
Ans. C
x
1 +
x2
x
x 1 +
x2
1 +
x2
A
B
C
D
Find the solution of following equations :
(ii) cos−1 x − sin−1 x = cos−1(x
3)
QUESTION
Let the inverse trigonometric functions take principal values. The number of real
5
solutions of the equation 2 sin−1 x + 3 cos−1 x =
2π
, is
QUESTION [JEE Mains 2024 (9
April)]
Ans. 0
Considering the principal values of the inverse trigonometric functions, the sum of all the
solutions of the equation cos−1 (x) − 2sin−1 (x) = cos−1 (2x) is equal to:
QUESTION [JEE Mains
2022]
A. 0
B. 1
C. 1/2
D. –1/2
4
For n ∈ N, if cot−1 3 + cot−1 4 + cot−1 5 + cot−1 n = π
, then n is
equal to
QUESTION [JEE Mains 2024 (6
April)]
Ans. 47
Let S be the set of all solutions of the equation
cos−1 2x − 2 cos−1 1 − x2 = π, x ∈
− ,
1
1
2
2
. Then ෍ 2 sin
x∈S
−
1
x2 − 1 is equal to
π − 2
sin−1
3
4
π −
sin−1
3
4
−2
π3
None
QUESTION [JEE Mains 2023 (1
Feb)]
A
B
C
D
Find the number of solution(s) of the equation
(i) cos−11 − x − 2 cos−1 x =
π
(ii) cos−11 − x
2
− 2 cos−1 x
= 1.7
QUESTIO
N
tan−1 x + 1
+ tan−1 x − 1
=
(−7) x − 1 x
QUESTIO
N
Considering only the principal values of inverse trigonometric functions, the number of
4
positive real values of x satisfying tan−1 x + tan−1 2x = π
is :
QUESTION [JEE Mains 2024 (27
Jan)]
Ans. D
more than 2
2
0
1
A
B
C
D
The sum of possible values of x for tan−1 x + 1 +
cot−1
1
x−
1
=
tan−1
8
3
1
is:
QUESTION [JEE Mains 2021 (17
March)]
Ans. A
3
2
−
4
3
3
−
4
3
1
−
4
3
0
−
4
A
B
C
D
cot−
1
x2 −
1 2
x
+
tan−1
2
x
x2 −
1
=
2
π
3
QUESTIO
N
If the sum of all the solutions of tan−1
2
x
1−x2
+
cot−1
1−x2
2
x
π
= , −1 < x < 1, x ≠
0, is
3
3
α − 4
, then α is equal
to
QUESTION [JEE Mains 2023 (25
Jan)]
Ans. 2
−
1
For any y ∈ ℝ, let cot−1 y ∈ (0, π) and tan (y)
∈ − ,
π
π
2
2
. Then the sum of all the
solutions of the equation tan−1 +
cot−1
6y
9−y2
9−y2
6y
3
= 2π
for 0 < |y| < 3, is equal
to:
QUESTION [JEE Advanced 2023 (Paper
2)]
Ans. C
2 3 −
3
3 − 2
3
4 3 −
6
6 − 4
3
A
B
C
D
If α > β > γ > 0, then the
expression
cot−1 β
+
+ cot−1 γ
+
1 + β2 1 +
γ2
α − β β −
γ
+ cot−1 α
+
1 +
α2
γ −
α
is equal to :
3
π
2
π
− α + β +
γ
A
B
C
π
D 0
Ans. C
QUESTION [JEE Mains 2025 (24
Jan)]
n
Let x = m
(m, n are co-prime natural numbers) be a solution of the equation
cos 2 sin−1 x = 1
and let α, β(α > β) be the roots of the
equation
9
mx2 − nx − m + n = 0. Then the point (α, β) lies on the
line
QUESTION [JEE Mains 2024 (29
Jan)]
Ans. C
3x – 2y = –2
3x + 2y = 2
5x + 8y = 9
5x – 8y = –9
A
B
C
D
Mathematics
Lecture -
08
By – Ashish Agarwal
Sir
1. sin−1 x =
ቈ
tan−1
tan
−
1
if x >
0
if x <
0
2. tan−1 x =
ቈ
sin−1
sin−
1
if x >
0
if x <
0
3. cos−1x = ቈcot−1
cot−1
if x >
0
if x <
0
4.
cot−1 x = ቈcos−1
cos−1
if x >
0
if x <
0
5. Expression Substitution
a2 −
x2
a2 −
x2
a−
x
a+
x
x2
6. If θ ∈ −
,
π
π
2
2
then cos θ, sec θ
are
If θ ∈ [0, π] then sin θ, cosec θ are
The value of tan−1 1+x2+ 1−x2
1+x2− 1−x2
1
, |x| < , x ≠ 0, is equal
to
2
π
− 1
cos
x
4 2
−1
2
π
1
4
2
+ cos
x
−1
2
4
π
−
cos−1x2
4
π
+
cos−1x2
QUESTIO
N
A
B
C
D
If S
=
x ∈ ℝ ∶
sin−1
x +
1
x2 + 2x +
2
−
sin−1
x
x2 +
1
4
π
= , then
෍ sin x2 + x + 5
π
x∈s
2
− cos x2 + x + 5
π
is equal to
QUESTION [JEE Mains 2023 (13
April)]
Ans. 4
Considering the principal values of the inverse trigonometric functions,
sin−
1
3
x +
1
2 2
1 − x2 ,
−
1
2 2
< x < 1
, is equal to
6
−5π
− sin−1
x
6
5π
− sin−1
x
6
4
π
+ sin−1
x
A
B
C
π
+ sin−1
x
D
Ans. C
QUESTION [JEE Mains 2025 (4
April)]
If π
≤ x ≤ 3π
, then cos−1 12
cos x
+
2 4 13
1
3
5
sin
x
is equal to
x + tan−1
5
1
2
x − tan−1
4
3
x + tan−1
4
5
x − tan−1
5
1
2
A
B
C
D
Ans. D
QUESTION [JEE Mains 2025 (23
Jan)]
If f(x) = 2tan−1x +
sin−1
2
x
1+x2
, x > 1 then f(5) is equal
to:
/
2

4 tan–1(5)
tan−
1
6
5
15
6
QUESTIO
N
A
B
C
D
Let tan−1y = tan−1x +
tan−1
2
x
1−x2 3
, where |x| < 1
. Then a value of y is:
3x −
x3
1 +
3x2
3x +
x3
1 +
3x2
3x −
x3
1 −
3x2
3x +
x3
1 −
3x2
QUESTIO
N
A
B
C
D
Write the following functions in the simplest form:
x
1+x2−1
, x ≠
0
1
x2−1
, x >
1
5.
tan−1
7.
tan−1
1−cos
x
1+cos
x
, 0 < x <
π
6.
tan−1
8.
tan−1
cos x−sin
x
cos x+sin
x
,
−π
< x <
3π
4
4
QUESTION
The number of solution of the equations 2 sin−1
2
x
1+x2
− πx3 = 0 is equal
to
QUESTIO
N
0
1
2
3
A
B
C
D
Let tan−1 x ∈ −
,
π
π
2
2
, for x ∈ ℝ. Then the number of real solutions of the equation
1 + cos2x = 2 tan−1tan x in the set 2 2 2
2
−
3π
, −
π π π π
,
3π
2
2
∪ − , ∪ is equal to:
QUESTION [JEE Advanced 2023 (Paper
1)]
Ans. 3
The number of solutions of the equation tan−1
x
= x2 + 1 2 − 4x2
is
QUESTIO
N
Considering only the principal values of the inverse trigonometric functions, the value of
2
3
cos−1
2 1
2+π2 + 4
sin
−1
2
2
π
2+π2 +
tan
−
1
2
π
is :
QUESTION [JEE Advance
2022]
Let x = sin 2 tan−1 α and y =
sin 1
tan−1 4
.
2 3
If S
=
α ∈ R: y2 = 1 − x , then ෍ 16α3 is
equal to
𝝰∈S
Ans. 130
QUESTION [JEE Mains
2022]
Considering only the principal value of inverse functions, the set
A = x ≥ 0: tan−1 2x +
tan−1 3x =
π
4
contains two elements
contains more than two elements
is a singleton
is an empty set
A
B
C
D
Ans. C
QUESTION [JEE Mains 2019
(Jan)]
Number of integers in range of f
x
= x x + 2 x + 4 x + 6 + 7, x ∈ [−4,
2] is
Mind Bender
n=
1
1. The sum σ∞ tan−
1
4
n
n4−2n2+
2
(A) tan−1 1
+ tan−1
2
2
3
(C) π
2
is equal to
(B) 4 tan−1 1
(D) sec−1
−
2
r=
1
σn tan−
1
2r−
1
r2−r+1
−2r3
= 961 then the value of n is equal
to
2. If tan
(A) 31
r2+r+1
(B) 30 (C) 60 (D) 61
3. If the solution set of inequality cosec−1x 2 − 2 cosec−1x
≥ π
6
(−∞, m] ∪ [n, ∞) then (m + n) equals
(A) 0 (B) 1 (C) 2 (D) –3
QUESTIO
N
[Ans. D]
[Ans. A]
cosec−1x − 2 is
[Ans. B]
If a sin−1 x − b cos−1 x = c, then the value of a sin−1 x + b cos−1 x (whenever
exists) is equal to:
0
πab + c
b −
a
a +
b
π
2
πab + c
a −
b
a +
b
A
B
C
D
Ans. D
QUESTIO
N
The range of f
x
=
cot−1
−x − tan−1 x + sec−1 x
is :
−
,
π
3π
2
2
π
3π
, π ∪ π,
2 2
−
,
π
3π
2
2
π
3π
, π ∪ π,
2 2
A
B
C
D
Ans. B
QUESTIO
N
Mathematics
Lecture -
09
By – Ashish Agarwal
Sir
1. cos–1 (–x) =
sin–1 (–x) =
tan–1 (–x) =
sec–1 (–x) =
cot–1 (–x) =
cosec–1 (–x) =
if
2. tan–1 x + tan–1 y = ቐ
if
3. If x, y > 0,
tan−1
x−
y
1+x
y
=
4. If x > 0,
tan−1
x
1−6x2
=
5. =
3
෍
ta
n−
1
r=1
2
r2
6. sin–1 x is function cos–1 x is
function tan–1 x is
function cot–1 x is function
7. [sin–1 x] can take value =
8. [cos–1 x] can take value =
Let x = sin 2 tan−1 α and y =
sin 1
tan−1 4
.
2 3
If S
=
α ∈ R: y2 = 1 − x , then ෍ 16α3 is
equal to
𝝰∈S
Ans. 130
QUESTION [JEE Mains
2022]
Considering only the principal values of the inverse trigonometric functions, the value of
2
3
cos−1
2 1
2+π2 + 4
sin
−1
2
2
π
2+π2 +
tan
−
1
2
π
is :
QUESTION [JEE Advanced
2022]
Solve the inequality: sin−1 x > sin−1(3x −
1)
QUESTION
sin−1 x > cos−1 x & sin−1 x > sin−1(1
− x)
QUESTION
Solve the system of inequalities involving inverse circular functions
arc tan2 x − 3 arc tan x + 2 > 0 and sin−1 x >
cos−1 x
where [.] denotes the greatest integer function.
QUESTION
cot−1 x 2 − 6 cot−1 x + 9 ≤ 0, where [.]
denotes the
Find the complete solution set of
greatest integer function.
QUESTION
Solve the following system of in equations
4 arc tan2 x − 8 arc tan x + 3 < 0
and 4 arc cot x − arc cot2x − 3
> 0
QUESTION
tan−
1
3
2
π
2
cot−
1
3
2
tan−1(3
)
k
Let Sk = ෍ tan−1
r=1
6r
22r+1 +
32r+1
k→
∞
then lim Sk is equal
to:
QUESTION [JEE Mains
2021]
A
B
C
D
101/102
50/51
100
51/50
50
If ෍ tan−1
r=1
1
2r2
= p, then the value of tan p is:
QUESTION [JEE Mains
2021]
A
B
C
D
If cot–1 () = cot–1 2 + cot–1 8 + cot–1 18 + cot–1 32 +….. upto 100 terms, then  is
QUESTION [JEE Mains
2019]
A 1.01
B 1.00
C 1.02
D 1.03
n
෍
ta
n−
1
r=1
2r−1
1 +
22r−1
is equal
to
tan−
1
2n
tan−
1
2n
π
−
4
tan−
1
2n+1
tan−
1
2n+1
π
−
4
QUESTIO
N
A
B
C
D
50
The value of cot ෍ tan−1
n=1
1
1 + n +
n2
is
2
6
2
5
2
5
2
6
5
0
5
1
5
2
5
1
QUESTION [JEE Mains 2022 (June)]
A
B
C
D
5/11
If S is the sum of the first 10 terms of the series
tan−
1
1
3
+
tan−1
+ tan−1 +
tan−1
1 1
1
7
13
21
+
QUESTION [JEE Mains
2020]
then tan(S) is equal to:
A 10/11
B –6/5
C 5/6
D
If y = cos π
+ cos−1 x
, then (x − y)2 + 3y2 is
equal to
3 2
Ans. 3
QUESTION [JEE Mains 2025 (2
April)]
The sum of the infinite series cot−1
7
4
+
cot−1
1
9
4
+
cot−1
3
9
4
+
cot−1
6
7
4
+ ⋯
is:
2
π
+
cot−1
1
2
2
π
−
cot−1
1
2
2
π
−
tan−1
1
2
2
π
+
tan−1
1
2
A
B
C
D
Ans. C
QUESTION [JEE Mains 2025 (4
April)]
Let a, b ∈ (0, 2π) be the largest interval for which sin−1 sin θ − cos−1 sin
θ > 0, θ ∈ (0, 2π) holds. If αx2 + βx + sin−1 x2 − 6x + 10 + cos−1 x2 −
6x + 10 = 0 and α − β = b − a, then α is equal to:
π
4
8
π
1
6
π
8
π
1
2
A
B
C
D
Ans. D
QUESTIO
N
0, π
is defined by g(x) =
cos−1
x2−k
3
1+x2
.
Then the possible values of 'k' for which g is surjective function, is
1
2 2
(A) (B) −1, − 1
(C) −
1
2
1
2
(D) − ,
1
2. Number of values of x satisfying the equation cos 3 arc cos x
− 1
(A) 0 (B) 1 (C) 2
(D) 3
3. The number of ordered triplets
4
2
sin−1 x 2 =
π
+
(A) 2
sec−1 y 2
+
(B) 4
x, y, z satisfy the equation
tan−1 z 2 is
(C) 6
(D) 8
QUESTION
1. Let g: R
→
KTK
[Ans. A]
[Ans. C]
= 0 is equal to
[Ans. D]
The number of solutions of the equation |y| = cos x and y =
cot−1
cot x in −
3π
,
5π
2
2
is
2
4
6
none of these
A
B
C
D
Ans. A
QUESTIO
N
Let f: R → 0,
π
6
be defined as f(x) =
sin−1
4
4x2−12x+1
7
then f(x)
is :
injective as well as surjective
surjective but not injective
injective but not surjective
neither injective nor surjective
A
B
C
D
Ans. B
QUESTIO
N
Mathematics
Lecture -
10
By – Ashish Agarwal
Sir
If
cos−1
2
3
x
+
cos−1
3
=
π 4x
2 4
x > 3
then x is equal to:
14
5
1
2
14
5
1
0
14
6
1
2
14
5
1
1
QUESTION [JEE Mains
2019]
A
B
C
D
The value of sin−1
1
2
1
3
−
sin−1
3
5
is
π −
cos−1
3
3
6
5
π −
sin−1
6
3
6
5
2
π
−
sin−1
5
6
6
5
2
π
−
cos−1
9
6
5
QUESTION [JEE Mains
2019]
A
B
C
D
Given that the inverse trigonometric function assumes principal values only. Let x, y be
2
any two real numbers in [−1, 1] such that cos−1 x − sin−1 y = α, −π
≤ α ≤ π.
Then, the
minimum value of x2 + y2 + 2xy sin
α is
QUESTION [JEE Mains 2024 (4
April)]
Ans. A
0
–1
1/2
–1/2
A
B
C
D
If cos−1x − cos−1 y
= α, where −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, x ≤ y
, then
for all x, y,
QUESTION [JEE Mains
2019]
2
2
4x2 − 4 xy cosα + y2 is equal to
A. 2 sin2α
B. 4 cos2α + 2x2y2
C. 4 sin2α
D. 4 sin2α − 2x2y2
Let (x, y) be such that sin−1 ax + cos−1 y + cos−1
bxy
=
π
2
Match the statements in Column I with statements in Column II.
Ans. (A) P; (B) Q; (C) P; (D) S
QUESTION [IIT-JEE
2007]
Column I Column II
(A) If a = 1 and b = 0, thenx, y (P) lies on the circle x2 + y2 = 1
(B) If a = 1 and b = 1, thenx, y (Q) lies on x2 − 1 y2 − 1 = 0
(C) If a = 1 and b = 2, thenx, y (R) lies on y = x
(D) If a = 2 and b = 2, thenx, y (S) lies on 4x2 − 1 y2 − 1 = 0
The number of solutions of the equationsin−1 x2 + 1
+
cos−1
3
3
x2 − 2
= x2
for
x ∈ −1, 1and [x] denotes the greatest integer less than or equal to x, is
0
infinite
2
4
A
B
C
D
Ans. A
QUESTION [JEE Mains
2021]
The complete solution set of the equation
sin−
1
2
1+x
−
2 − x = cot−1 tan
2 − x
−
sin−1
2
1−x
is
[–1, 1]
4
2
2 − π
,
1
2
−1,2 −
π 4
[0, 1]
A
B
C
D
Ans. B
QUESTIO
N
Inverse Trigonomegftric Functions  Question (1).pptx

Inverse Trigonomegftric Functions Question (1).pptx

  • 1.
  • 2.
    1. Graphs ofy = f(x) and y = f–1(x) are mirror images of each other about line y = x. (T/F) 2. If ( , α ) β lies on grape of y = f(x) then ( , β ) α lies on the graph of y = f–1(x). (T/F) 3. All solutions of f(x) = f–1(x) lie on the line y = x. (T/F) 4. All solutions of f(x) = f–1(x) lie on the line y = x or on a line with slope –1. (T/F) 5. Solutions of f(x) = f–1(x) not lying on the line y = x can only arise in cases where (a, b) & (b, a) a ≠ b both lie on graph of y = f(x). (T/F)
  • 3.
    6. Solutions off(x) = f–1(x) not lying on the line y = x can only arise in cases where f(a) = b & f(b) = a, a ≠ b, a, b ∈ Df. (T/F) 7. Solutions of f(x) = f–1(x) not lying on line y = x can only arise in case graph of y = f(x) crosses y = x. (T/F) 8. Solutions of f(x) = f–1(x) not lying on the line y = x will always arise in cases where (a, b) & (b, a), a ≠ b both lie on grape of y = f(x). (T/F) 9. For a function to be invertible it should be
  • 4.
    = x ∀x ∈ A 10. If f: A → B is a bijection and g: B → A be a function such that g f x then g = = x ∀ x ∈ B 11. If f: A → B is a bijection and g: B → A be a function such that f g x then g =
  • 5.
    Write explicitly, functionsof y defined by the following equations and also find the domains of definition of the given implicit functions : (a) 10x + 10y = 10 (b) x + |y| = 2y QUESTION
  • 6.
    = x 4− x then find f−1(x) and solve the equation, f: 2, ∞ → −∞, 4 ,where f x f−1(x) = f(x). QUESTION
  • 7.
    f: 1 , ∞→ 3 , ∞ 2 4 is the function given by f(x) = x2 − x + 1. Show that f is bijective, Find 2 1 2 f−1. Hence solve for real x, x − x + 1 = + x − 3 4 QUESTION
  • 8.
    x + p2, Let afunction f defined from R → R as f(x) = ቈ px + 5, for x ≤ 2 for x > 2 If the function is surjective, then find the sum of all possible integral values of p in [– 100, 100]. QUESTIO N MB 2
  • 9.
    Find the following: 2 (i)sin π − sin−1 − 32 (ii) cos cos−1 2 − 3 + π 6 (iii) tan−1 tan 3π 4 QUESTION
  • 10.
    cos−1 cos 2 cot−1 2− 1 is equal to π 4 3 π 4 none of these A 2 − 1 B C D QUESTIO N
  • 11.
    The value ofsin−1 cot sin−1 2 − 4 3 + cos−1 4 12 + sec−1 2 is 0 π 2 π 3 none of these A B C D QUESTIO N
  • 12.
    A lion movesin the region given by the graph y − |y| − x + |x| = 0. Then on which of the following curve a person can move so that he does not encounter lion - y = e− x 1 y = x y = signum (x) y = − 4 + x A B C D QUESTIO N
  • 13.
    QUESTION 1. Fill inthe Table [Ans. D] f(x) g(x) f(x) + g(x) f(x) − g(x) f(x) ⋅ g(x) f x g x g ∘ f x (f ∘ g)(x) odd odd even even odd even even odd 2. Suppose that f is an even, periodic function with period 2, and that f(x) = x for all x in interval [0, 1]. Find the value of f(3.14). x+ 1 n times 3. Let f(x) = x−3 , x ≠ −1. Then f 2010(2014) [where f n(x) = f ∘ f … .∘ f (x)] is: (A) 2010 (B) 4020 (C) 4028 (D) 2014 [Ans. 0.86] KTK
  • 14.
    4. Find theinverse of f(x) = 2log10 x + 8 and hence solve the equation f(x) = f−1(x). 5. For a > 0, if f(x + a) = 1 2 2 + f(x) − f(x), prove that f is periodic. QUESTIO N KTK
  • 15.
    1. Find theprincipal value of each of the following: 1 3 (i) tan−1 (ii) tan−1 − 1 3 (iii) tan−1 cos π 2 (iv) tan−1 2 cos 2π 3 2. For the principal values, evaluate each of the following: (i) tan−1 −1 + cos−1 − 1 2 (ii) tan−1 2 sin 4 cos−1 3 2 3. Evaluate each of the following: (i) tan−1 1 + cos−1 − 1 2 + sin−1 − 1 2 (ii) tan−1 − 1 3 − π 2 (iii) tan−1 tan 5π 6 + tan−1 − 3 + tan−1 sin + cos−1 cos 13 π6 Bumper Practice Problems (BPP)
  • 16.
    π 6 (ii) − π 6 (iii) 0(iv) − π 4 π 2 (ii) π 3 1. (i) 2. (i) 3. (i) 3 π 4 (ii) − 3π 4 (iii) 0 BPP Answers
  • 17.
  • 18.
    1. ITF DomainRange sin−1 x cos−1 x tan−1x cot−1 x sec−1 x cosec−1x 2. sin−1 x |max = , sin−1 x |min = cos−1 x |max = , cos−1 x |min = ,
  • 19.
    3. ITF Inc.Dec. Even Odd 𝐬in−1x cos−1 x tan−1 x cot−1 x
  • 20.
    4. sin−1 −x= tan−1 −x = 5. Domain of f x = sin−1 x + tan−1 x + sec−1 x is 6. cos–1 (0.3) > cos–1 (0.5) (T/F) sin–1 (0.3) > sin–1 (0.2) cot–1 (5) > cot–1 (2) tan–1 (7) < tan–1 (3) (T/F) (T/F) (T/F)
  • 21.
    7. sin−1 1= , cos−1 1 = , cot− 1 3 = , tan−1 3 = , sec−1 2 3 = 8. If f is increasing bijective function then solutions of f(x) = f−1(x) can only lie on line y = x. (T/F) 9. lim tan x = x→∞ lim cot x = x→∞ lim tan−1 x = , x→−∞ lim cot−1 x = x→−∞
  • 22.
    Nichod !! S. No.f(x) Domain Range 1 sin−1x |x| ≤ 1 π π − , 2 2 2 cos−1x |x| ≤ 1 [0, π] 3 tan−1x x ∈ R π π − , 2 2 4 sec−1x |x| ≥ 1 [0, π] − π or 0, π ∪ π , π 2 2 2 5 cosec−1x |x| ≥ 1 π π − , − {0} 2 2 6 cot−1x x ∈ R (0, π)
  • 23.
    Find the following: 2 (i)tan cos−1 1 + tan−1 − 13 (ii) cos−1 cos 7π 6 (iii) cos tan−1 3 4 (iv) tan sin−1 3 + cot−1 3 5 2 QUESTION
  • 24.
    9 16 25 23 The value oftan2 sec−1 3 + cot2 cosec−1 4 is - QUESTIO N A B C D
  • 25.
    Evaluate: 1. sin arc sin 3 5 −arc cos 3 5 2. tan 1 cos−1 5 2 3 3. sin tan−1 cos cot−1 − 1 3 4. sin tan−1 2 + cos tan−1 2 5. tan 2 tan−1 1 − π 5 4 QUESTIO N
  • 26.
    π 2 π 3 π 6 π 4 tan− 1 1 + 3 3 + 3 + sec−1 8+ 4 3 6 + 3 3 is equal to : QUESTION [JEE Mains 2023 (Jan)] A B C D
  • 27.
    (a) sin−1 − 1 2 + cos−1 − 1 2 − tan−1(− 3) + cot−1 − 1 3 (b) sin2 sin−1 3 (c) 5 cos 2 tan−1 2 + sin 2 tan−1 3 QUESTION
  • 28.
    1 7 2 2 − 1 7− 1 1 2 2 4 A possible value of tan 1 sin−1 6 3 8 is : QUESTION [JEE Mains 2021 (Feb)] A B C D
  • 29.
    (a) Domain &range of cos−1 x ex (b) (c) (d) Domain & range of y = sin−1 Domain & range of cos−1 x Domain & range of cot−1 sgnx (e) Domain & range of 1 (f) Domain & range of ln cot x 1 sgn sec−1 ex QUESTIO N
  • 30.
    The domain ofdefinition of the function f x = sin−1 log 3 x 3 is [1, 9] [–1, 9] [–9, 1] [–9, –1] A B C D Ans. A QUESTIO N
  • 31.
    [0, 2π] [0, 2π) [0, π) [0, π] The range off x = 4 sin−1 x2 x2 + 1 is QUESTION [JEE Mains 2023 (13 April)] A B C D
  • 32.
    3x2 + bx+ 3 , x ∈ R is 0, π 2 , then square of sum of If range of the function f(x) = tan−1 all possible values of b will be 0 18 72 None of these A B C D QUESTION
  • 33.
    Solve: (1) log2 tan−1x > 1 (2) cot−1 x 2 − 5 cot−1 x + 6 > 0 QUESTIO N
  • 34.
    The number ofreal roots of the equation 4 tan−1 x(x + 1) + sin−1x2 + x + 1 = π is : 1 2 4 0 QUESTION [JEE Mains 2021 (July)] A B C D
  • 35.
    Let f(x) =a + b cos−1 x (b > 0). If domain and range of f(x) are the same set then (b − a) is equal to QUESTIO N A 1 − 1 π 2 + 1 π 2 1 − π 2 B C D
  • 36.
    (−∞, 0) (−∞, 0] (0, ∞) [0, ∞) f ∶ R→ R is defined as f(x) = ቈx2 + 2mx − 1 for x ≤ 0. mx − 1 for x > 0 If f(x) is one-one then m must lies in the interval Mind Bender A B C D
  • 37.
    1. The numberof solutions of equation 2 sin−1 x 2 − 5 sin−1 x + 2 = 0 is (A) 2 (B) 1 (C) 3 (D) None of these 2. sec−1 sec −30∘ (A) –60° is equal to (B) –30° (C) 30° (D) 150° 3. sin 2 sin−1 0.8 (A) 0.96 is equal to (B) 0.48 (C) 0.64 (D) None of these QUESTIO N [Ans. A] [Ans. B] [Ans. C] KTK
  • 38.
    1. Evaluate eachof the following: (i) sin sin−1 7 2 5 (ii) sin cos−1 5 1 3 (iii) sin tan−1 24 7 (iv) cosec cos−1 3 5 (v) sec sin−1 12 1 3 1 7 (vii) cot cos−1 3 5 (vi) tan cos−1 8 (viii) cos tan−1 24 7 2. Prove the following results: (i) tan cos−1 4 + tan−1 2 5 3 = 17 6 (ii) cos sin−1 3 + cot−1 3 = 5 2 6 5 13 (iii) tan sin−1 5 + cos−1 3 13 = 63 1 6 (iv) sin cos−1 3 + sin−1 5 5 = 63 6 5 Basic Practice Problems (BPP) [CBSE 2012]
  • 39.
    1. (i) 7 (ii) 1 2 (iii) 2 4(iv) (v) 2 5 1 3 5 (vi) 1 3 1 5 8 (vii) 2 5 3 4 (viii) 5 4 7 2 5 BPP Answers
  • 40.
  • 41.
    1. tan−1 x> 1 ⇒ ⇒ x ∈ 3 4 2. sin−1 x > ⇒ ⇒ x ∈ 1 4 3. cos−1 x > ⇒ ⇒ x ∈ 3 2 4. cot−1 x > ⇒ ⇒ x ∈ 5. 2 < cot−1 x < 3 ⇒ x ∈ 6. −1 < tan−1 x < 1 ⇒ x ∈
  • 42.
    7. cot−1 x2 − 4 cot−1 x − 5 > 0 then x ∈ 8. 6 sin−1 x 2 − 5 sin−1 x + 1 < 0 then x ∈ 9. cos−1 x 2 − 5 cos−1 x + 6 > 0 then x ∈ 10. Range of f x = cos−1x + cot−1 x + cosec−1x is
  • 43.
    1 2 11. sin−1 x= ⇒ x = 2 sin−1 1 = tan−1 x = π ⇒ x = 2 + 1 = 8 cos−1 x = 2 ⇒ x = 1 2 = tan−1 cos−1 cot−1 3 = cot−1 x = 4 ⇒ x = 3 4 sin−1 x = − ⇒ x = co s − 1 1 2 = tan−1 1 = cot−1 x = 3 ⇒ x = tan−1 x = 1 ⇒ x = cos− 1 − 1 2 = cos−1 x = 1 2 ⇒ x = cot−1 x = 3 ⇒ x = 1 2 cos−1 x = − ⇒ x =
  • 44.
    1 7 2 2 − 1 7− 1 1 2 2 4 A possible value of tan 1 sin−1 6 3 8 is : QUESTION [JEE Mains 2021 (Feb)] A B C D
  • 45.
    (a) Domain &range of cos−1 x ex (b) (c) (d) Domain & range of y = sin−1 Domain & range of cos−1 x Domain & range of cot−1 sgnx (e) Domain & range of 1 (f) Domain & range of ln cot x 1 sgn sec−1 ex QUESTIO N
  • 46.
    Let f(x) =a + b cos−1 x (b > 0). If domain and range of f(x) are the same set then (b − a) is equal to QUESTIO N A 1 − 1 π 2 + 1 π 2 1 − π 2 B C D
  • 47.
    [0, 2π] [0, 2π) [0, π) [0, π] The range off x = 4 sin−1 x2 x2 + 1 is QUESTION [JEE Mains 2023 (13 April)] A B C D
  • 48.
    (−∞, 0) (−∞, 0] (0, ∞) [0, ∞) f ∶ R→ R is defined as f(x) = ቈx2 + 2mx − 1 for x ≤ 0. mx − 1 for x > 0 If f(x) is one-one then m must lies in the interval Mind Bender A B C D
  • 49.
    Range of thefunction f(x) = cos−1 1 ex+e−x is 0, π , , π π 6 2 π π 3 2 , π 2π 2 3 A B C D QUESTIO N
  • 50.
    The domain ofthe function cosec−1 1 + x x is : −1, − 1 2 ∪ (0, ∞) 1 − , 0 ∪ [1, ∞) 2 1 − , ∞ − {0} 2 1 − , ∞ − {0} 2 QUESTIO N A B C D
  • 51.
    Let x denotethe greatest integer less than or equal to x. Then the domain of f x = sec−1 2 x + 1 is: −∞, ∞ −∞, ∞ − 0 −∞, −1 ∪ 0, ∞ −∞, −1 ∪ 1, ∞ A B C D Ans. A QUESTION [JEE Mains 2025 (28 Jan)]
  • 52.
    If cos−1 x+ cos−1 y + cos−1 z = 3π then the value of x2014 + y2014 + z2014 + 6 x2013 + y2013 + z2013 QUESTIO N
  • 53.
    Find the valuesof: (i) sin−1 sin 3 (ii) sin−1 sin 53 (iii) sin−1 sin 7 (iv) sin−1 sin 10 (v) sin−1 sin 20 QUESTIO N
  • 54.
    Find the valuesof: (i) cos−1 cos 2 (ii) cos−1 cos 3 (iii) cos−1 cos 5 (iv) cos−1 cos 7 (v) cos−1 cos 10 QUESTIO N
  • 55.
    Find the valuesof: (i) tan−1 tan 3 (ii) tan−1 tan 5 (iii) tan−1 tan 7 (iv) tan−1 tan 10 (v) tan−1 tan 15 QUESTIO N
  • 56.
  • 57.
    1. Function PeriodYaad Rakho sin−1(sin x) sin−1(sin x) = ൝ cos−1(cos x) cos−1(cos x) = ൝ tan−1(tan x) tan−1(tan x) = ൝
  • 58.
    2. (a) y= sin–1 x (b) y = cos–1 x (c) y = tan–1 x (d) y = cot–1 x
  • 59.
    3. sin−1 1 1 2 2 = =cos−1 hence graph of y = sin–1 x and y = cos–1 x intersect at x = , y = 4. sin–1 x > cos–1 x has solution sin–1 x < cos–1 x has solution
  • 60.
    5. tan−1 1= = cot−1 1 hence graph of y = tan–1 x and y = cot–1 x intersect at x = , y = 6. (a) tan–1 x > cot–1 x if x  (b) tan–1 x < cot–1 x if x 
  • 61.
    cos–1 (cos 100)= 7. sin–1 (sin 100) = tan–1 (tan 100) = 8. (a) y = sin–1 (sin x)
  • 62.
    8. (b) y= cos–1 (cos x) (c) y = tan–1 (tan x)
  • 63.
    9. sin−1 x = 1 2 ⇒x ∈ 1 < tan−1 x < 2 ⇒ x ∈ cos−1 x > 2 ⇒ x ∈ tan−1 x > 2 ⇒ x ∈ cot−1 x > 2 ⇒ x ∈
  • 64.
    Integral solution ofthe inequality 3x2 + 8x < 2 sin−1 sin 4 − cos−1 cos 4 is 1 –1 0 2 A B C D QUESTIO N
  • 65.
    If x =sin–1 (sin10) and y = cos–1 (cos10), they y – x is equal to QUESTION [JEE Mains 2019] A. 10 B. 0 C.  D. 7 
  • 66.
    If a =sin−1sin 5 and b = cos−1 cos 5 , then a2 + b2 is equal to QUESTION [JEE Mains 2024 (31 Jan)] Ans. C 25 4π2 + 25 8π2 − 40π + 50 4π2 − 20π + 50 A B C D
  • 67.
    3π − 11 4π − 9 4π− 11 3π + 1 cos−1 cos −5 + sin−1 sin 6 − tan−1 tan 12 is equal to: (The inverse trigonometric function take the principals values) QUESTION [JEE Mains 2021] A B C D
  • 68.
    Value of sin−1sin 7 + cos−1 cos 13is 21 − 5π 20 − 6π 20 − 5π 21 − 6π A B C D QUESTIO N
  • 69.
    10 π7 + cot−1 cot 26 π5 (a) Solve: cos−1 cos (b) Prove that cos−1 cos 1000π 7 + sin−1 sin 601π 1 4 = 13π 1 4 QUESTION
  • 70.
    Show that: sin− 1 sin 33π 7 + cos−1 cos 46π 7 8 +tan−1 − tan 13π + cot−1 cot − 19π 8 = 13π 7 QUESTION
  • 71.
    α α − 2 α + 2 2− α If f(x) = x11 + x9 − x7 + x3 + 1 and f sin−1(sin 8) = α, α is constant, then f tan−1(tan 8) is equal to QUESTIO N A B C D
  • 72.
    Let f: [0,4π] → [0, π] be defined by f(x) = cos−1(cos x). The number of points x ∈ [0, 4π] 1 0 satisfying the equation f(x) = 10−x is QUESTION [JEE Advanced 2014]
  • 73.
    Let f x= x + 1 x + 2 x + 3 x + 4 + 5 where x ∈−6, 6 . If the range of the function is a, b where a, b ∈ N then find the value ofa + b . Ans. 5049 Mind Bender
  • 74.
    1. If cos−1x + cos−1 y + cos−1 z = 3π, then find the value of x2013+y2013+z2013+ 6 x2014+y2014+z201 4 sin−1 w + sin−1 z = π2 then compute the value of 2. If sin−1 x + sin−1 y (x + y)(w + z). QUESTION [Ans. 1] [Ans. 4] 3. Let 'f' be an even periodic function with period '4' such that f x = 2x − 1, 0 ≤ x ≤ 2. The number of solutions of the equation f(x) = 1 in [–10, 20] are [Ans. 15] KTK
  • 75.
    4. If x1,x2 and x3 are the positive roots of the equation x3 − 6x2 + 3px − 2p = 0, p ∈ Rthen the value of sin−1 x1 x2 x2 x3 1 + 1 1 + 1 1 + 1 x3 x1 + cos−1 − tan−1 is equal to (A) π 4 (B) π 2 (C) 3π 4 (D) π 5. The domain of the function f(x) = 1 logπ sin−1 x −1 4 , is (A) −1, 1 (B) 0, 1 2 2 (C) 0, 1 2 (D) −1, 1 2 x2 − 5x − 11 2 = π, then 6. If α and β are the two zeroes of the equation 3 cos−1 α3 + β3 equals (A) 255 (B) 215 (C) –215 (D) –217 [Ans. B] QUESTIO N KTK [Ans. A] [Ans. B]
  • 76.
    [Ans. 2π − 4] 1.sin−1 sin 1 + sin−1 sin 2 + sin−1 sin 3 2. sin−1 sin 10+ sin−1 sin 20+ sin−1 sin 30 + sin−1 sin 40 [Ans. 0] [Ans. 2π + 2] [Ans. 20 − 4π] [Ans. 7π − 20] [Ans. 0] 3. cos−1 cos 1 + cos−1 cos 2 + cos−1 cos 3 + cos−1 cos 4 4. cos−1 cos 10+ cos−1 cos 20+ cos−1 cos 30+ cos−1 cos 40 5. sin−1sin 10 + cos−1 cos 10 6. sin−1sin 50 + cos−1 cos 50 7. sin−1sin 100 + cos−1 cos 100 [Ans. 0] Bumper Practice Problems (BPP)
  • 77.
  • 78.
    1. cot–1 x= ቐ if x > 0 , if x < 0 tan–1 x = ቐ if x > 0 ifx < 0 2. sec–1 x = , if |x| cosec–1 x = , if |x| 3. sin–1 x = , if |x| –1
  • 79.
    4. cos–1 (–x)= , sec–1 (–x) = cot–1 (–x) = 5. sin–1 (–x) = , tan–1 (–x) = cosec–1 (–x) = 6. sin–1 x + cos–1 x = , tan–1 x + cot–1 x = sec–1 x + cosec–1 x =
  • 80.
    7. y =sec–1 x y = cosec–1 x
  • 81.
    8. y =sec–1 (sec x) Domain = Range = 9. y = cosec–1 (cosec x) Domain =
  • 82.
    10. y =cot–1 (cot x) 11. y = tan–1 (tan x)
  • 83.
    4. If x1,x2 and x3 are the positive roots of the equation x3 − 6x2 + 3px − 2p = 0, p ∈ Rthen the value of sin−1 x1 x2 x2 x3 1 + 1 1 + 1 1 + 1 x3 x1 + cos−1 − tan−1 is equal to (A) π 4 (B) π 2 (C) 3π 4 (D) π 5. The domain of the function f(x) = 1 logπ sin−1 x −1 4 , is (A) −1, 1 (B) 0, 1 2 2 (C) 0, 1 2 (D) −1, 1 2 x2 − 5x − 11 2 = π, then 6. If α and β are the two zeroes of the equation 3 cos−1 α3 + β3 equals (A) 255 (B) 215 (C) –215 (D) –217 [Ans. B] QUESTIO N KTK [Ans. A] [Ans. B]
  • 84.
    1. If cos−1x + cos−1 y + cos−1 z = 3π, then find the value of x2013+y2013+z2013+ 6 x2014+y2014+z201 4 sin−1 w + sin−1 z = π2 then compute the value of 2. If sin−1 x + sin−1 y (x + y)(w + z). QUESTION [Ans. 1] [Ans. 4] 3. Let 'f' be an even periodic function with period '4' such that f x = 2x − 1, 0 ≤ x ≤ 2. The number of solutions of the equation f(x) = 1 in [–10, 20] are [Ans. 15] KTK
  • 85.
    Let f x= x + 1 x + 2 x + 3 x + 4 + 5 where x ∈−6, 6 . If the range of the function is a, b where a, b ∈ N then find the value ofa + b . Ans. 5049 Mind Bender
  • 86.
    Find x if 1. 4sin−1 x + cos−1 x = 3π 4 2. 5 tan−1 x + 3 cot−1 x = 7π 4 QUESTIO N
  • 87.
    (a) Solve forx : 2 sin–1 x + 3 cos–1 x = 3π 2 (b) Solve for x : cot–1 x + 2 tan–1 x = 3π 4 QUESTIO N
  • 88.
    Find the rangeof 8 1. f(x) = sin−1 x + cos−1 x + tan−1 x 2. f(x) = sin−1 x + tan−1 x + sec−1 x 2 3. If tan−1 x 2 + cot−1 x2 = 5π then find the value of x. QUESTIO N
  • 89.
    Maximum & Minimumvalue of f x = sin−1 x 3 +cos−1 x3 QUESTION
  • 90.
    Using the principalvalues of the inverse trigonometric functions, the sum of the maximum and the minimum values of 16 sec−1 x 2 +cosec−1x 2is: 24π 2 18π 2 22π 2 31π 2 A B C D Ans. C QUESTION [JEE Mains 2025 (22 Jan)]
  • 91.
    The set ofall values of k for which tan−1 x 3 +cot−1 x 3 = kπ3, x ∈ R, is the interval : 1 , 7 32 8 1 , 13 24 16 1 , 13 48 16 1 , 9 32 8 QUESTION [JEE Mains 2022 (June)] A B C D
  • 92.
    4 1 −x2 1 − 2x2 4x 1 − x2 1 − 2x2 2x 1 − x2 1 − 4x2 4 1 − x2 1 − 4x2 If 0 < x < 1 2 −1 −1 and sin x = cos x , then the value of sin 𝝰 β 2π 𝝰 𝝰+ β is QUESTION [JEE Mains 2022] A B C D
  • 93.
    −1 −1 −1 Ifsin x = cos x = tan y ; 0 < x < 1 then the value of cos a b c π c a+ b is 1 − y2 y y 1 − y2 1 − y2 1 + y2 1 − y2 2 𝑦 QUESTION [JEE Mains 2021] A B C D
  • 94.
    tan−1 α + cosec2 cot−1 β = 36, thenα2 + β If for some α, β; α ≤ β, α + β = 8 and sec2 is Ans. 14 QUESTION [JEE Mains 2025 (24 Jan)]
  • 95.
    The value ofcot−1 1 + tan22 − 1 tan 2 − cot−1 1 + tan2 1 2 + 1 ta n 1 2 is equal to 3 π − 2 5 π + 2 5 π − 4 3 π + 2 A B C D Ans. C QUESTION [JEE Mains 2025 (8 April)]
  • 96.
    Prove that thefunction defined as, f(x) = ൥e− ln x ln x − {x} ; x ; where ever it exists otherwise, then f(x) is odd as well as even. (where {x} denotes the fractional part function) Mind Bender
  • 97.
    π , π 6 4 defined by f(x)= tan−1 x2+1 x2+ 3 . Then f(x) is (A) injective and surjective (B) injective but not surjective (C) surjective but not injective (D) neither injective nor surjective 2. The value of 3 sin 1 arc cos 1 + 4 cos 1 arc cos 1 2 9 2 8 is equal to (A) 5 (B) 4 (C) 1 (D) 0 1 1+cos2 x 3 = pπ have a 3. The true set of values of p for which the equation cos−1 solution is (A) [0, 1] (B) [0, 2] (C) [1, 2] (D) [1, 3/2] QUESTION 1. Let f ∶ R → [Ans. C] [Ans. A] [Ans. A] KTK
  • 98.
    4. The valueof p ∈ R for which the equation sin−1 log10 x 2 − 2 log10 x + 2 + tan−1 log10 x 2 − 2 log10 x + 2 + cos−1 log10 x 2 − 2 log10 x = p possess solution is (A) 5π 4 (B) 3π (C) 3π (D) 7π 4 2 4 6. Consider a real-valued function f x The range of f(x) is (A) 0, 3 (B) 1, 3 = sin−1 x + 2 +1 − sin−1 x. (C) 1, 6 (D) 3, 6 QUESTIO N [Ans. D] 5. Consider a real-valued function f x = sin−1 x + 2 +1 − sin−1 x. The domain of definition of f(x) is (A) [–1, 1] (B) [sin 1, 1] (C) [–1, sin 1] (D) [–1, 0] [Ans. C] KTK [Ans. D]
  • 99.
  • 100.
    1. sin–1 x+ cos–1 x = 2. tan–1 x + cot–1 x = 3. sec–1 x + cosec–1 x = 4. cot–1 x = if x > o cot–1 x = if x < o 5. tan–1 x =
  • 101.
    6. tan–1 x+ tan–1 y = if = if 7. sin–1 (sin x) = if π < x ≤ 3π 2 2 8. tan–1 (tan x) = if π < x < 3π 2 2 9. cos–1 (cos x) = if −π ≤ x < 0
  • 102.
    10. tan–1 x– tan–1 y = if x, y > 0. 11. f(x) = sec–1 x + cosec–1 x + tan–1 x then range of f(x) is 12. f(x) = sin–1 x + cos–1 x + cot–1 x then range of f(x) is x 13. Graph of y = x + 1 is 14. y = sin–1 (sin (–5)) + cos–1 (cos (–10)) then value of y is
  • 103.
  • 104.
    π , π 6 4 defined by f(x)= tan−1 x2+1 x2+ 3 . Then f(x) is (A) injective and surjective (B) injective but not surjective (C) surjective but not injective (D) neither injective nor surjective 2. The value of 3 sin 1 arc cos 1 + 4 cos 1 arc cos 1 2 9 2 8 is equal to (A) 5 (B) 4 (C) 1 (D) 0 1 1+cos2 x 3 = pπ have a 3. The true set of values of p for which the equation cos−1 solution is (A) [0, 1] (B) [0, 2] (C) [1, 2] (D) [1, 3/2] QUESTION 1. Let f ∶ R → [Ans. C] [Ans. A] [Ans. A] KTK
  • 105.
    4. The valueof p ∈ R for which the equation sin−1 log10 x 2 − 2 log10 x + 2 + tan−1 log10 x 2 − 2 log10 x + 2 + cos−1 log10 x 2 − 2 log10 x = p possess solution is (A) 5π 4 (B) 3π (C) 3π (D) 7π 4 2 4 6. Consider a real-valued function f x The range of f(x) is (A) 0, 3 (B) 1, 3 = sin−1 x + 2 +1 − sin−1 x. (C) 1, 6 (D) 3, 6 QUESTIO N [Ans. D] 5. Consider a real-valued function f x = sin−1 x + 2 +1 − sin−1 x. The domain of definition of f(x) is (A) [–1, 1] (B) [sin 1, 1] (C) [–1, sin 1] (D) [–1, 0] [Ans. C] KTK [Ans. D]
  • 106.
    Prove that thefunction defined as, f(x) = ൥e− ln x ln x − {x} ; x ; where ever it exists otherwise, then f(x) is odd as well as even. (where {x} denotes the fractional part function) Mind Bender
  • 107.
    The value ofcot−1 1 + tan22 − 1 tan 2 − cot−1 1 + tan2 1 2 + 1 ta n 1 2 is equal to 3 π − 2 5 π + 2 5 π − 4 3 π + 2 A B C D Ans. C QUESTION [JEE Mains 2025 (8 April)]
  • 108.
    If the inversetrigonometric functions take principal values then 1 0 cos−1 3 cos tan− 1 4 3 + 2 5 sin tan − 1 4 3 is equal to: QUESTION [JEE Mains 2022 (26 June)] Ans. C 0 π 4 π 3 π 6 A B C D
  • 109.
    50 tan 3 tan−1 1 1 2 5 +2 cos−1 + 4 2 2 tan 1 tan−1 2 2 is equal to QUESTION [JEE Mains 2022 (29 June)] Ans. 29
  • 110.
    Considering only theprincipal values of the inverse trigonometric functions, the value of tan sin−1 3 2 5 5 − 2 cos−1 is QUESTION [JEE Advanced 2024 (Paper 2)] Ans. B 7 24 − 7 2 4 − 5 2 4 5 2 4 A B C D
  • 111.
    cosec 2 cot−15+ cos−1 4 5 is equal to: QUESTION [JEE Mains 2021 (25 Feb)] Ans. B 7 5 5 6 6 5 5 6 5 6 3 3 6 5 3 3 A B C D
  • 112.
    5 tan 2 tan−11 + sec−1 5 + 2 tan−1 1 2 8 is equal to : QUESTION [JEE Mains 2022 (26 July)] Ans. B 2 1 4 5 4 A 1 B C D
  • 113.
    15x2 − 8x− 7 = 0 5x2 − 12x + 7 = 0 25x2 − 18x − 7 = 0 25x2 − 32x + 7 = 0 Let α = tan 5π sin 2cos−1 1 16 5 and β = cos sin−1 4 5 + sec−1 5 3 where the inverse trigonometric functions take principal values. Then, the equation whose roots are α and β is : QUESTION [JEE Mains 2022 (June)] A B C D
  • 114.
    Find the solutionof following equations : 5 (i) 2 cot−1 2 − cos−1 4 = cosec−1 x QUESTION
  • 115.
    Find the solutionof following equations : (ii) cos−1 x − sin−1 x = cos−1(x 3) QUESTION
  • 116.
    cos sin−1 3 +sin−1 5 + sin−1 33 5 13 65 is equal to: 3 3 6 5 1 3 2 6 5 A B C D 0 Ans. D QUESTION [JEE Mains 2025 (28 Jan)]
  • 117.
    The domain ofthe function f(x) = sin−1 |x|+5 x2+1 is (−∞, −a] ∪ [a, ∞). Then a is equal to: 2 17 + 1 17− 12 1 7 2 1+ 172 QUESTION [JEE Mains 2020] A B C D
  • 118.
    1. If theequation 5 arc tan x2 + x + k solutions, then the range of k, is (A) 0, 5 (B) −∞, 5 4 4 (C) 5 , ∞ (D) −∞, 5 4 4 2. If sin−1 3 9 4 6 x2 − x + x … + cos−1 3, then number of values of 'x' is equal to 8 12 x4 − x + x … = π , where 0 ≤ |x| < 3 9 2 (C) 3 (D) 4 (A) 1 (B) 2 3. A value of α for which sin cot−1 1 + α = costan−1 α , is (A) −1 2 (B) 0 (C) 1 2 (D) 1 b 2 cos−1 x 2 is equal to aπ (a and b are coprime), 4. If maximum value of sin−1 x 2 + then (a + b) equals (C) 4 (D) 9 QUESTIO N [Ans. B] [Ans. C] KTK + 3 arc cot x2 + x + k = 2π, has two distinct [Ans. A] [Ans. D]
  • 119.
    5. Column Icontains functions and column II contains their range. Match the entries of column I with the entries of column II. Column-I Column-II x (P) 0, π 1+ x x (Q) π , 3π 4 4 1+ x x (R) − , π π 4 4 (A) f x = sin−1 (B) g x = cos−1 (C) h x = tan−1 (D) k x = cot−1 1+ x x 1+ x (S) − , π π 2 2 QUESTIO N [Ans.(A) S, (B) P, (C) R, (D) Q] KTK
  • 120.
  • 121.
    1. If x< 0 then cot–1 x in terms of arc sin is 2. If x < 0 then cos–1 x in terms of arc tan is 3. If x > 1 sec–1 x = sin–1 = tan–1
  • 122.
    4. If α= β ⇒ sin α = sin β (T/F) 5. If sin α = sin β ⇒ α = β (T/F) 6. tan–1 x + tan–1 y = ቐ if if 7. tan–1 x – tan–1 y = if
  • 123.
    1. If theequation 5 arc tan x2 + x + k solutions, then the range of k, is (A) 0, 5 (B) −∞, 5 4 4 (C) 5 , ∞ (D) −∞, 5 4 4 2. If sin−1 3 9 4 6 x2 − x + x … + cos−1 3, then number of values of 'x' is equal to 8 12 x4 − x + x … = π , where 0 ≤ |x| < 3 9 2 (C) 3 (D) 4 (A) 1 (B) 2 3. A value of α for which sin cot−1 1 + α = costan−1 α , is (A) −1 2 (B) 0 (C) 1 2 (D) 1 b 2 cos−1 x 2 is equal to aπ (a and b are coprime), 4. If maximum value of sin−1 x 2 + then (a + b) equals (C) 4 (D) 9 QUESTIO N [Ans. B] [Ans. C] KTK + 3 arc cot x2 + x + k = 2π, has two distinct [Ans. A] [Ans. D]
  • 124.
    5. Column Icontains functions and column II contains their range. Match the entries of column I with the entries of column II. Column-I Column-II x (P) 0, π 1+ x x (Q) π , 3π 4 4 1+ x x (R) − , π π 4 4 (A) f x = sin−1 (B) g x = cos−1 (C) h x = tan−1 (D) k x = cot−1 1+ x x 1+ x (S) − , π π 2 2 QUESTIO N [Ans.(A) S, (B) P, (C) R, (D) Q] KTK
  • 125.
    Let S =x: cos−1 x = π + sin−1 x + sin−1 2x + 1 . Then ෍ 2x − 1 2 is equal to x∈S Ans. 5 QUESTION [JEE Mains 2025 (29 Jan)]
  • 126.
    Let x ∗y = x2 + y3 and (x ∗ 1) ∗ 1 = x ∗ (1 ∗ 1). Then a value of 2 sin−1 x4+x2− 2 x4+x2+ 2 is π 4 π 3 π 2 π 6 QUESTION [JEE Mains 2022 (June)] A B C D
  • 127.
    + sin cot−1 x 2− 1 1/2 = QUESTION [IIT-JEE 2008 (Paper 1)] If 0 < x < 1, then 1 + x2 x cos cot−1 x Ans. C x 1 + x2 x x 1 + x2 1 + x2 A B C D
  • 128.
    Find the solutionof following equations : (ii) cos−1 x − sin−1 x = cos−1(x 3) QUESTION
  • 129.
    Let the inversetrigonometric functions take principal values. The number of real 5 solutions of the equation 2 sin−1 x + 3 cos−1 x = 2π , is QUESTION [JEE Mains 2024 (9 April)] Ans. 0
  • 130.
    Considering the principalvalues of the inverse trigonometric functions, the sum of all the solutions of the equation cos−1 (x) − 2sin−1 (x) = cos−1 (2x) is equal to: QUESTION [JEE Mains 2022] A. 0 B. 1 C. 1/2 D. –1/2
  • 131.
    4 For n ∈N, if cot−1 3 + cot−1 4 + cot−1 5 + cot−1 n = π , then n is equal to QUESTION [JEE Mains 2024 (6 April)] Ans. 47
  • 132.
    Let S bethe set of all solutions of the equation cos−1 2x − 2 cos−1 1 − x2 = π, x ∈ − , 1 1 2 2 . Then ෍ 2 sin x∈S − 1 x2 − 1 is equal to π − 2 sin−1 3 4 π − sin−1 3 4 −2 π3 None QUESTION [JEE Mains 2023 (1 Feb)] A B C D
  • 133.
    Find the numberof solution(s) of the equation (i) cos−11 − x − 2 cos−1 x = π (ii) cos−11 − x 2 − 2 cos−1 x = 1.7 QUESTIO N
  • 134.
    tan−1 x +1 + tan−1 x − 1 = (−7) x − 1 x QUESTIO N
  • 135.
    Considering only theprincipal values of inverse trigonometric functions, the number of 4 positive real values of x satisfying tan−1 x + tan−1 2x = π is : QUESTION [JEE Mains 2024 (27 Jan)] Ans. D more than 2 2 0 1 A B C D
  • 136.
    The sum ofpossible values of x for tan−1 x + 1 + cot−1 1 x− 1 = tan−1 8 3 1 is: QUESTION [JEE Mains 2021 (17 March)] Ans. A 3 2 − 4 3 3 − 4 3 1 − 4 3 0 − 4 A B C D
  • 137.
  • 138.
    If the sumof all the solutions of tan−1 2 x 1−x2 + cot−1 1−x2 2 x π = , −1 < x < 1, x ≠ 0, is 3 3 α − 4 , then α is equal to QUESTION [JEE Mains 2023 (25 Jan)] Ans. 2
  • 139.
    − 1 For any y∈ ℝ, let cot−1 y ∈ (0, π) and tan (y) ∈ − , π π 2 2 . Then the sum of all the solutions of the equation tan−1 + cot−1 6y 9−y2 9−y2 6y 3 = 2π for 0 < |y| < 3, is equal to: QUESTION [JEE Advanced 2023 (Paper 2)] Ans. C 2 3 − 3 3 − 2 3 4 3 − 6 6 − 4 3 A B C D
  • 140.
    If α >β > γ > 0, then the expression cot−1 β + + cot−1 γ + 1 + β2 1 + γ2 α − β β − γ + cot−1 α + 1 + α2 γ − α is equal to : 3 π 2 π − α + β + γ A B C π D 0 Ans. C QUESTION [JEE Mains 2025 (24 Jan)]
  • 141.
    n Let x =m (m, n are co-prime natural numbers) be a solution of the equation cos 2 sin−1 x = 1 and let α, β(α > β) be the roots of the equation 9 mx2 − nx − m + n = 0. Then the point (α, β) lies on the line QUESTION [JEE Mains 2024 (29 Jan)] Ans. C 3x – 2y = –2 3x + 2y = 2 5x + 8y = 9 5x – 8y = –9 A B C D
  • 142.
  • 143.
    1. sin−1 x= ቈ tan−1 tan − 1 if x > 0 if x < 0 2. tan−1 x = ቈ sin−1 sin− 1 if x > 0 if x < 0 3. cos−1x = ቈcot−1 cot−1 if x > 0 if x < 0 4. cot−1 x = ቈcos−1 cos−1 if x > 0 if x < 0
  • 144.
    5. Expression Substitution a2− x2 a2 − x2 a− x a+ x x2 6. If θ ∈ − , π π 2 2 then cos θ, sec θ are If θ ∈ [0, π] then sin θ, cosec θ are
  • 145.
    The value oftan−1 1+x2+ 1−x2 1+x2− 1−x2 1 , |x| < , x ≠ 0, is equal to 2 π − 1 cos x 4 2 −1 2 π 1 4 2 + cos x −1 2 4 π − cos−1x2 4 π + cos−1x2 QUESTIO N A B C D
  • 146.
    If S = x ∈ℝ ∶ sin−1 x + 1 x2 + 2x + 2 − sin−1 x x2 + 1 4 π = , then ෍ sin x2 + x + 5 π x∈s 2 − cos x2 + x + 5 π is equal to QUESTION [JEE Mains 2023 (13 April)] Ans. 4
  • 147.
    Considering the principalvalues of the inverse trigonometric functions, sin− 1 3 x + 1 2 2 1 − x2 , − 1 2 2 < x < 1 , is equal to 6 −5π − sin−1 x 6 5π − sin−1 x 6 4 π + sin−1 x A B C π + sin−1 x D Ans. C QUESTION [JEE Mains 2025 (4 April)]
  • 148.
    If π ≤ x≤ 3π , then cos−1 12 cos x + 2 4 13 1 3 5 sin x is equal to x + tan−1 5 1 2 x − tan−1 4 3 x + tan−1 4 5 x − tan−1 5 1 2 A B C D Ans. D QUESTION [JEE Mains 2025 (23 Jan)]
  • 149.
    If f(x) =2tan−1x + sin−1 2 x 1+x2 , x > 1 then f(5) is equal to: / 2  4 tan–1(5) tan− 1 6 5 15 6 QUESTIO N A B C D
  • 150.
    Let tan−1y =tan−1x + tan−1 2 x 1−x2 3 , where |x| < 1 . Then a value of y is: 3x − x3 1 + 3x2 3x + x3 1 + 3x2 3x − x3 1 − 3x2 3x + x3 1 − 3x2 QUESTIO N A B C D
  • 151.
    Write the followingfunctions in the simplest form: x 1+x2−1 , x ≠ 0 1 x2−1 , x > 1 5. tan−1 7. tan−1 1−cos x 1+cos x , 0 < x < π 6. tan−1 8. tan−1 cos x−sin x cos x+sin x , −π < x < 3π 4 4 QUESTION
  • 152.
    The number ofsolution of the equations 2 sin−1 2 x 1+x2 − πx3 = 0 is equal to QUESTIO N 0 1 2 3 A B C D
  • 153.
    Let tan−1 x∈ − , π π 2 2 , for x ∈ ℝ. Then the number of real solutions of the equation 1 + cos2x = 2 tan−1tan x in the set 2 2 2 2 − 3π , − π π π π , 3π 2 2 ∪ − , ∪ is equal to: QUESTION [JEE Advanced 2023 (Paper 1)] Ans. 3
  • 154.
    The number ofsolutions of the equation tan−1 x = x2 + 1 2 − 4x2 is QUESTIO N
  • 155.
    Considering only theprincipal values of the inverse trigonometric functions, the value of 2 3 cos−1 2 1 2+π2 + 4 sin −1 2 2 π 2+π2 + tan − 1 2 π is : QUESTION [JEE Advance 2022]
  • 156.
    Let x =sin 2 tan−1 α and y = sin 1 tan−1 4 . 2 3 If S = α ∈ R: y2 = 1 − x , then ෍ 16α3 is equal to 𝝰∈S Ans. 130 QUESTION [JEE Mains 2022]
  • 157.
    Considering only theprincipal value of inverse functions, the set A = x ≥ 0: tan−1 2x + tan−1 3x = π 4 contains two elements contains more than two elements is a singleton is an empty set A B C D Ans. C QUESTION [JEE Mains 2019 (Jan)]
  • 158.
    Number of integersin range of f x = x x + 2 x + 4 x + 6 + 7, x ∈ [−4, 2] is Mind Bender
  • 159.
    n= 1 1. The sumσ∞ tan− 1 4 n n4−2n2+ 2 (A) tan−1 1 + tan−1 2 2 3 (C) π 2 is equal to (B) 4 tan−1 1 (D) sec−1 − 2 r= 1 σn tan− 1 2r− 1 r2−r+1 −2r3 = 961 then the value of n is equal to 2. If tan (A) 31 r2+r+1 (B) 30 (C) 60 (D) 61 3. If the solution set of inequality cosec−1x 2 − 2 cosec−1x ≥ π 6 (−∞, m] ∪ [n, ∞) then (m + n) equals (A) 0 (B) 1 (C) 2 (D) –3 QUESTIO N [Ans. D] [Ans. A] cosec−1x − 2 is [Ans. B]
  • 160.
    If a sin−1x − b cos−1 x = c, then the value of a sin−1 x + b cos−1 x (whenever exists) is equal to: 0 πab + c b − a a + b π 2 πab + c a − b a + b A B C D Ans. D QUESTIO N
  • 161.
    The range off x = cot−1 −x − tan−1 x + sec−1 x is : − , π 3π 2 2 π 3π , π ∪ π, 2 2 − , π 3π 2 2 π 3π , π ∪ π, 2 2 A B C D Ans. B QUESTIO N
  • 162.
  • 163.
    1. cos–1 (–x)= sin–1 (–x) = tan–1 (–x) = sec–1 (–x) = cot–1 (–x) = cosec–1 (–x) = if 2. tan–1 x + tan–1 y = ቐ if
  • 164.
    3. If x,y > 0, tan−1 x− y 1+x y = 4. If x > 0, tan−1 x 1−6x2 = 5. = 3 ෍ ta n− 1 r=1 2 r2
  • 165.
    6. sin–1 xis function cos–1 x is function tan–1 x is function cot–1 x is function 7. [sin–1 x] can take value = 8. [cos–1 x] can take value =
  • 166.
    Let x =sin 2 tan−1 α and y = sin 1 tan−1 4 . 2 3 If S = α ∈ R: y2 = 1 − x , then ෍ 16α3 is equal to 𝝰∈S Ans. 130 QUESTION [JEE Mains 2022]
  • 167.
    Considering only theprincipal values of the inverse trigonometric functions, the value of 2 3 cos−1 2 1 2+π2 + 4 sin −1 2 2 π 2+π2 + tan − 1 2 π is : QUESTION [JEE Advanced 2022]
  • 168.
    Solve the inequality:sin−1 x > sin−1(3x − 1) QUESTION
  • 169.
    sin−1 x >cos−1 x & sin−1 x > sin−1(1 − x) QUESTION
  • 170.
    Solve the systemof inequalities involving inverse circular functions arc tan2 x − 3 arc tan x + 2 > 0 and sin−1 x > cos−1 x where [.] denotes the greatest integer function. QUESTION
  • 171.
    cot−1 x 2− 6 cot−1 x + 9 ≤ 0, where [.] denotes the Find the complete solution set of greatest integer function. QUESTION
  • 172.
    Solve the followingsystem of in equations 4 arc tan2 x − 8 arc tan x + 3 < 0 and 4 arc cot x − arc cot2x − 3 > 0 QUESTION
  • 173.
    tan− 1 3 2 π 2 cot− 1 3 2 tan−1(3 ) k Let Sk =෍ tan−1 r=1 6r 22r+1 + 32r+1 k→ ∞ then lim Sk is equal to: QUESTION [JEE Mains 2021] A B C D
  • 174.
    101/102 50/51 100 51/50 50 If ෍ tan−1 r=1 1 2r2 =p, then the value of tan p is: QUESTION [JEE Mains 2021] A B C D
  • 175.
    If cot–1 ()= cot–1 2 + cot–1 8 + cot–1 18 + cot–1 32 +….. upto 100 terms, then  is QUESTION [JEE Mains 2019] A 1.01 B 1.00 C 1.02 D 1.03
  • 176.
  • 177.
    50 The value ofcot ෍ tan−1 n=1 1 1 + n + n2 is 2 6 2 5 2 5 2 6 5 0 5 1 5 2 5 1 QUESTION [JEE Mains 2022 (June)] A B C D
  • 178.
    5/11 If S isthe sum of the first 10 terms of the series tan− 1 1 3 + tan−1 + tan−1 + tan−1 1 1 1 7 13 21 + QUESTION [JEE Mains 2020] then tan(S) is equal to: A 10/11 B –6/5 C 5/6 D
  • 179.
    If y =cos π + cos−1 x , then (x − y)2 + 3y2 is equal to 3 2 Ans. 3 QUESTION [JEE Mains 2025 (2 April)]
  • 180.
    The sum ofthe infinite series cot−1 7 4 + cot−1 1 9 4 + cot−1 3 9 4 + cot−1 6 7 4 + ⋯ is: 2 π + cot−1 1 2 2 π − cot−1 1 2 2 π − tan−1 1 2 2 π + tan−1 1 2 A B C D Ans. C QUESTION [JEE Mains 2025 (4 April)]
  • 181.
    Let a, b∈ (0, 2π) be the largest interval for which sin−1 sin θ − cos−1 sin θ > 0, θ ∈ (0, 2π) holds. If αx2 + βx + sin−1 x2 − 6x + 10 + cos−1 x2 − 6x + 10 = 0 and α − β = b − a, then α is equal to: π 4 8 π 1 6 π 8 π 1 2 A B C D Ans. D QUESTIO N
  • 182.
    0, π is definedby g(x) = cos−1 x2−k 3 1+x2 . Then the possible values of 'k' for which g is surjective function, is 1 2 2 (A) (B) −1, − 1 (C) − 1 2 1 2 (D) − , 1 2. Number of values of x satisfying the equation cos 3 arc cos x − 1 (A) 0 (B) 1 (C) 2 (D) 3 3. The number of ordered triplets 4 2 sin−1 x 2 = π + (A) 2 sec−1 y 2 + (B) 4 x, y, z satisfy the equation tan−1 z 2 is (C) 6 (D) 8 QUESTION 1. Let g: R → KTK [Ans. A] [Ans. C] = 0 is equal to [Ans. D]
  • 183.
    The number ofsolutions of the equation |y| = cos x and y = cot−1 cot x in − 3π , 5π 2 2 is 2 4 6 none of these A B C D Ans. A QUESTIO N
  • 184.
    Let f: R→ 0, π 6 be defined as f(x) = sin−1 4 4x2−12x+1 7 then f(x) is : injective as well as surjective surjective but not injective injective but not surjective neither injective nor surjective A B C D Ans. B QUESTIO N
  • 185.
  • 186.
    If cos−1 2 3 x + cos−1 3 = π 4x 2 4 x> 3 then x is equal to: 14 5 1 2 14 5 1 0 14 6 1 2 14 5 1 1 QUESTION [JEE Mains 2019] A B C D
  • 187.
    The value ofsin−1 1 2 1 3 − sin−1 3 5 is π − cos−1 3 3 6 5 π − sin−1 6 3 6 5 2 π − sin−1 5 6 6 5 2 π − cos−1 9 6 5 QUESTION [JEE Mains 2019] A B C D
  • 188.
    Given that theinverse trigonometric function assumes principal values only. Let x, y be 2 any two real numbers in [−1, 1] such that cos−1 x − sin−1 y = α, −π ≤ α ≤ π. Then, the minimum value of x2 + y2 + 2xy sin α is QUESTION [JEE Mains 2024 (4 April)] Ans. A 0 –1 1/2 –1/2 A B C D
  • 189.
    If cos−1x −cos−1 y = α, where −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, x ≤ y , then for all x, y, QUESTION [JEE Mains 2019] 2 2 4x2 − 4 xy cosα + y2 is equal to A. 2 sin2α B. 4 cos2α + 2x2y2 C. 4 sin2α D. 4 sin2α − 2x2y2
  • 190.
    Let (x, y)be such that sin−1 ax + cos−1 y + cos−1 bxy = π 2 Match the statements in Column I with statements in Column II. Ans. (A) P; (B) Q; (C) P; (D) S QUESTION [IIT-JEE 2007] Column I Column II (A) If a = 1 and b = 0, thenx, y (P) lies on the circle x2 + y2 = 1 (B) If a = 1 and b = 1, thenx, y (Q) lies on x2 − 1 y2 − 1 = 0 (C) If a = 1 and b = 2, thenx, y (R) lies on y = x (D) If a = 2 and b = 2, thenx, y (S) lies on 4x2 − 1 y2 − 1 = 0
  • 191.
    The number ofsolutions of the equationsin−1 x2 + 1 + cos−1 3 3 x2 − 2 = x2 for x ∈ −1, 1and [x] denotes the greatest integer less than or equal to x, is 0 infinite 2 4 A B C D Ans. A QUESTION [JEE Mains 2021]
  • 192.
    The complete solutionset of the equation sin− 1 2 1+x − 2 − x = cot−1 tan 2 − x − sin−1 2 1−x is [–1, 1] 4 2 2 − π , 1 2 −1,2 − π 4 [0, 1] A B C D Ans. B QUESTIO N