This document summarizes a research paper that proposes a system to analyze crop phenology (growth stages) using IoT to support parallel agriculture management. The system would use sensors to collect data on soil moisture, temperature, humidity and other parameters. This data would be input to a database. Then, a multiple linear regression model trained on past data would predict the optimal crop and expected yield based on the tested sensor data and parameters. This system aims to help farmers select crops and fertilization practices tailored to their specific fields' conditions.