SlideShare a Scribd company logo
1 of 47
Download to read offline
Page 1
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
WEUEF12: Hydraulics/ Advanced Hydraulics
Associate Prof. Dr. Sameh Kantoush
Disaster Prevention Research Institute DPRI, Kyoto University
Email of the course instructor: sameh.kantoush@stl.pauwes.dz,
kantoush@yahoo.com
Module III: Hydraulic Structures and
Flow Measurements
March 31, 2022
Lecture 16: Weirs and spillways
Page 2
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 2
Three gorges dam, Yangtze river, China
The world’s recent largest dam
Some weirs in the world
https://www.wsj.com/articles/floodi
ng-again-threatens-chinas-three-
gorges-dam-11597847951
Page 3
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 3
Hoover arch dam, Colorado river, USA
Largest dam at the time
of its completion in 1935
Some weirs in the world
https://graylinelasvegas.com/blog/yo
ur-guide-visiting-hoover-dam/
Page 4
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 4
Some weirs in the world
Son La dam, Da river, Vietnam
Largest hydropower in Vietnam
https://vietnamnet.vn/vn/kinh-
doanh/dau-tu/giai-ma-bi-an-ve-qua-
trinh-tim-noi-dat-dap-thuy-dien-son-la-
466564.html
Page 5
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 5
Some weirs in the world
Wivenhoe dam, Southeast Queensland, Australia
Page 6
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
P1
P1
P
Slide 6
Basic parameters of weir-spillway
- Weir height: P and P1
- Length of weir: b (∑b = nb)
- n: number of chambers
- Width of upstream channel: B
- Weir thickness: δ
- Overfall head: H, Ho=H+Vo
2/2g
- Approaching velocity
- Water depth of downstream channel: hd.
- Submerge depth: hs
- Difference between upstream and downstream heads: Z
Note: Critical depth: hk = yc
Page 7
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
H
= δ0
δ
Slide 7
Classification of weir-spillway
1. Respect to weir width δ.
 Sharp-crested weir: δ < δ0
Resistance of the weir against the flow is
negligible. The flow is under effect of gravity
δ0 = 0.67H
 Ogee weir: δ0 < δ < (2-3)H
There is resistance of the spillway to
the flow but the flow is still controlled
by gravity
 Broad-crest weir: (2-3)H < δ < (8-10)H
Weir thickness strongly affect the
flow. Gravitational flow occurs only
at the entrance
hd
Page 8
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 8
Classification of weir-spillway
2. Respect to the shape.
perpendicular
Curved (arch)
Circular (well)
Rectangular
Trapezoidal
Triangle (V-Notch)
circular
3. Respect to location of crest in plane.
oblique
straight
Lateral (side)
Page 9
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 9
Classification of weir-spillway
5. Respect to overfall condition above the crest
Free overfall weir Submerged overfall weir
hh
hn
hs
4. Respect to the location in river
Suppressed (without
side contraction) weir
Contracted (side
contraction) weir
Page 10
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 10
Sharp-crested weir – rectangular shape
1. Standard sharp-crested weir: rectangular, free overfall,
without side contraction
3/2
0 (21.1)
2
Q m b gH
=
2
1
0.003
0.405 1 0.55( )
H
o
H
m
H P
 
 
= + +
 
 
+
  
m0 is coefficient of discharge
H: overfall head
P1: weir height in the upstream side
P1
P
Page 11
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 11
2. Sharp-crested weir: rectangular, free overfall, with side
contraction
3/2
(21.2)
2
c
Q m b gH
=
2
2
1
0.003
0.405 0.03 1 0.55 .
c
B b b H
m
H B B H P
 
 
−
   
 
= + − +  
 
  +
   
 
 
 
mc: is coefficient of discharge
B: channel width
b: weir length
Sharp-crested weir – rectangular shape
Page 12
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 12
3. Submerged overfall weir
The flow over the weir is submerged
when satisfied 2 conditions:
hh
hn
hs
hd
P
H
critical critical
Z Z Z
0.65 0.7
P P P
   
< ≈ →
   
   
hd > P ( hs >0 )
and
 Submerged overfall flow, without side contraction
3
2
s o
Q m b 2gH (21.3)
= σ
 Submerged overfall flow, with side contraction
3
2
s c
Q m b 2gH (21.4)
= σ
s 3
s
h Z
1.05 1 0.2
P H
 
σ
= +
 
 
σs: coefficient of submerged overfall flow
Sharp-crested weir – rectangular shape
Page 13
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 13
Example
A rectangular sharp-crested weir, having b=0.5m;
P=P1=0.35m; width of upstream channel B=1.2m; water depth in downstream
channel hd=0.55m.
1. Find overfall discharge when H=40cm.
2. Find Hmax if Qma x= 300ℓ/s
Solution:
Sharp-crested weir – rectangular shape
d s d
s
critical
1/3
s
c
h 0.55m P 0.35m h h P 0.55 0.35 0.2m
H h
Z 0.4 0.2 Z
0.57 0.65 0.7
P P 0.35 P
0.55 0.35 0.2
1.05 1 0.2 0.928
0.35 0.4
0.003 1.2 0.5 0.5
m 0.405 0.03 1 0.55
0.4 1.2 1.2
• = > = → = − = − =
− −  
• = = = < ≈ →
 
 
−
  
σ
= + =
  
  
−
   
= + − +
   
   
2 2
3/2 3/2 3
s c
0.4
0.406
0.4 0.35
Q m b 2gH 0.928 0.406 0.5 4.43 0.4 0.211m / s
Q 211 / s
 
 
=
 
 
+
 
 
 
=
σ = × × × × =
= 
submerged
flow
1.
Page 14
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 14
Sharp-crested weir – rectangular shape
 Free overfall flow, with
side contraction
Use trial and error method
2. Find Hmax if Qma x= 300ℓ/s
 Hypothesize σs = 1 (free flow); mc = 0.405
2/3 2/3
s c
s
critical
s
2 2
c
Q 0.3
H 0.482m
1 0.405 0.5 4.43
m b 2g
H h
Z 0.48 0.2 z
check 0.8 0.65 0.7
P P 0.35 P
1
0.003 1.2 0.5 0.5 0.48
m 0.405 0.03 1 0.55
0.48 1.2 1.2 0.48 0.35
   
= = =
   
  × × ×
σ  
 
− −  
= = = > ≈ →
 
 
σ =
 
−
     
= + − +

     
+
     


2/3 2/3
s c
0.406
Q 0.3
H 0.481m
1 0.406 0.5 4.43
m b 2g
H 0.481m
=



   
= = =
   
  × × ×
σ  
 
=
Page 15
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 15
Sharp-crested weir – triangle and trapezoidal shapes
1. Triangle shape
5
2
Q 1.4H (21.6)
=
( )
5/2
triangle
Q m 2gH 21.5
=
If θ = 900
Eq. (21.6) is used to measure the discharge very precisely
2. Trapezoidal shape
( )
3/2
trapezoidal
Q m b 2gH 21.7
=
If tgθ = ¼: mtrapezoidal = 0.42 
3
2
Q 1.86bH (21.8)
=
Page 16
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 16
Ogee weir
1. General equation
3/2
s o )
Q m b 2gH (21.9
= σ ε Σ
- Free flow: σs=1. submerged flow: σs<1.
- Without side contraction: ε =1. with side contraction: ε <1.
- Coefficient of discharge (m) depends on H and geometry of
the entrance of the weir
2. Determine ε [ ] o
sa ma
H
1 0.2 (n 1) )
(21.10
nb
ε = − ξ + − ξ
Side abutment middle abutment
sa
ξ
ma
ξ
squared rounded
oblique
rounded
squared angle curved
Side abutment
middle abutment
n = 3 chambers
 2 middle
abutments
Page 17
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 17
Ogee weir
3. Determine σs
The overfall flow is submerged when satisfied both 2 conditions
critical
Z Z
P P
 
<  
 
hd > P ( hs >0 ) and (Z/P)critical ≈ 0.7÷0.75
(Z/P)critical is obtained from here
Page 18
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 18
Ogee weir
3. Determine σs
- When hs ≤ 0 (hd ≤ P): free overfall→ σs = 1
- When hs > 0 and (Z/P)<(Z/P)critical :
submerged overfall
→ σs = f(hs/Ho) <1
σs
0
s
h
H Weir without vacuum Weir with vacuum
Page 19
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 19
Ogee weir
4. Determine m
tan (21.11)
s dard shape H
m m σ σ
=
 mstandard : is the coefficient of discharge when the weir
has a standard shape and H=Hdesign.
- Weir type 1: mstandard = 0.504
- Weir type 2: mstandard = 0.48
e
P1
Coordinates of the standard weir
according to Corigio-Ophixerop
Type 1 Type 2
Type 1 Type 2
Table to determine R
Page 20
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 20
Ogee weir
4. Determine m
tan (21.11)
s dard shape H
m m σ σ
=
 σshape : modified factor when the actual shape of weir is
different from the standard one
σshape = f(α, β, e/P1).
 σH : modified factor of overflow head H ≠ Hdesign
(designed overflow head).
e
P1
Page 21
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 21
3 basic problems of Ogee weir
1. Type 1: find Q.
Known: H, b, n, P, P1, hd, Bupstream (V0)
2. Type 2: find H.
Known: Q, b, n, P, P1, hd, Bupstream (V0)
3. Type 3: find b.
Known: H, Q, n, P, P1, hd, Bupstream (V0)
Page 22
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 22
Ogee weir
1. Type 1: find Q
Ogee weir type 2 without vacuum, having α=45o; β=60o; e/P1=0.9 ;
Hdesign=2m. The weir has 5 chambers, width of each b=10m,
rounded side and middle abutments.
Calculate Q when a) H = Hdesign and b) H = 2.6m; Downstream
water head is below the weir crest, ignore approaching velocity
Vo.
Solution:
Free overfall flow with side contraction.
3/2
0
s tan dard shape H shape s tan dard
sa ma 0
sa ma
0 0
Q m b 2gH
m m ; 0.978; m 0.48
(n 1) H
1 0.2 . with 0.7; 0.45
n b
H H because V 0
=
ε Σ
= σ σ σ = =
ξ + − ξ
ε = − ξ = ξ =
= =
Page 23
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 23
Ogee weir
1. Type 1: find Q
H
sa ma 0
3/2
0
3/2 3
1 m 0.978 1 0.48 0.4694
(n 1) H
1 0.2 .
n b
0.7 (5 1) 0.45 2
1 0.2 0.98
5 10
Q m b 2gH
0.98 0.4694 5 10 2 9.81 2 288.16m / s
σ = ⇒ = × × =
ξ + − ξ
ε = −
+ − ×
=− × =
⇒ =
ε Σ
= × × × × × × =
H
design
3/2 3
H 2.6
1.3 1.0275
H 2
m 0.978 1.0275 0.48 0.4823
0.7 (5 1) 0.45 2.6
1 0.2 0.974
5 10
Q 0.974 0.4823 5 10 2 9.81 2.6 435.95m / s
= = ⇒ σ=
⇒ = × × =
+ − ×
ε = − × =
⇒= × × × × × × =
a) H = Hdesign=2m
b) H = 2.6m
Page 24
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 24
Ogee weir
2. Type 2: find H
Ogee weir type 1 without vacuum, having: α = 15o, β=60o, e/P1=0.6;
n=8, b = 10m, rounded side and middle abutment. Hdesign = 3m.
When upstream water level Zupstream = +31m, the discharge Q =
1200 m3/s. Downstream channel’s bed level is +18m and
downstream water level is +25m (ignore approaching velocity).
Determine the crest level Zcrest
Solution: Trial and error method
Zcrest = Zupstream- H and hd = Zdownstream- Zbed= 25 – 18 = 7m
Assume hd < P  free overfall flow 
In which ε, m depend on H
1 round: assume m = 0.458; ε = 0.96
2/3
0
Q
H ( )
m b 2g
=
ε Σ
2/3 2/3
0
Q 1200
H ( ) ( ) 3.9m
m b 2g 0.96 0.458 8 10 2 9.81
⇒
= = =
ε Σ × × × ×
Page 25
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 25
Ogee weir
2. Type 2: find H
Check assumption: α = 15o, β=60o, e/P1=0.6 ⇒ σshape=0.902; mstandard=0.504
m = 0.465 ≠ massume = 0.458; ε = 0.962 ≠ εassume = 0.96
2 round: assume m = 0.465; ε = 0.962
m ≈ massume ; ε ≈ εassume .
 H0=3.85m. Ignore V0  H=H0=3.85m
⇒ Zcrest = Zupstream – H = +31 – 3.85 = +27.15m (Zcrest >Zdownstream  free flow).
H
design
H 3.9
1.3 1.023 m 0.902 1.023 0.504 0.465
H 3
0.7 (8 1) 0.45 3.9
1 0.2 0.962
8 10
= = ⇒ σ= ⇒ = × × =
+ − ×
ε = − × =
2/3 2/3
0
Q 1200
H ( ) ( ) 3.85m
m b 2g 0.962 0.465 8 10 2 9.81
⇒
= = =
ε Σ × × × ×
H
design
H 3.85
1.285 1.022 m 0.902 1.022 0.504 0.465
H 3
0.7 (8 1) 0.45 3.85
1 0.2 0.963
8 10
= = ⇒ σ
= ⇒
= × × =
+ − ×
ε = − × =
Page 26
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 26
Ogee weir
3. Type 3: find b
Ogee weir type 1 without vacuum, having standard shape, α
= 60o, P = P1 = 8m. n=6, rounded side and middle abutment,
Hdesign= 2.5m. hd = 2.8m, V0 = 0.6m.
Find b when H = 3m and Q = 409 m3/s.
Solution:
hd < P  free overfall flow
With H = 3m; V0=0.6m/s ⇒ Ho
3/2
0
Q
b
mn 2gH
ε =
2 2
0
0
V 0.6
H H 3 3.02m
2g 19.62
α
=
+ =
+ =
Page 27
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 27
Ogee weir
3. Type 3: find b
H
design
shape s tan dard s tan dard shape H
H 3
1.2 1.020
H 2.5
1, m 0.504 m m . . 0.504 1 1.02 0.5141
= = → σ
=
σ = = ⇒= σ σ
= × × =
3/2
409
b 5.704
0.5141 6 2 9.81 3.02
⇒ ε =
× × ×
sa ma 0
sa ma
0
sa ma
(n 1) H
1 0.2 .
n b
(n 1)
b b 0.2 .H
n
with 0.7; 0.45 and n 6
ξ + − ξ
∴ε= −
ξ + − ξ
⇒ =
ε +
ξ= ξ = =
0.7 (n 1) 0.45
b 5.704 0.2 3 5.704 0.297 6m
6
+ − ×
⇒
= + ×
= + =
Page 28
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 28
Broad-crested weir
1. Conditions to determine the flow types
hs
s s
k k critical
h h
1.2 1.4
h h
   
> =
÷
   
   
s s
0 0 critical
h h
0.7 0.85
H H
   
> =
÷
   
   
 submerged flow when
or
hd
P
P1
 free flow when
s s
k k critical
h h
1.2 1.4
h h
   
< =
÷
   
   
s s
0 0 critical
h h
0.7 0.85
H H
   
< =
÷
   
   
or
Page 29
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 29
Broad-crested weir
2. Equations of computation: rectangular weir
c
c
o
o
H
hc
c
c
o
o
H
hc
a. Free flow
3/2
o (21.12)
Q mnb 2gH
=
With sill,
without side
contraction: mα
m: coefficient of discharge
Without sill,
with side
contraction:
mβ
Page 30
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 30
2. Equations of computation: rectangular weir
b. Submerged flow
s o
Q bh 2g(H h) (21.13)
=
ϕ −
( )
2
o s o
V
H h 1 k V 2g(H h)
2g
= + + ∑ → = ϕ −
Write energy equation for section (0-0) and (2-2)
The general equation for weir is not suitable!
hs
hs= hd
Broad-crested weir
Page 31
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 31
Broad-crested weir
s
1
1 k
ϕ =
+ ∑
: Coefficient of velocity of submerged flow
d d
2
V (V V )
Z
g
−
=
h = hs - Z2 With
Z2 is relatively small  can be ignore in calculation
n s o s (21.14)
Q bh 2g(H h )
=
ϕ −
→
Z2 = 0
If the weir is not rectangular, replace bh in Eq. (21.13) and (21.14) by A
s o
Q A 2g(H h) (21.13b)
=
ϕ − n o s )
Q A 2g(H h ) (21.14b
=
ϕ −
ϕs
Page 32
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 32
Some examples of sluice gates
Page 33
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 33
Definitions
0
Ho
Vo
0
H
a
I
C
hc
2
α
hk hh
Gate
Gate
Gate opening
hd
H.J
H: upstream water head
V0: approaching velocity
a: gate opening
hc: water head at contraction section
hk: critical depth (yc)
hd: water head at downstream channel
Page 34
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Ho
Vo
2/2g
H
a
c
c
hd
Thân cống Cửa ra
Cửa vào
Gate
hc
Slide 34
Flow characteristics
Ho= H+Vo
2/2g
From experiments, when a/H < 0.75, the flow after the gate
is supercritical.
hc=ε.a
The flow at the contraction section is connected with the
downstream flow via supercritical flow when hd < hk, and via
hydraulic jump when hd > hk
Inlet Outlet
Sluice gate
body/foundation
Page 35
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 35
Flow modes via sluice gates
S3 hh
Gate
Inlet Outlet
1. When hd < hk ↔ no hydraulic jump →
→ Free flow
2. When hd > hk : with hydraulic jump.
a. If hd < h”c→ repelled hydraulic
jump → Free flow
b. If hd = h”c→ free hydraulic jump,
starting at C-C → Free flow
c. If hd > h”c → Submerged hydraulic
jump
→ Submerged flow
M3
hh
Gate
Inlet
Outlet
hd
Gate
Inlet Outlet
hc and h”c: conjugate depths
h”c: sequent depth of hc through H.J
Page 36
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 36
Basic equations of computation
1. Free flow
M3
hh
Gate
Energy equation for (1-1) and (c-c):
2 2 2
o c c
c
2
c
o c c
c o c
c o c c o c
V V V
H h k
2g 2g 2g
V
H h (1 k) ; h a
2g
1 1
V 2g(H h ) ;
1 k 1 k
V 2g(H h ); Q A 2g(H h )
+ = + + Σ
= + + Σ = ε
→
= − ϕ
=
+ Σ + Σ
→ =
ϕ − =
ϕ −
1
1
For rectangular shape c c c o c
Q bh 2g )
A (H h )
bh (22.1
= ϕ
= → −
ϕ: coefficient of velocity ( with ∑k ≈ 0.1÷0.2→ ϕ ≈ 0.9 ÷ 0.95 )
Page 37
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 37
Basic equations of computation
2. Submerged flow: hd > hc’’
hz
hd
1
1
2
2
Energy equation for (1-1) and (c-c):
2
c
o z
c o z
c o z
V
H h (1 k)
2g
1 1
V 2g(H h );
1 k 1 k
Q A 2g(H h )
= + + Σ
→
= − ϕ
=
+ Σ + Σ
→ =
ϕ −
For rectangular shape c c c o z
Q bh 2g )
A (H h )
bh (22.2
= ϕ
= → −
Page 38
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 38
Equations to calculate hz
Momentum equation for (c-c) and (2-2):
2
2 d c
z d
d
2
2 2 2
d
z
2 c
d c c
h
h Q Q Q
b b Q(V V ) ; q (22.3)
q
2 2 bh bh
(h h )
2
h h
b g h h
ρ ρ  
γ − γ = ρ −

−
=
=
− →
  −
=

 Eq. (22.3) is used in the problem of finding H (known Q and a)
 Eq. (22.4) is used in the problem of finding Q (known H and a)
 Eq. (22.5) is used in the problem of finding a (known Q and H)
2 2
2 2
2 2 2 2
d c c 0
d
c
2
z
2 c d c
z d
z d z d d
d c d c d
o
(h h ) 2 h 2g(H h )
2q 2q 1 1 1 1
h h h h h
g h h g h h g h
H
h
(2
h (h h )
M 4
M
2.4
M
h h M )
h
2 4
   
− ϕ −
= − → = − − = − −
−
   
   
→

−
 
=
+ −
  =

ϕ
Rearranging Eq. (22.3)
z
2
2
d
2
z o d
h q
A H h
8 2q
A và B=h
g
0 (22
B .5)
gh
 
 
−

+ ϕ
− =
=

+
Page 39
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 39
3 basic problems of sluice gate
1. Type 1: find Q.
Known: H, a, hd, b, Bupstream, ϕ
2. Type 2: find H.
Known: Q, a, hd, b, Bupstream, ϕ
3. Type 3: find a.
Known: Q, H, hd, b, Bupstream, ϕ
Page 40
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 40
Example 1
1. Type 1: find Q. (Known: H, a, hd, b, Bupstream, ϕ)
Calculate the discharge flowing through a rectangular sluice
gate, having: b= 3m; Bupstream= 5m; H= 4m; a= 1m; ϕ=0.9 in two
cases: 1. hd= 2m; 2. hd= 3m. Neglect V0.
Solution
c
a 1
0.25 0.622 h .a 0.622 1 0.622m
H 4
= = → ε = → = ε = × =
Determine flow mode
Assume free flow
2
c c
2 2
'' c
c 3 3
c
q h 2g(H h ) 0.9 0.622 4.43 (4 0.622) 4.56m / s
h q 0.622 4.56
h 1 1 8 1 1 8 2.32m
2 gh 2 9.81 0.622
→ ≈ ϕ − = × × × − =
   
→ = − + + = − + + =
   
   
×
   
Page 41
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 41
Example 1
1. Type 1: find Q. (Known: H, a, hd, b, Bupstream, ϕ)
 Case 1: hd= 2m
hd= 2m < h”
c → free flow → Q=q.b=13.68m3/s
 Case 2: hd= 3m
hd= 3m > h”
c → submerged flow→ find hz
2 2 c d c
z d o
d
2 2
z
2 3
c z
h (h h )
M M
h h M H (22.4) M 4
2 4 h
0.622(3 0.622) 1.6 1.6
M 4 0.9 1.6 h 3 1.6 4 2.6m
3 2 4
q h 2g(H h ) 0.9 0.622 4.43 (4 2.6) 2.93m / s Q 8.8m / s
−
 
= + − − =
ϕ
 
 
−  
= × × = → = + − × − =
 
 
→ ≈ ϕ − = × × × − = → =
Page 42
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 42
2. Type 2: find H. (Known: Q, a, hd, b, Bupstream, ϕ)
Example 2
Calculate the upstream water head of a rectangular sluice gate,
having: b= 3m; V0≈ 0m; a= 1m; ϕ=0.9; Q = 14 m3/s in two
cases: 1. hd= 2m; 2. hd= 3m
Solution
- Assume εgt = 0.63 (normally in range ε ≈ 0.62÷ 0.63 )
- Determine flow mode
2
c
2 2
'' c
c 3 3
c
h .a 0.63 1 0.63m; q Q / b 14 / 3 4.67m / s
h q 0.63 4.67
h 1 1 8 1 1 8 2.36m
2 gh 2 9.81 0.63
=
ε = × = = = =
   
→ = − + + = − + + =
   
   
×
   
Page 43
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 43
2. Type 2: find H. (Known: Q, a, hd, b, Bupstream, ϕ)
Example 2
 Case 1: hd= 2m
hd= 2m < h”
c  free flow
2 2
o c 2 2 2 2
c
q 4.67
H H h 0.63 4.09m
2gh 0.9 19.62 0.63
→ ≈ = + = + =
ϕ × ×
''
c c
2
a 1
0.244 h 0.622m h 2.38m
H 4.09
stillfreeflow
a
0.
0.622
0.
2 62
. 4
H
H 4 17m
= = → → =
→
ε =
ε =
→ →
=
→ =
→ =
- Checking the assumption
Page 44
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 44
2. Type 2: find H. (Known: Q, a, hd, b, Bupstream, ϕ)
Example 2
 Case 2: hd= 3m
hd= 3m > h”
c  submerged flow
2 2
2 2
d c
z d
d c
2 2
0 z 2 2 2 2
c
(h h )
2q 2 4.67 (3 0.63)
h h 3 1.85m
g h h 9.81 3 0.63
q 4.67
H H h 1.85 5.3m
2gh 0.9 19.62 0.63
− × −
→ = − = − =
×
≈ = + = + =
ϕ × ×
- Checking the assumption
''
c c
z 2
a 1
0.188 h 0.62m h 2.39m
H 5.3
stillsubm
9
ergedflow
a
h 1.82m 0.185
0.62
0
H 5.3
H
m .6
= = =
ε =
=
→ → = →
→
→ = ε =
→ → = →
Page 45
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 45
Example 3
3. Type 3: find a. (Known: Q, H, hd, b, Bupstream, ϕ)
A rectangular sluice gate, having: b= 3m; Bupstream=5m; ϕ=0.9;
Q = 16 m3/s; H=5m. Determine the gate opening in two cases:
1. hd= 2m; 2. hd= 3m. Neglect V0.
Solution
2
q Q / b 5.33m / s
= =
c c c c
2 2
'' c
c c 3 3
c
q h 2g(H h ) 5.33 0.9.h 2g(5 h )
h q 0.64 5.33
h 0.64m h 1 1 8 1 1 8 2.7m
2 gh 2 9.81 0.64
→ =
ϕ − → = −
   
→ = → = − + + = − + + =
   
   
×
   
- Assume free flow
c
m
h 0.64 a
0.128 1
0.21
H 5 H
a .05
= =
= → = →
 Case 1: hd= 2m
hd= 2m<h”
c → free flow
Page 46
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
Slide 46
Example 3
3. Type 3: find a. (Known: Q, H, hd, b, Bupstream, ϕ)
 Case 2: hd= 3m
hd= 3m>h”
c=2.7m → submerged flow→ Find hz.
2
2 2
z o z d
d
2
z z z
c
c
o z
8 2q
h A H h B 0 (22.5) A q và B=h
g gh
8
A 0.9 5.33 4.33 và B 10.93 h 4.33 5 h 10.93 0 h 1.7m
9.81
h
q 5.33 0.736
h 0.736 0.147
H 5
2g(H h ) 0.9 19.62 (5 1.7)
a
0.24 a 1.2m
H
 
+ − − = =
ϕ +
 
 
= × × = = → + − − = → =
= = = → = =
ϕ − × × −
→ = → =
Page 47
Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush
ً‫ا‬‫ﺷﻛر‬
Vielen Dank
Thank you for your attention
ありがとうございます

More Related Content

Similar to Hydraulics and advanced hydraulics _open channels

Similar to Hydraulics and advanced hydraulics _open channels (20)

Notches and weir
Notches and weirNotches and weir
Notches and weir
 
Hydraulics of structures
Hydraulics of structuresHydraulics of structures
Hydraulics of structures
 
Mustafa
MustafaMustafa
Mustafa
 
Fo ode-1
Fo ode-1Fo ode-1
Fo ode-1
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdf
 
Weirs and flumes with broad
Weirs and flumes  with broad Weirs and flumes  with broad
Weirs and flumes with broad
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Lecture 2.-sewer-hydraulics1
Lecture 2.-sewer-hydraulics1Lecture 2.-sewer-hydraulics1
Lecture 2.-sewer-hydraulics1
 
Hardycross method
Hardycross methodHardycross method
Hardycross method
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
 
Open channel design
Open channel designOpen channel design
Open channel design
 
Chapter 3 channel design
Chapter 3  channel designChapter 3  channel design
Chapter 3 channel design
 
Surface runoff
Surface runoffSurface runoff
Surface runoff
 
Bin and hopper design lecture
Bin and hopper design lectureBin and hopper design lecture
Bin and hopper design lecture
 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5
 
Chapter 1bbj.pptx
Chapter 1bbj.pptxChapter 1bbj.pptx
Chapter 1bbj.pptx
 
AJMS_405_22.pdf
AJMS_405_22.pdfAJMS_405_22.pdf
AJMS_405_22.pdf
 
Classification of weis new
Classification of weis newClassification of weis new
Classification of weis new
 
Lecture 2 manning
Lecture     2  manning   Lecture     2  manning
Lecture 2 manning
 
Episode 38 : Bin and Hopper Design
Episode 38 :  Bin and Hopper DesignEpisode 38 :  Bin and Hopper Design
Episode 38 : Bin and Hopper Design
 

Recently uploaded

CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 

Recently uploaded (20)

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 

Hydraulics and advanced hydraulics _open channels

  • 1. Page 1 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush WEUEF12: Hydraulics/ Advanced Hydraulics Associate Prof. Dr. Sameh Kantoush Disaster Prevention Research Institute DPRI, Kyoto University Email of the course instructor: sameh.kantoush@stl.pauwes.dz, kantoush@yahoo.com Module III: Hydraulic Structures and Flow Measurements March 31, 2022 Lecture 16: Weirs and spillways
  • 2. Page 2 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 2 Three gorges dam, Yangtze river, China The world’s recent largest dam Some weirs in the world https://www.wsj.com/articles/floodi ng-again-threatens-chinas-three- gorges-dam-11597847951
  • 3. Page 3 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 3 Hoover arch dam, Colorado river, USA Largest dam at the time of its completion in 1935 Some weirs in the world https://graylinelasvegas.com/blog/yo ur-guide-visiting-hoover-dam/
  • 4. Page 4 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 4 Some weirs in the world Son La dam, Da river, Vietnam Largest hydropower in Vietnam https://vietnamnet.vn/vn/kinh- doanh/dau-tu/giai-ma-bi-an-ve-qua- trinh-tim-noi-dat-dap-thuy-dien-son-la- 466564.html
  • 5. Page 5 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 5 Some weirs in the world Wivenhoe dam, Southeast Queensland, Australia
  • 6. Page 6 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush P1 P1 P Slide 6 Basic parameters of weir-spillway - Weir height: P and P1 - Length of weir: b (∑b = nb) - n: number of chambers - Width of upstream channel: B - Weir thickness: δ - Overfall head: H, Ho=H+Vo 2/2g - Approaching velocity - Water depth of downstream channel: hd. - Submerge depth: hs - Difference between upstream and downstream heads: Z Note: Critical depth: hk = yc
  • 7. Page 7 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush H = δ0 δ Slide 7 Classification of weir-spillway 1. Respect to weir width δ.  Sharp-crested weir: δ < δ0 Resistance of the weir against the flow is negligible. The flow is under effect of gravity δ0 = 0.67H  Ogee weir: δ0 < δ < (2-3)H There is resistance of the spillway to the flow but the flow is still controlled by gravity  Broad-crest weir: (2-3)H < δ < (8-10)H Weir thickness strongly affect the flow. Gravitational flow occurs only at the entrance hd
  • 8. Page 8 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 8 Classification of weir-spillway 2. Respect to the shape. perpendicular Curved (arch) Circular (well) Rectangular Trapezoidal Triangle (V-Notch) circular 3. Respect to location of crest in plane. oblique straight Lateral (side)
  • 9. Page 9 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 9 Classification of weir-spillway 5. Respect to overfall condition above the crest Free overfall weir Submerged overfall weir hh hn hs 4. Respect to the location in river Suppressed (without side contraction) weir Contracted (side contraction) weir
  • 10. Page 10 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 10 Sharp-crested weir – rectangular shape 1. Standard sharp-crested weir: rectangular, free overfall, without side contraction 3/2 0 (21.1) 2 Q m b gH = 2 1 0.003 0.405 1 0.55( ) H o H m H P     = + +     +    m0 is coefficient of discharge H: overfall head P1: weir height in the upstream side P1 P
  • 11. Page 11 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 11 2. Sharp-crested weir: rectangular, free overfall, with side contraction 3/2 (21.2) 2 c Q m b gH = 2 2 1 0.003 0.405 0.03 1 0.55 . c B b b H m H B B H P     −       = + − +       +           mc: is coefficient of discharge B: channel width b: weir length Sharp-crested weir – rectangular shape
  • 12. Page 12 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 12 3. Submerged overfall weir The flow over the weir is submerged when satisfied 2 conditions: hh hn hs hd P H critical critical Z Z Z 0.65 0.7 P P P     < ≈ →         hd > P ( hs >0 ) and  Submerged overfall flow, without side contraction 3 2 s o Q m b 2gH (21.3) = σ  Submerged overfall flow, with side contraction 3 2 s c Q m b 2gH (21.4) = σ s 3 s h Z 1.05 1 0.2 P H   σ = +     σs: coefficient of submerged overfall flow Sharp-crested weir – rectangular shape
  • 13. Page 13 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 13 Example A rectangular sharp-crested weir, having b=0.5m; P=P1=0.35m; width of upstream channel B=1.2m; water depth in downstream channel hd=0.55m. 1. Find overfall discharge when H=40cm. 2. Find Hmax if Qma x= 300ℓ/s Solution: Sharp-crested weir – rectangular shape d s d s critical 1/3 s c h 0.55m P 0.35m h h P 0.55 0.35 0.2m H h Z 0.4 0.2 Z 0.57 0.65 0.7 P P 0.35 P 0.55 0.35 0.2 1.05 1 0.2 0.928 0.35 0.4 0.003 1.2 0.5 0.5 m 0.405 0.03 1 0.55 0.4 1.2 1.2 • = > = → = − = − = − −   • = = = < ≈ →     −    σ = + =       −     = + − +         2 2 3/2 3/2 3 s c 0.4 0.406 0.4 0.35 Q m b 2gH 0.928 0.406 0.5 4.43 0.4 0.211m / s Q 211 / s     =     +       = σ = × × × × = =  submerged flow 1.
  • 14. Page 14 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 14 Sharp-crested weir – rectangular shape  Free overfall flow, with side contraction Use trial and error method 2. Find Hmax if Qma x= 300ℓ/s  Hypothesize σs = 1 (free flow); mc = 0.405 2/3 2/3 s c s critical s 2 2 c Q 0.3 H 0.482m 1 0.405 0.5 4.43 m b 2g H h Z 0.48 0.2 z check 0.8 0.65 0.7 P P 0.35 P 1 0.003 1.2 0.5 0.5 0.48 m 0.405 0.03 1 0.55 0.48 1.2 1.2 0.48 0.35     = = =       × × × σ     − −   = = = > ≈ →     σ =   −       = + − +        +         2/3 2/3 s c 0.406 Q 0.3 H 0.481m 1 0.406 0.5 4.43 m b 2g H 0.481m =        = = =       × × × σ     =
  • 15. Page 15 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 15 Sharp-crested weir – triangle and trapezoidal shapes 1. Triangle shape 5 2 Q 1.4H (21.6) = ( ) 5/2 triangle Q m 2gH 21.5 = If θ = 900 Eq. (21.6) is used to measure the discharge very precisely 2. Trapezoidal shape ( ) 3/2 trapezoidal Q m b 2gH 21.7 = If tgθ = ¼: mtrapezoidal = 0.42  3 2 Q 1.86bH (21.8) =
  • 16. Page 16 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 16 Ogee weir 1. General equation 3/2 s o ) Q m b 2gH (21.9 = σ ε Σ - Free flow: σs=1. submerged flow: σs<1. - Without side contraction: ε =1. with side contraction: ε <1. - Coefficient of discharge (m) depends on H and geometry of the entrance of the weir 2. Determine ε [ ] o sa ma H 1 0.2 (n 1) ) (21.10 nb ε = − ξ + − ξ Side abutment middle abutment sa ξ ma ξ squared rounded oblique rounded squared angle curved Side abutment middle abutment n = 3 chambers  2 middle abutments
  • 17. Page 17 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 17 Ogee weir 3. Determine σs The overfall flow is submerged when satisfied both 2 conditions critical Z Z P P   <     hd > P ( hs >0 ) and (Z/P)critical ≈ 0.7÷0.75 (Z/P)critical is obtained from here
  • 18. Page 18 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 18 Ogee weir 3. Determine σs - When hs ≤ 0 (hd ≤ P): free overfall→ σs = 1 - When hs > 0 and (Z/P)<(Z/P)critical : submerged overfall → σs = f(hs/Ho) <1 σs 0 s h H Weir without vacuum Weir with vacuum
  • 19. Page 19 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 19 Ogee weir 4. Determine m tan (21.11) s dard shape H m m σ σ =  mstandard : is the coefficient of discharge when the weir has a standard shape and H=Hdesign. - Weir type 1: mstandard = 0.504 - Weir type 2: mstandard = 0.48 e P1 Coordinates of the standard weir according to Corigio-Ophixerop Type 1 Type 2 Type 1 Type 2 Table to determine R
  • 20. Page 20 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 20 Ogee weir 4. Determine m tan (21.11) s dard shape H m m σ σ =  σshape : modified factor when the actual shape of weir is different from the standard one σshape = f(α, β, e/P1).  σH : modified factor of overflow head H ≠ Hdesign (designed overflow head). e P1
  • 21. Page 21 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 21 3 basic problems of Ogee weir 1. Type 1: find Q. Known: H, b, n, P, P1, hd, Bupstream (V0) 2. Type 2: find H. Known: Q, b, n, P, P1, hd, Bupstream (V0) 3. Type 3: find b. Known: H, Q, n, P, P1, hd, Bupstream (V0)
  • 22. Page 22 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 22 Ogee weir 1. Type 1: find Q Ogee weir type 2 without vacuum, having α=45o; β=60o; e/P1=0.9 ; Hdesign=2m. The weir has 5 chambers, width of each b=10m, rounded side and middle abutments. Calculate Q when a) H = Hdesign and b) H = 2.6m; Downstream water head is below the weir crest, ignore approaching velocity Vo. Solution: Free overfall flow with side contraction. 3/2 0 s tan dard shape H shape s tan dard sa ma 0 sa ma 0 0 Q m b 2gH m m ; 0.978; m 0.48 (n 1) H 1 0.2 . with 0.7; 0.45 n b H H because V 0 = ε Σ = σ σ σ = = ξ + − ξ ε = − ξ = ξ = = =
  • 23. Page 23 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 23 Ogee weir 1. Type 1: find Q H sa ma 0 3/2 0 3/2 3 1 m 0.978 1 0.48 0.4694 (n 1) H 1 0.2 . n b 0.7 (5 1) 0.45 2 1 0.2 0.98 5 10 Q m b 2gH 0.98 0.4694 5 10 2 9.81 2 288.16m / s σ = ⇒ = × × = ξ + − ξ ε = − + − × =− × = ⇒ = ε Σ = × × × × × × = H design 3/2 3 H 2.6 1.3 1.0275 H 2 m 0.978 1.0275 0.48 0.4823 0.7 (5 1) 0.45 2.6 1 0.2 0.974 5 10 Q 0.974 0.4823 5 10 2 9.81 2.6 435.95m / s = = ⇒ σ= ⇒ = × × = + − × ε = − × = ⇒= × × × × × × = a) H = Hdesign=2m b) H = 2.6m
  • 24. Page 24 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 24 Ogee weir 2. Type 2: find H Ogee weir type 1 without vacuum, having: α = 15o, β=60o, e/P1=0.6; n=8, b = 10m, rounded side and middle abutment. Hdesign = 3m. When upstream water level Zupstream = +31m, the discharge Q = 1200 m3/s. Downstream channel’s bed level is +18m and downstream water level is +25m (ignore approaching velocity). Determine the crest level Zcrest Solution: Trial and error method Zcrest = Zupstream- H and hd = Zdownstream- Zbed= 25 – 18 = 7m Assume hd < P  free overfall flow  In which ε, m depend on H 1 round: assume m = 0.458; ε = 0.96 2/3 0 Q H ( ) m b 2g = ε Σ 2/3 2/3 0 Q 1200 H ( ) ( ) 3.9m m b 2g 0.96 0.458 8 10 2 9.81 ⇒ = = = ε Σ × × × ×
  • 25. Page 25 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 25 Ogee weir 2. Type 2: find H Check assumption: α = 15o, β=60o, e/P1=0.6 ⇒ σshape=0.902; mstandard=0.504 m = 0.465 ≠ massume = 0.458; ε = 0.962 ≠ εassume = 0.96 2 round: assume m = 0.465; ε = 0.962 m ≈ massume ; ε ≈ εassume .  H0=3.85m. Ignore V0  H=H0=3.85m ⇒ Zcrest = Zupstream – H = +31 – 3.85 = +27.15m (Zcrest >Zdownstream  free flow). H design H 3.9 1.3 1.023 m 0.902 1.023 0.504 0.465 H 3 0.7 (8 1) 0.45 3.9 1 0.2 0.962 8 10 = = ⇒ σ= ⇒ = × × = + − × ε = − × = 2/3 2/3 0 Q 1200 H ( ) ( ) 3.85m m b 2g 0.962 0.465 8 10 2 9.81 ⇒ = = = ε Σ × × × × H design H 3.85 1.285 1.022 m 0.902 1.022 0.504 0.465 H 3 0.7 (8 1) 0.45 3.85 1 0.2 0.963 8 10 = = ⇒ σ = ⇒ = × × = + − × ε = − × =
  • 26. Page 26 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 26 Ogee weir 3. Type 3: find b Ogee weir type 1 without vacuum, having standard shape, α = 60o, P = P1 = 8m. n=6, rounded side and middle abutment, Hdesign= 2.5m. hd = 2.8m, V0 = 0.6m. Find b when H = 3m and Q = 409 m3/s. Solution: hd < P  free overfall flow With H = 3m; V0=0.6m/s ⇒ Ho 3/2 0 Q b mn 2gH ε = 2 2 0 0 V 0.6 H H 3 3.02m 2g 19.62 α = + = + =
  • 27. Page 27 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 27 Ogee weir 3. Type 3: find b H design shape s tan dard s tan dard shape H H 3 1.2 1.020 H 2.5 1, m 0.504 m m . . 0.504 1 1.02 0.5141 = = → σ = σ = = ⇒= σ σ = × × = 3/2 409 b 5.704 0.5141 6 2 9.81 3.02 ⇒ ε = × × × sa ma 0 sa ma 0 sa ma (n 1) H 1 0.2 . n b (n 1) b b 0.2 .H n with 0.7; 0.45 and n 6 ξ + − ξ ∴ε= − ξ + − ξ ⇒ = ε + ξ= ξ = = 0.7 (n 1) 0.45 b 5.704 0.2 3 5.704 0.297 6m 6 + − × ⇒ = + × = + =
  • 28. Page 28 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 28 Broad-crested weir 1. Conditions to determine the flow types hs s s k k critical h h 1.2 1.4 h h     > = ÷         s s 0 0 critical h h 0.7 0.85 H H     > = ÷          submerged flow when or hd P P1  free flow when s s k k critical h h 1.2 1.4 h h     < = ÷         s s 0 0 critical h h 0.7 0.85 H H     < = ÷         or
  • 29. Page 29 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 29 Broad-crested weir 2. Equations of computation: rectangular weir c c o o H hc c c o o H hc a. Free flow 3/2 o (21.12) Q mnb 2gH = With sill, without side contraction: mα m: coefficient of discharge Without sill, with side contraction: mβ
  • 30. Page 30 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 30 2. Equations of computation: rectangular weir b. Submerged flow s o Q bh 2g(H h) (21.13) = ϕ − ( ) 2 o s o V H h 1 k V 2g(H h) 2g = + + ∑ → = ϕ − Write energy equation for section (0-0) and (2-2) The general equation for weir is not suitable! hs hs= hd Broad-crested weir
  • 31. Page 31 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 31 Broad-crested weir s 1 1 k ϕ = + ∑ : Coefficient of velocity of submerged flow d d 2 V (V V ) Z g − = h = hs - Z2 With Z2 is relatively small  can be ignore in calculation n s o s (21.14) Q bh 2g(H h ) = ϕ − → Z2 = 0 If the weir is not rectangular, replace bh in Eq. (21.13) and (21.14) by A s o Q A 2g(H h) (21.13b) = ϕ − n o s ) Q A 2g(H h ) (21.14b = ϕ − ϕs
  • 32. Page 32 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 32 Some examples of sluice gates
  • 33. Page 33 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 33 Definitions 0 Ho Vo 0 H a I C hc 2 α hk hh Gate Gate Gate opening hd H.J H: upstream water head V0: approaching velocity a: gate opening hc: water head at contraction section hk: critical depth (yc) hd: water head at downstream channel
  • 34. Page 34 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Ho Vo 2/2g H a c c hd Thân cống Cửa ra Cửa vào Gate hc Slide 34 Flow characteristics Ho= H+Vo 2/2g From experiments, when a/H < 0.75, the flow after the gate is supercritical. hc=ε.a The flow at the contraction section is connected with the downstream flow via supercritical flow when hd < hk, and via hydraulic jump when hd > hk Inlet Outlet Sluice gate body/foundation
  • 35. Page 35 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 35 Flow modes via sluice gates S3 hh Gate Inlet Outlet 1. When hd < hk ↔ no hydraulic jump → → Free flow 2. When hd > hk : with hydraulic jump. a. If hd < h”c→ repelled hydraulic jump → Free flow b. If hd = h”c→ free hydraulic jump, starting at C-C → Free flow c. If hd > h”c → Submerged hydraulic jump → Submerged flow M3 hh Gate Inlet Outlet hd Gate Inlet Outlet hc and h”c: conjugate depths h”c: sequent depth of hc through H.J
  • 36. Page 36 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 36 Basic equations of computation 1. Free flow M3 hh Gate Energy equation for (1-1) and (c-c): 2 2 2 o c c c 2 c o c c c o c c o c c o c V V V H h k 2g 2g 2g V H h (1 k) ; h a 2g 1 1 V 2g(H h ) ; 1 k 1 k V 2g(H h ); Q A 2g(H h ) + = + + Σ = + + Σ = ε → = − ϕ = + Σ + Σ → = ϕ − = ϕ − 1 1 For rectangular shape c c c o c Q bh 2g ) A (H h ) bh (22.1 = ϕ = → − ϕ: coefficient of velocity ( with ∑k ≈ 0.1÷0.2→ ϕ ≈ 0.9 ÷ 0.95 )
  • 37. Page 37 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 37 Basic equations of computation 2. Submerged flow: hd > hc’’ hz hd 1 1 2 2 Energy equation for (1-1) and (c-c): 2 c o z c o z c o z V H h (1 k) 2g 1 1 V 2g(H h ); 1 k 1 k Q A 2g(H h ) = + + Σ → = − ϕ = + Σ + Σ → = ϕ − For rectangular shape c c c o z Q bh 2g ) A (H h ) bh (22.2 = ϕ = → −
  • 38. Page 38 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 38 Equations to calculate hz Momentum equation for (c-c) and (2-2): 2 2 d c z d d 2 2 2 2 d z 2 c d c c h h Q Q Q b b Q(V V ) ; q (22.3) q 2 2 bh bh (h h ) 2 h h b g h h ρ ρ   γ − γ = ρ −  − = = − →   − =   Eq. (22.3) is used in the problem of finding H (known Q and a)  Eq. (22.4) is used in the problem of finding Q (known H and a)  Eq. (22.5) is used in the problem of finding a (known Q and H) 2 2 2 2 2 2 2 2 d c c 0 d c 2 z 2 c d c z d z d z d d d c d c d o (h h ) 2 h 2g(H h ) 2q 2q 1 1 1 1 h h h h h g h h g h h g h H h (2 h (h h ) M 4 M 2.4 M h h M ) h 2 4     − ϕ − = − → = − − = − − −         →  −   = + −   =  ϕ Rearranging Eq. (22.3) z 2 2 d 2 z o d h q A H h 8 2q A và B=h g 0 (22 B .5) gh     −  + ϕ − = =  +
  • 39. Page 39 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 39 3 basic problems of sluice gate 1. Type 1: find Q. Known: H, a, hd, b, Bupstream, ϕ 2. Type 2: find H. Known: Q, a, hd, b, Bupstream, ϕ 3. Type 3: find a. Known: Q, H, hd, b, Bupstream, ϕ
  • 40. Page 40 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 40 Example 1 1. Type 1: find Q. (Known: H, a, hd, b, Bupstream, ϕ) Calculate the discharge flowing through a rectangular sluice gate, having: b= 3m; Bupstream= 5m; H= 4m; a= 1m; ϕ=0.9 in two cases: 1. hd= 2m; 2. hd= 3m. Neglect V0. Solution c a 1 0.25 0.622 h .a 0.622 1 0.622m H 4 = = → ε = → = ε = × = Determine flow mode Assume free flow 2 c c 2 2 '' c c 3 3 c q h 2g(H h ) 0.9 0.622 4.43 (4 0.622) 4.56m / s h q 0.622 4.56 h 1 1 8 1 1 8 2.32m 2 gh 2 9.81 0.622 → ≈ ϕ − = × × × − =     → = − + + = − + + =         ×    
  • 41. Page 41 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 41 Example 1 1. Type 1: find Q. (Known: H, a, hd, b, Bupstream, ϕ)  Case 1: hd= 2m hd= 2m < h” c → free flow → Q=q.b=13.68m3/s  Case 2: hd= 3m hd= 3m > h” c → submerged flow→ find hz 2 2 c d c z d o d 2 2 z 2 3 c z h (h h ) M M h h M H (22.4) M 4 2 4 h 0.622(3 0.622) 1.6 1.6 M 4 0.9 1.6 h 3 1.6 4 2.6m 3 2 4 q h 2g(H h ) 0.9 0.622 4.43 (4 2.6) 2.93m / s Q 8.8m / s −   = + − − = ϕ     −   = × × = → = + − × − =     → ≈ ϕ − = × × × − = → =
  • 42. Page 42 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 42 2. Type 2: find H. (Known: Q, a, hd, b, Bupstream, ϕ) Example 2 Calculate the upstream water head of a rectangular sluice gate, having: b= 3m; V0≈ 0m; a= 1m; ϕ=0.9; Q = 14 m3/s in two cases: 1. hd= 2m; 2. hd= 3m Solution - Assume εgt = 0.63 (normally in range ε ≈ 0.62÷ 0.63 ) - Determine flow mode 2 c 2 2 '' c c 3 3 c h .a 0.63 1 0.63m; q Q / b 14 / 3 4.67m / s h q 0.63 4.67 h 1 1 8 1 1 8 2.36m 2 gh 2 9.81 0.63 = ε = × = = = =     → = − + + = − + + =         ×    
  • 43. Page 43 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 43 2. Type 2: find H. (Known: Q, a, hd, b, Bupstream, ϕ) Example 2  Case 1: hd= 2m hd= 2m < h” c  free flow 2 2 o c 2 2 2 2 c q 4.67 H H h 0.63 4.09m 2gh 0.9 19.62 0.63 → ≈ = + = + = ϕ × × '' c c 2 a 1 0.244 h 0.622m h 2.38m H 4.09 stillfreeflow a 0. 0.622 0. 2 62 . 4 H H 4 17m = = → → = → ε = ε = → → = → = → = - Checking the assumption
  • 44. Page 44 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 44 2. Type 2: find H. (Known: Q, a, hd, b, Bupstream, ϕ) Example 2  Case 2: hd= 3m hd= 3m > h” c  submerged flow 2 2 2 2 d c z d d c 2 2 0 z 2 2 2 2 c (h h ) 2q 2 4.67 (3 0.63) h h 3 1.85m g h h 9.81 3 0.63 q 4.67 H H h 1.85 5.3m 2gh 0.9 19.62 0.63 − × − → = − = − = × ≈ = + = + = ϕ × × - Checking the assumption '' c c z 2 a 1 0.188 h 0.62m h 2.39m H 5.3 stillsubm 9 ergedflow a h 1.82m 0.185 0.62 0 H 5.3 H m .6 = = = ε = = → → = → → → = ε = → → = →
  • 45. Page 45 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 45 Example 3 3. Type 3: find a. (Known: Q, H, hd, b, Bupstream, ϕ) A rectangular sluice gate, having: b= 3m; Bupstream=5m; ϕ=0.9; Q = 16 m3/s; H=5m. Determine the gate opening in two cases: 1. hd= 2m; 2. hd= 3m. Neglect V0. Solution 2 q Q / b 5.33m / s = = c c c c 2 2 '' c c c 3 3 c q h 2g(H h ) 5.33 0.9.h 2g(5 h ) h q 0.64 5.33 h 0.64m h 1 1 8 1 1 8 2.7m 2 gh 2 9.81 0.64 → = ϕ − → = −     → = → = − + + = − + + =         ×     - Assume free flow c m h 0.64 a 0.128 1 0.21 H 5 H a .05 = = = → = →  Case 1: hd= 2m hd= 2m<h” c → free flow
  • 46. Page 46 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush Slide 46 Example 3 3. Type 3: find a. (Known: Q, H, hd, b, Bupstream, ϕ)  Case 2: hd= 3m hd= 3m>h” c=2.7m → submerged flow→ Find hz. 2 2 2 z o z d d 2 z z z c c o z 8 2q h A H h B 0 (22.5) A q và B=h g gh 8 A 0.9 5.33 4.33 và B 10.93 h 4.33 5 h 10.93 0 h 1.7m 9.81 h q 5.33 0.736 h 0.736 0.147 H 5 2g(H h ) 0.9 19.62 (5 1.7) a 0.24 a 1.2m H   + − − = = ϕ +     = × × = = → + − − = → = = = = → = = ϕ − × × − → = → =
  • 47. Page 47 Lecture 16: Weirs and spillways Associate Prof. Sameh Kantoush ً‫ا‬‫ﺷﻛر‬ Vielen Dank Thank you for your attention ありがとうございます