Researchers use hypothesis testing to evaluate claims about populations by taking samples and analyzing the results. The four steps of hypothesis testing are: 1) stating the null and alternative hypotheses, 2) setting the significance level typically at 5%, 3) computing a test statistic to quantify how unlikely the sample results would be if the null was true, and 4) making a decision to either reject or fail to reject the null hypothesis based on comparing the test statistic to the significance level. The goal is to systematically evaluate whether a hypothesized population parameter, such as a mean, is likely to be true based on the sample results.