CEE 155 
Hydraulic fracturing wastewater: Treatment challenges, 
options and innovations 
 
Group 1 
Adam Richardson, Annie Yu, Reilly Clewes and Scott Braithwaite 
 
December 4, 2015 
 
 
 
 
Abstract: The United States has in recent years seen a boom in its oil and natural                               
gas industry, in part accelerated by the expansion of hydraulic fracturing, or                       
“fracking.” Although fracking offers many benefits for natural gas production, it                     
is highly controversial in terms of environmental effects. This is in no small part                           
due to the uncertain nature of the wastewater generated via fracking procedures,                       
which have been known to contain contaminants ranging from surfactants to                     
biocides to radioactive components. As of now the database of known information                       
is glaringly incomplete, highlighting the need for further collective research.                   
Relevant to this is the development of sophisticated detection methods, which will                       
facilitate study as well as assist in treatment technologies. Currently, fracking                     
wastewater management options include underground injection, wastewater             
treatment, and wastewater recycling. Less conventional methods of treatment                 
include more recent innovations such as mixing fracturing fluid with acid mine                       
drainage, and reverse and forward osmosis. 
 
Keywords: ​hydraulic fracturing, wastewater treatment, wastewater recycling,             
underground injection, acid mine drainage 
 
 
INTRODUCTION 
 
Over the past decade the commercially unfeasible became feasible. Advances in                     
directional drilling and high­pressure hydraulic fracturing, known together as “fracking,” have                     
revolutionized natural gas production, positioning the United States to become the largest natural                         
gas producer worldwide (Lutz et al., 2013). On its current trajectory, fracking will produce more                             
than 75% of domestic natural gas by 2035 (Morrison, 2015). Yet as the vast production potential                               
becomes increasingly realized, so do the environmental management challenges.  
Wastewater management and disposal have emerged as central concerns and drivers of                       
the controversy. Fracking, after all, involves injecting large volumes of fluid deep underground                         
to break up tight rock formations to extract natural gas and other hydrocarbons. For every well                               
drilled, 10 to 20 million liters (3 to 5 million gallons) of water are used, which includes sand and                                     
surfactants as “proppants” to open fissures and optimize the amount of gas and oil extracted                             
(Arnaud, 2015) as well as assorted chemical additives that vary by the recovery method and                             
underlying geology (Morrison, 2015). The returning early­stage water is called “flowback” and                       
still contains the additives. Additional water continues to return throughout the life of the well                             
and is called “produced water,” which is a mix of underground water and the fracking fluid.                               
Together the flowback and produced water make up the wastewater from fracking, a complex                           
mixture of organics, metals and radioactive material. According to the U.S. Environmental                       
Protection Agency (USEPA, 2015), fracking wastewater management options include                 
underground injection control (UIC) well disposal, wastewater treatment and reuse, and                     
wastewater treatment and discharge at a centralized waste treatment (CWT) facility. See Figure 1                           
for an overview of water management for fracking. 
As a major example, fracking of the Marcellus shale formation under Pennsylvania and                         
the surrounding region increased the wastewater generated by nearly 6­fold since 2004 (Lutz et                           
al., 2013), totaling over 6 million cubic meters by 2013 (Rahm et al., 2013). With only 9 UIC                                   
wells available (USEPA, 2015), existing disposal capacity is being quickly saturated (see Figure                         
2). Future development becomes limited by novel logistical or technological solutions for                       
wastewater management. Treatment and reuse are becoming increasingly popular in this region,                       
especially given that less than 1% of the Marcellus shale has been explored to date (Lutz et al.,                                   
2013). Fortunately, USEPA (2015) has not found evidence that fracking has led to widespread,                           
systemic impacts on drinking water resources in the United States thus far. ​
 
In an effort to clarify the unique challenges of hydraulic fracturing wastewater                       
management, this paper will first identify and analyze specific contaminants and water quality                         
problems that are prevalent throughout the fracking industry. The next area of focus will be on                               
methods of detection. Of particular interest are the advanced chemical techniques that prove                         
essential in detecting the extensive range of contaminants associated with hydraulic fracturing                       
fluid (HFF), as well as recently developed procedures and innovations. Lastly, various                       
wastewater management options will be discussed at length, with an emphasis on their respective                           
advantages and disadvantages with regard to efficacy and economy. 
CONTAMINANT DESCRIPTION 
 
Although a federal requirement to disclose the materials used in fracking fluids is                         
lacking, over 30 states have taken or are in the process of taking up the slack by requiring                                   
disclosure (Morrison, 2015). To date, a number of analyses provide snapshots of parts of the                             
fracking water process, although a more comprehensive picture is still lacking. A voluntary                         
disclosure website (fracfocus.org) attempts to fill the gap. 
Both the flowback and produced water can contain the original additives plus                       
contaminants acquired deep underground, including the following:  
 
2 
 
● Fine sand to prop open fractures so natural gas can escape 
● Surfactants to reduce surface tension and friction, improve recovery of oil                     
and inhibit scale  
● Antimicrobial compounds (e.g., glutaraldehyde) to kill microbes that               
produce corrosive acid or form well­clogging biofilms 
● Brine salts (e.g., iodide, bromide) because hydrocarbons formed in ancient                   
oceans 
● High total dissolved solids (TDS) from underground minerals 
● Radionuclides (e.g., radium­226) found naturally underground 
● Natural gas and petroleum 
 
Chemical reaction byproducts are also possible, with some reactions facilitated by the                       
fractured shale surfaces, and polymerization byproducts are possible due to the high temperature                         
and pressure used (Arnaud, 2015). The fate and degradation of the antimicrobial compounds,                         
known for their toxicity, have been reviewed by a group of Colorado researchers (Kahrilas et al.,                               
2015). 
Several studies provide snapshots of the variety of compounds found in fracking                       
wastewater. From a Colorado well, Linden et al. (2015) identified 180 volatile organics,                         
including xylenes, acetone and 2­butanone. Looking for inorganic compounds, Harkness et al.                       
(2015) found elevated iodide, bromide and ammonium. The ammonium was at toxic levels (420                           
mg/L) and bromide and iodide are especially difficult to remove from drinking water, not to                             
mention they can lead to the formation of carcinogenic disinfection byproducts. Finally,                       
technologically enhanced naturally occurring radioactive material is brought to the surface in                       
particles from the fractured underground rock formations, which may be filtered out, end up in                             
landfills and subsequently leach out. Worker exposures can be worrisome because for                       
radium­226 the total radioactivity goes up by a factor of about 6 within 15 days in a closed                                   
system due to the production of radon and other short­lived decay products (Arnaud, 2015). 
   
 
3 
DETECTION METHODS 
 
While measurement of some of the characteristics of fracking wastewater is                     
straightforward (such as temperature, pH and TDS), the wide variety of organic compounds,                         
their degradation products, inorganics and radionuclides require modern analytical chemistry                   
techniques that are often quite expensive. Researchers at the University of Maryland have                         
identified over 2,500 organic chemicals in fracking wastewater using Fourier transform ion                       
cyclotron resonance mass spectrometry, and a group at Rice University used gas chromatography                         
with mass spectrometry to identify remnants of fuel in the wastewater (Arnaud, 2015).                         
Ethoxylated surfactants, including polyethylene glycols and linear alkyl ethoxylates, are major                     
components of flowback and have been detected by both ultrahigh pressure liquid                       
chromatography with Kendrick mass­defect quadrupole time­of­flight mass spectrometry               
(Thurman et al., 2014) and more­standard high performance liquid chromatography with tandem                       
mass spectrometry (USEPA, 2014). The identification of bromide as an indicator of fracking                         
contamination has led to an innovative technique: a microfluidic paper­based analytical device                       
that uses quantitative colorimetric detection via a smartphone (Loh et al., 2015). Radionuclides,                         
particularly radium­226, have been detected using the more cost­effective technique of                     
inductively coupled plasma with mass spectrometry with results equivalent to the                     
more­expensive standard method of high­purity germanium gamma spectroscopy (Zhang et al.,                     
2015). Once the fracking wastewater has been well characterized, treatment options can be                         
tailored to the specific contaminants, as outlined by Lester et al. (2015). 
STANDARD TREATMENT METHODS 
 
Most fracking wastewater in the United States is disposed of through underground                       
injection. This is usually the least expensive management method, barring high transportation                       
costs (USEPA, 2015). According to the USEPA, more than 98% of produced water generated by                             
the oil and gas industry (including fracking operations) in the United States is injected                           
underground. While this is not a treatment method that actually removes contaminants,                       
underground injection protects the drinking water supply by placing the wastewater at depths                         
well below aquifers. 
Specifically, Class II Underground Injection Control Wells, in accordance with EPA                     
regulations pursuant to the Safe Drinking Water Act, dispose of wastewater at depths of                           
approximately 2,000 to 8,000 feet (Marcellus Shale Coalition, 2015). These wells inject water                         
beneath confining geological layers such as shale. Around 40% of oil and gas industry                           
wastewater is injected into Class II wells. Although the proportion specifically for fracking is                           
hard to determine, the available data indicate that Class II wells are the main fracking wastewater                               
management method (USEPA, 2015). 
The primary limitation to the use of injection into Class II wells is the geographic                             
distribution of the wells. Their location is limited by geology, and most are found in Texas,                               
 
4 
Oklahoma and Kansas (USEPA, 2015). Moving forward, seismic concerns may also affect the                         
viability of underground injection (USEPA, 2015). 
Another strategy is transporting the wastewater to a municipal treatment facility or a                         
central waste treatment (CWT) facility. A CWT facility accepts industrial waste from off­site,                         
treats it and discharges it to surface water or to a municipal facility for further treatment. Treated                                 
wastewater can also be reused in fracking operations, which is a common strategy in areas where                               
access to Class II wells is limited, such as Pennsylvania (USEPA, 2015). According to the                             
USEPA, there are 73 CWT facilities currently treating or planning to treat fracking wastewater,                           
39 of which are in Pennsylvania. 
The treatment processes at CWT facilities differ depending on the fate of the effluent. So                             
called “zero­discharge facilities” do not discharge either directly or indirectly to surface water,                         
and therefore do not require TDS removal (USEPA, 2015). Instead, their effluent is destined                           
primarily for reuse in fracking wells, as well as some disposal by evaporation or use for                               
irrigation. These facilities employ basic treatment processes effective for the removal of                       
suspended solids, oil and grease, scale­forming compounds, and metals (USEPA, 2015). The                       
treatment technologies are similar to those found at a municipal facilities: granular media                         
filtration, coagulation and sedimentation, chemical precipitation and dissolved air flotation                   
(USEPA, 2015). 
During the early years of the fracking boom, a large proportion of the wastewater                           
transported for treatment was sent to municipal facilities. In Pennsylvania, the amount received                         
by municipal facilities increased from less than 30 million liters per year from 2001­2004, to 460                               
million liters in 2008 (Lutz et al., 2013). Most of these facilities, however, were not equipped to                                 
treat TDS, resulting in a shift to treatment at CWTs (Ferrar et al., 2013; Lutz et al., 2013). Most                                     
new CWT facilities have TDS removal capabilities (USEPA, 2015). These advanced treatment                       
technologies are more energy­ and labor­intensive because they include membrane filtration,                     
thermal distillation, ion exchange and adsorption (USEPA, 2015). A promising new technology                       
emerging is filtration with nano­structured membranes. The oily compounds in fracking                     
wastewater will degrade a traditional membrane, but nano­structured ones have the potential to                         
effectively repel oils as well as removing heavy metal ions (Stebe, 2015). 
The recycling of fracking wastewater for use in new well development has increased in                           
recent years, rising from 13% before 2011 to 56% in that year (Lutz et al., 2013). Reuse has the                                     
advantage of requiring much less treatment than for water destined for discharge to surface water                             
bodies; however, scaling from high ion concentrations and corrosion from anaerobic bacteria                       
byproducts must be addressed (Lutz et al., 2013). High transportation costs make on­site                         
treatment for reuse economically desirable and also avoid potential for spills or leaks during                           
transport (USEPA, 2014). 
INNOVATIVE TREATMENT METHODS 
 
One of the more creative treatment methods being developed is the mixing of HFF with                             
the runoff from mine tailings and works, called acid mine drainage (AMD). This is done to                               
remove the heavy metals and radioactive isotopes through binding, precipitation, and adsorption                       
 
5 
with chemicals and particles that are found in the AMD (Kondash et al., 2014). This technique,                               
which is currently being studied by a team working from Duke University, has seen radioactive                             
isotope removal rates of 60­100% within 48 hours of mixing (Kondash et al., 2014). The                             
resulting mixed solution contains lower levels of TDS, heavy metals, and radioactive isotopes                         
than those of the original HFF and AMD. Needless to say, this method is attractive because it                                 
takes two contaminated wastewaters and combines them into a far cleaner product, reducing the                           
need for further treatment as well as the amount of fresh water necessary to process either the                                 
ADM or HFF alone (Kondash et al., 2014). Because this method requires the capture and                             
transport of AMD, it can be labor­intensive. It can also be moderately costly, because the                             
wastewater requires further processing after mixing. Laboratory tests are being scaled to                       
real­world situations to determine whether this method is cost­effective (Kondash et al., 2014).  
Although reverse osmosis is a common treatment method, innovations are required to                       
apply it to HFF. Under reverse osmosis, a contaminated fluid is forced through a membrane that                               
has pores only large enough to allow water molecules through. Since the fluid is being driven                               
against its concentration gradient, high pressures must be applied to overcome osmotic pressure                         
(hence, “reverse” osmosis). Because larger pressures—and thus larger energy costs—are                   
necessary to treat water with high TDS levels (Younos and Tulou, 2005), reverse osmosis is                             
currently limited to treating TDS concentrations of under approximately 40,000 mg/L (USEPA,                       
2015), which poses a challenge to TDS­laden HFF. Fortunately, a team from the University of                             
Pennsylvania is developing a membrane that can process wastewater with high contamination                       
efficiently, and even remove a wider range of contaminants.  
Forward osmosis, another innovative technology, uses a draw solution to draw water out                         
of the HFF across a membrane gradient. This technique is used when it is easier to remove the                                   
draw solution from the water than it is to remove the original contaminants from the HFF (Coday                                 
et al., 2014). After dewatering, the draw solution concentrate is recycled, and the HFF brine is                               
disposed of. The technologies used in these processes are well established and can be tailored to                               
the specific wastestream. The downside, however, is that this process is very energy­intensive,                         
requires costly machinery, and creates a large amount of byproducts; i.e., the HFF brine and                             
spent membranes (Gregory et al., 2011). Typically, the cost is not attractive to fracking                           
operators. 
NATURAL TREATMENT METHODS 
 
“Natural processes” is a broad, catch­all category that includes any treatment method                       
involving nature to purify the water with little or no pre­treatment. These methods require little                             
additional energy and are not labor­intensive, thus making them attractive if weather and                         
physical space permit. 
Common methods in dry climates are evaporation and percolation. For example, HFF can                         
be spread across fields, placed in evaporation ponds, or sprayed on roads as an anti­dust agent                               
(USEPA, 2015). There is great concern with these treatment methods, however, because the                         
radioactive isotopes brought to the surface by the HFF are not adequately removed and end up                               
leaching into groundwater (Brown, 2014).   
 
6 
In colder climates, freeze­thaw is an option to improve the quality of the water with                             
minimal effort (Gregory et al., 2011). The process works exactly as the name suggest: HFF is                               
sprayed across “chilling sheets” during the cold months, where it freezes to form ice crystals.                             
Due to the lower freezing point of salt solutions, the now­concentrated HFF brine sloughs off                             
and can be disposed via other methods. When warm weather arrives, the ice thaws and is sent for                                   
further treatment. Although freeze­thaw requires labor it is fairly low­energy, albeit with a rather                           
large time component. 
As a final natural process, microbial organisms can be relied upon to remediate HFF.                           
This approach involves surface discharges or discharging to artificially created wetlands or reed                         
beds to bind/process the contaminants (USEPA, 2015). For surface discharges, a great deal of                           
treatment is required prior to discharge. For artificially created wetlands and reed beds, the level                             
of treatment before discharge is based on the tolerances and capture characteristics of the                           
organisms present (USEPA, 2015). It is difficult to estimate the efficiencies of these treatment                           
methods as a whole because pre­treatment is performed prior to discharge to the surface waters                             
or artificial environments. 
CONCLUSIONS 
 
Fracking wastewater presents the oil and gas industry with familiar wastewater treatment                       
challenges, although at larger quantities and with exotic additives. The most common form of                           
wastewater management is underground injection, which is low­cost but limited by geographic                       
distribution of injection wells. In the case where such wells are not available, wastewater can be                               
rerouted to central waste treatment facilities. These facilities may discharge treated effluent to                         
surface water or send it to a municipal facility for further treatment. Another option is to reuse                                 
the water for fracking operations, which removes the need to process the water through advanced                             
treatment technologies that are energy­ and labor­intensive. On­site reuse also reduces associated                       
transportation costs. The disadvantage of reuse methods, however, is that they often face                         
problems with scaling and corrosion. 
In addition to conventional methods, there are many innovative approaches to fracking                       
wastewater management. One such technique is to combine hydraulic fracturing fluid with acid                         
mine drainage, which effectively removes radioactive isotopes and heavy metals through                     
precipitation and requires very little fresh water to do so. As a new technology, however, the                               
costs are uncertain. Both reverse osmosis and forward osmosis use membrane technology to                         
filter out contaminants. Although membrane technologies have improved, they remain very                     
energy­intensive and result in a lot of byproduct. A less expensive treatment option is to exploit                               
natural processes to treat wastewater. Such natural processes include evaporation and percolation                       
(low energy and labor costs), freeze­thaw cycles (low energy but time­intensive), and biological                         
processes facilitated through natural organisms (generally requires pre­treatment). 
 
 
   
 
7 
REFERENCES 
 
Arnaud, C.H. (2015). Figuring out Fracking Wastewater. Chem. Eng. News, 93(7):8­12. 
Brown, V.J. (2014). Radionuclides in Fracking Wastewater: Managing a Toxic Blend. 
Environmental Health Perspectives, 122(2), A50–A55. 
Coday, B.D., Xu, P., Beaudry, E.G., Herron, J., Lampi, K., Hancock, N.T., Cath, T.Y. (2014). 
The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, 
and other complex and difficult liquid streams. Desalination, 333, 23­35. 
Ferrar, K.J., Michanowicz, D.R., Christen, C.L., Mulcahy, N., Malone, S.L., Sharma, R.K. 
(2013). Assessment of Effluent Contaminants from Three Facilities Discharging 
Marcellus Shale Wastewater to Surface Waters in Pennsylvania. Environ. Sci. Technol., 
47, 3472−3481. 
Gregory, K.B., Vidic, R.D., Dzombak, D.A. (2011). Global Water Sustainability: Water 
Management Challenges Associated with the Production of Shale Gas by Hydraulic 
Fracturing. Elements, 7(3), 181­186. 
Harkness, J.S., Dwyer, G.S., Warner, N.R., Parker, K.M., Mitch, W.A., Vengosh, A. (2015). 
Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: 
Environmental Implications. Environ. Sci. Technol., 49(3), 1955­1963. 
Kahrilas, G.A., Blotevogel, J., Stewart, P.S., Borch, T. (2014). Biocides in hydraulic fracturing 
fluids: A critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. 
Technol., 49(1), 16­32. 
Kondash, A.J., Warner, N.R., Lahav, O., Vengosh, A. (2014). Radium and Barium Removal 
through Blending Hydraulic Fracturing Fluids with Acid Mine Drainage. Environ. Sci. 
Technol., 48, 1334−1342. 
Lester, Y., Ferrer, I., Thurman, E.M., Sitterley, K.A., Korak, J.A., Aiken, G., Linden, K.G. 
(2015). Characterization of hydraulic fracturing flowback water in Colorado: 
Implications for water treatment. Science of The Total Environment, 512­513, 637–644. 
Loh, L.J., Bandara, G.C., Weber, G.L., Remcho, V. T. (2015). Detection of water contamination 
from hydraulic fracturing wastewater: a μPAD for bromide analysis in natural waters. 
Analyst, 140(16), 5501­5507. 
Lutz, B.D., Lewis, A.N., Doyle, M.W. (2013). Generation, transport, and disposal of wastewater 
associated with Marcellus Shale gas development. Water Resources Research, 49, 
647–656. 
Marcellus Shale Coalition (2015). Class IID Underground Injection Control (UIC) Wells: What 
should Pennsylvanians know? Fact sheet. 
 
8 
Morrison, J. (2015). Disclosure Debate. Chem. Eng. News, 93(7), 13­14. 
Rahm, B.G., Bates, J.T., Bertoia, L.R., Galford, A.E., Yoxtheimer, D.A., & Riha, S.J. (2013). 
Wastewater management and Marcellus Shale gas development: Trends, drivers, and 
planning implications. Journal of Environmental Management, 120, 105­113. 
Stebe, K. (2015). Nano­structured membranes developed to filter wastewater produced by 
fracking. Membrane Technology, 2015(3), 9. 
Thurman, E.M., Imma Ferrer, I., Blotevogel, J., Borch, T. (2014). Analysis of Hydraulic 
Fracturing Flowback and Produced Waters Using Accurate Mass: Identification of 
Ethoxylated Surfactants. Anal. Chem., 86, 9653­9661. 
USEPA. (2014). The Verification of a Method for Detecting and Quantifying Diethylene Glycol, 
Triethylene Glycol, Tetraethylene Glycol, 2­Butoxyethanol and 2­Methoxyethanol in 
Ground and Surface Waters. U.S. Environmental Protection Agency, Office of Research 
and Development, Washington, DC. EPA/600/R­14/008. January.  
USEPA. (2015). Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on 
Drinking Water Resources. External Review Draft. U.S. Environmental Protection 
Agency, Office of Research and Development, Washington, DC. EPA/600/R­15/047. 
June.  
Younos, T., Tulou, K. (2005). Overview of desalination techniques. Journal of Contemporary 
Water Research & Education, 132(1), 3­10. 
Zhang, T., Bain, D., Hammack, R., Vidic, R.D. (2015). Analysis of Radium­226 in High Salinity 
Wastewater from Unconventional Gas Extraction by Inductively Coupled Plasma­Mass 
Spectrometry. Environ. Sci. Technol., 49, 2969­2976. 
 
 
   
 
9 
 
TABLES 
 
None. 
   
 
10 
 
FIGURES 
 
 
 
Figure 1.​ Fracking operation water loop (Arnaud, 2015) 
   
 
11 
 
 
 
Figure 2.​ Conventional and Marcellus shale wastewater volumes 
 by year for each management method 
(Lutz et al., 2013) 
 
 
12 

Hydraulic Fracturing Wastewater Treatment CEE155

  • 1.
    CEE 155  Hydraulic fracturing wastewater: Treatment challenges,  options and innovations    Group 1  Adam Richardson, Annie Yu, Reilly Clewes and Scott Braithwaite    December 4, 2015          Abstract: The UnitedStates has in recent years seen a boom in its oil and natural                                gas industry, in part accelerated by the expansion of hydraulic fracturing, or                        “fracking.” Although fracking offers many benefits for natural gas production, it                      is highly controversial in terms of environmental effects. This is in no small part                            due to the uncertain nature of the wastewater generated via fracking procedures,                        which have been known to contain contaminants ranging from surfactants to                      biocides to radioactive components. As of now the database of known information                        is glaringly incomplete, highlighting the need for further collective research.                    Relevant to this is the development of sophisticated detection methods, which will                        facilitate study as well as assist in treatment technologies. Currently, fracking                      wastewater management options include underground injection, wastewater              treatment, and wastewater recycling. Less conventional methods of treatment                  include more recent innovations such as mixing fracturing fluid with acid mine                        drainage, and reverse and forward osmosis.    Keywords: ​hydraulic fracturing, wastewater treatment, wastewater recycling,              underground injection, acid mine drainage      INTRODUCTION    Over the past decade the commercially unfeasible became feasible. Advances in                      directional drilling and high­pressure hydraulic fracturing, known together as “fracking,” have                      revolutionized natural gas production, positioning the United States to become the largest natural                          gas producer worldwide (Lutz et al., 2013). On its current trajectory, fracking will produce more                              than 75% of domestic natural gas by 2035 (Morrison, 2015). Yet as the vast production potential                                becomes increasingly realized, so do the environmental management challenges.  
  • 2.
    Wastewater management anddisposal have emerged as central concerns and drivers of                        the controversy. Fracking, after all, involves injecting large volumes of fluid deep underground                          to break up tight rock formations to extract natural gas and other hydrocarbons. For every well                                drilled, 10 to 20 million liters (3 to 5 million gallons) of water are used, which includes sand and                                      surfactants as “proppants” to open fissures and optimize the amount of gas and oil extracted                              (Arnaud, 2015) as well as assorted chemical additives that vary by the recovery method and                              underlying geology (Morrison, 2015). The returning early­stage water is called “flowback” and                        still contains the additives. Additional water continues to return throughout the life of the well                              and is called “produced water,” which is a mix of underground water and the fracking fluid.                                Together the flowback and produced water make up the wastewater from fracking, a complex                            mixture of organics, metals and radioactive material. According to the U.S. Environmental                        Protection Agency (USEPA, 2015), fracking wastewater management options include                  underground injection control (UIC) well disposal, wastewater treatment and reuse, and                      wastewater treatment and discharge at a centralized waste treatment (CWT) facility. See Figure 1                            for an overview of water management for fracking.  As a major example, fracking of the Marcellus shale formation under Pennsylvania and                          the surrounding region increased the wastewater generated by nearly 6­fold since 2004 (Lutz et                            al., 2013), totaling over 6 million cubic meters by 2013 (Rahm et al., 2013). With only 9 UIC                                    wells available (USEPA, 2015), existing disposal capacity is being quickly saturated (see Figure                          2). Future development becomes limited by novel logistical or technological solutions for                        wastewater management. Treatment and reuse are becoming increasingly popular in this region,                        especially given that less than 1% of the Marcellus shale has been explored to date (Lutz et al.,                                    2013). Fortunately, USEPA (2015) has not found evidence that fracking has led to widespread,                            systemic impacts on drinking water resources in the United States thus far. ​
  In an effort to clarify the unique challenges of hydraulic fracturing wastewater                        management, this paper will first identify and analyze specific contaminants and water quality                          problems that are prevalent throughout the fracking industry. The next area of focus will be on                                methods of detection. Of particular interest are the advanced chemical techniques that prove                          essential in detecting the extensive range of contaminants associated with hydraulic fracturing                        fluid (HFF), as well as recently developed procedures and innovations. Lastly, various                        wastewater management options will be discussed at length, with an emphasis on their respective                            advantages and disadvantages with regard to efficacy and economy.  CONTAMINANT DESCRIPTION    Although a federal requirement to disclose the materials used in fracking fluids is                          lacking, over 30 states have taken or are in the process of taking up the slack by requiring                                    disclosure (Morrison, 2015). To date, a number of analyses provide snapshots of parts of the                              fracking water process, although a more comprehensive picture is still lacking. A voluntary                          disclosure website (fracfocus.org) attempts to fill the gap.  Both the flowback and produced water can contain the original additives plus                        contaminants acquired deep underground, including the following:     2 
  • 3.
      ● Fine sand to prop open fractures so natural gas can escape  ● Surfactantsto reduce surface tension and friction, improve recovery of oil                      and inhibit scale   ● Antimicrobial compounds (e.g., glutaraldehyde) to kill microbes that                produce corrosive acid or form well­clogging biofilms  ● Brine salts (e.g., iodide, bromide) because hydrocarbons formed in ancient                    oceans  ● High total dissolved solids (TDS) from underground minerals  ● Radionuclides (e.g., radium­226) found naturally underground  ● Natural gas and petroleum    Chemical reaction byproducts are also possible, with some reactions facilitated by the                        fractured shale surfaces, and polymerization byproducts are possible due to the high temperature                          and pressure used (Arnaud, 2015). The fate and degradation of the antimicrobial compounds,                          known for their toxicity, have been reviewed by a group of Colorado researchers (Kahrilas et al.,                                2015).  Several studies provide snapshots of the variety of compounds found in fracking                        wastewater. From a Colorado well, Linden et al. (2015) identified 180 volatile organics,                          including xylenes, acetone and 2­butanone. Looking for inorganic compounds, Harkness et al.                        (2015) found elevated iodide, bromide and ammonium. The ammonium was at toxic levels (420                            mg/L) and bromide and iodide are especially difficult to remove from drinking water, not to                              mention they can lead to the formation of carcinogenic disinfection byproducts. Finally,                        technologically enhanced naturally occurring radioactive material is brought to the surface in                        particles from the fractured underground rock formations, which may be filtered out, end up in                              landfills and subsequently leach out. Worker exposures can be worrisome because for                        radium­226 the total radioactivity goes up by a factor of about 6 within 15 days in a closed                                    system due to the production of radon and other short­lived decay products (Arnaud, 2015).        3 
  • 4.
    DETECTION METHODS    While measurement ofsome of the characteristics of fracking wastewater is                      straightforward (such as temperature, pH and TDS), the wide variety of organic compounds,                          their degradation products, inorganics and radionuclides require modern analytical chemistry                    techniques that are often quite expensive. Researchers at the University of Maryland have                          identified over 2,500 organic chemicals in fracking wastewater using Fourier transform ion                        cyclotron resonance mass spectrometry, and a group at Rice University used gas chromatography                          with mass spectrometry to identify remnants of fuel in the wastewater (Arnaud, 2015).                          Ethoxylated surfactants, including polyethylene glycols and linear alkyl ethoxylates, are major                      components of flowback and have been detected by both ultrahigh pressure liquid                        chromatography with Kendrick mass­defect quadrupole time­of­flight mass spectrometry                (Thurman et al., 2014) and more­standard high performance liquid chromatography with tandem                        mass spectrometry (USEPA, 2014). The identification of bromide as an indicator of fracking                          contamination has led to an innovative technique: a microfluidic paper­based analytical device                        that uses quantitative colorimetric detection via a smartphone (Loh et al., 2015). Radionuclides,                          particularly radium­226, have been detected using the more cost­effective technique of                      inductively coupled plasma with mass spectrometry with results equivalent to the                      more­expensive standard method of high­purity germanium gamma spectroscopy (Zhang et al.,                      2015). Once the fracking wastewater has been well characterized, treatment options can be                          tailored to the specific contaminants, as outlined by Lester et al. (2015).  STANDARD TREATMENT METHODS    Most fracking wastewater in the United States is disposed of through underground                        injection. This is usually the least expensive management method, barring high transportation                        costs (USEPA, 2015). According to the USEPA, more than 98% of produced water generated by                              the oil and gas industry (including fracking operations) in the United States is injected                            underground. While this is not a treatment method that actually removes contaminants,                        underground injection protects the drinking water supply by placing the wastewater at depths                          well below aquifers.  Specifically, Class II Underground Injection Control Wells, in accordance with EPA                      regulations pursuant to the Safe Drinking Water Act, dispose of wastewater at depths of                            approximately 2,000 to 8,000 feet (Marcellus Shale Coalition, 2015). These wells inject water                          beneath confining geological layers such as shale. Around 40% of oil and gas industry                            wastewater is injected into Class II wells. Although the proportion specifically for fracking is                            hard to determine, the available data indicate that Class II wells are the main fracking wastewater                                management method (USEPA, 2015).  The primary limitation to the use of injection into Class II wells is the geographic                              distribution of the wells. Their location is limited by geology, and most are found in Texas,                                  4 
  • 5.
    Oklahoma and Kansas(USEPA, 2015). Moving forward, seismic concerns may also affect the                          viability of underground injection (USEPA, 2015).  Another strategy is transporting the wastewater to a municipal treatment facility or a                          central waste treatment (CWT) facility. A CWT facility accepts industrial waste from off­site,                          treats it and discharges it to surface water or to a municipal facility for further treatment. Treated                                  wastewater can also be reused in fracking operations, which is a common strategy in areas where                                access to Class II wells is limited, such as Pennsylvania (USEPA, 2015). According to the                              USEPA, there are 73 CWT facilities currently treating or planning to treat fracking wastewater,                            39 of which are in Pennsylvania.  The treatment processes at CWT facilities differ depending on the fate of the effluent. So                              called “zero­discharge facilities” do not discharge either directly or indirectly to surface water,                          and therefore do not require TDS removal (USEPA, 2015). Instead, their effluent is destined                            primarily for reuse in fracking wells, as well as some disposal by evaporation or use for                                irrigation. These facilities employ basic treatment processes effective for the removal of                        suspended solids, oil and grease, scale­forming compounds, and metals (USEPA, 2015). The                        treatment technologies are similar to those found at a municipal facilities: granular media                          filtration, coagulation and sedimentation, chemical precipitation and dissolved air flotation                    (USEPA, 2015).  During the early years of the fracking boom, a large proportion of the wastewater                            transported for treatment was sent to municipal facilities. In Pennsylvania, the amount received                          by municipal facilities increased from less than 30 million liters per year from 2001­2004, to 460                                million liters in 2008 (Lutz et al., 2013). Most of these facilities, however, were not equipped to                                  treat TDS, resulting in a shift to treatment at CWTs (Ferrar et al., 2013; Lutz et al., 2013). Most                                      new CWT facilities have TDS removal capabilities (USEPA, 2015). These advanced treatment                        technologies are more energy­ and labor­intensive because they include membrane filtration,                      thermal distillation, ion exchange and adsorption (USEPA, 2015). A promising new technology                        emerging is filtration with nano­structured membranes. The oily compounds in fracking                      wastewater will degrade a traditional membrane, but nano­structured ones have the potential to                          effectively repel oils as well as removing heavy metal ions (Stebe, 2015).  The recycling of fracking wastewater for use in new well development has increased in                            recent years, rising from 13% before 2011 to 56% in that year (Lutz et al., 2013). Reuse has the                                      advantage of requiring much less treatment than for water destined for discharge to surface water                              bodies; however, scaling from high ion concentrations and corrosion from anaerobic bacteria                        byproducts must be addressed (Lutz et al., 2013). High transportation costs make on­site                          treatment for reuse economically desirable and also avoid potential for spills or leaks during                            transport (USEPA, 2014).  INNOVATIVE TREATMENT METHODS    One of the more creative treatment methods being developed is the mixing of HFF with                              the runoff from mine tailings and works, called acid mine drainage (AMD). This is done to                                remove the heavy metals and radioactive isotopes through binding, precipitation, and adsorption                          5 
  • 6.
    with chemicals andparticles that are found in the AMD (Kondash et al., 2014). This technique,                                which is currently being studied by a team working from Duke University, has seen radioactive                              isotope removal rates of 60­100% within 48 hours of mixing (Kondash et al., 2014). The                              resulting mixed solution contains lower levels of TDS, heavy metals, and radioactive isotopes                          than those of the original HFF and AMD. Needless to say, this method is attractive because it                                  takes two contaminated wastewaters and combines them into a far cleaner product, reducing the                            need for further treatment as well as the amount of fresh water necessary to process either the                                  ADM or HFF alone (Kondash et al., 2014). Because this method requires the capture and                              transport of AMD, it can be labor­intensive. It can also be moderately costly, because the                              wastewater requires further processing after mixing. Laboratory tests are being scaled to                        real­world situations to determine whether this method is cost­effective (Kondash et al., 2014).   Although reverse osmosis is a common treatment method, innovations are required to                        apply it to HFF. Under reverse osmosis, a contaminated fluid is forced through a membrane that                                has pores only large enough to allow water molecules through. Since the fluid is being driven                                against its concentration gradient, high pressures must be applied to overcome osmotic pressure                          (hence, “reverse” osmosis). Because larger pressures—and thus larger energy costs—are                    necessary to treat water with high TDS levels (Younos and Tulou, 2005), reverse osmosis is                              currently limited to treating TDS concentrations of under approximately 40,000 mg/L (USEPA,                        2015), which poses a challenge to TDS­laden HFF. Fortunately, a team from the University of                              Pennsylvania is developing a membrane that can process wastewater with high contamination                        efficiently, and even remove a wider range of contaminants.   Forward osmosis, another innovative technology, uses a draw solution to draw water out                          of the HFF across a membrane gradient. This technique is used when it is easier to remove the                                    draw solution from the water than it is to remove the original contaminants from the HFF (Coday                                  et al., 2014). After dewatering, the draw solution concentrate is recycled, and the HFF brine is                                disposed of. The technologies used in these processes are well established and can be tailored to                                the specific wastestream. The downside, however, is that this process is very energy­intensive,                          requires costly machinery, and creates a large amount of byproducts; i.e., the HFF brine and                              spent membranes (Gregory et al., 2011). Typically, the cost is not attractive to fracking                            operators.  NATURAL TREATMENT METHODS    “Natural processes” is a broad, catch­all category that includes any treatment method                        involving nature to purify the water with little or no pre­treatment. These methods require little                              additional energy and are not labor­intensive, thus making them attractive if weather and                          physical space permit.  Common methods in dry climates are evaporation and percolation. For example, HFF can                          be spread across fields, placed in evaporation ponds, or sprayed on roads as an anti­dust agent                                (USEPA, 2015). There is great concern with these treatment methods, however, because the                          radioactive isotopes brought to the surface by the HFF are not adequately removed and end up                                leaching into groundwater (Brown, 2014).      6 
  • 7.
    In colder climates,freeze­thaw is an option to improve the quality of the water with                              minimal effort (Gregory et al., 2011). The process works exactly as the name suggest: HFF is                                sprayed across “chilling sheets” during the cold months, where it freezes to form ice crystals.                              Due to the lower freezing point of salt solutions, the now­concentrated HFF brine sloughs off                              and can be disposed via other methods. When warm weather arrives, the ice thaws and is sent for                                    further treatment. Although freeze­thaw requires labor it is fairly low­energy, albeit with a rather                            large time component.  As a final natural process, microbial organisms can be relied upon to remediate HFF.                            This approach involves surface discharges or discharging to artificially created wetlands or reed                          beds to bind/process the contaminants (USEPA, 2015). For surface discharges, a great deal of                            treatment is required prior to discharge. For artificially created wetlands and reed beds, the level                              of treatment before discharge is based on the tolerances and capture characteristics of the                            organisms present (USEPA, 2015). It is difficult to estimate the efficiencies of these treatment                            methods as a whole because pre­treatment is performed prior to discharge to the surface waters                              or artificial environments.  CONCLUSIONS    Fracking wastewater presents the oil and gas industry with familiar wastewater treatment                        challenges, although at larger quantities and with exotic additives. The most common form of                            wastewater management is underground injection, which is low­cost but limited by geographic                        distribution of injection wells. In the case where such wells are not available, wastewater can be                                rerouted to central waste treatment facilities. These facilities may discharge treated effluent to                          surface water or send it to a municipal facility for further treatment. Another option is to reuse                                  the water for fracking operations, which removes the need to process the water through advanced                              treatment technologies that are energy­ and labor­intensive. On­site reuse also reduces associated                        transportation costs. The disadvantage of reuse methods, however, is that they often face                          problems with scaling and corrosion.  In addition to conventional methods, there are many innovative approaches to fracking                        wastewater management. One such technique is to combine hydraulic fracturing fluid with acid                          mine drainage, which effectively removes radioactive isotopes and heavy metals through                      precipitation and requires very little fresh water to do so. As a new technology, however, the                                costs are uncertain. Both reverse osmosis and forward osmosis use membrane technology to                          filter out contaminants. Although membrane technologies have improved, they remain very                      energy­intensive and result in a lot of byproduct. A less expensive treatment option is to exploit                                natural processes to treat wastewater. Such natural processes include evaporation and percolation                        (low energy and labor costs), freeze­thaw cycles (low energy but time­intensive), and biological                          processes facilitated through natural organisms (generally requires pre­treatment).            7 
  • 8.
    REFERENCES    Arnaud, C.H. (2015). Figuring out Fracking Wastewater. Chem. Eng. News, 93(7):8­12.  Brown, V.J. (2014). Radionuclides in Fracking Wastewater: Managing a Toxic Blend.  Environmental Health Perspectives, 122(2), A50–A55.  Coday, B.D., Xu, P., Beaudry, E.G., Herron, J., Lampi, K., Hancock, N.T., Cath, T.Y. (2014).  The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater,  and other complex and difficult liquid streams. Desalination, 333, 23­35.  Ferrar, K.J., Michanowicz, D.R., Christen, C.L., Mulcahy, N., Malone, S.L., Sharma, R.K.  (2013). Assessment of Effluent Contaminants from Three Facilities Discharging  Marcellus Shale Wastewater to Surface Waters in Pennsylvania. Environ. Sci. Technol.,  47, 3472−3481.  Gregory, K.B., Vidic, R.D., Dzombak, D.A. (2011). Global Water Sustainability: Water  Management Challenges Associated with the Production of Shale Gas by Hydraulic  Fracturing. Elements, 7(3), 181­186.  Harkness, J.S., Dwyer, G.S., Warner, N.R., Parker, K.M., Mitch, W.A., Vengosh, A. (2015).  Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters:  Environmental Implications. Environ. Sci. Technol., 49(3), 1955­1963.  Kahrilas, G.A., Blotevogel, J., Stewart, P.S., Borch, T. (2014). Biocides in hydraulic fracturing  fluids: A critical review of their usage, mobility, degradation, and toxicity. Environ. Sci.  Technol., 49(1), 16­32.  Kondash, A.J., Warner, N.R., Lahav, O., Vengosh, A. (2014). Radium and Barium Removal  through Blending Hydraulic Fracturing Fluids with Acid Mine Drainage. Environ. Sci.  Technol., 48, 1334−1342.  Lester, Y., Ferrer, I., Thurman, E.M., Sitterley, K.A., Korak, J.A., Aiken, G., Linden, K.G.  (2015). Characterization of hydraulic fracturing flowback water in Colorado:  Implications for water treatment. Science of The Total Environment, 512­513, 637–644.  Loh, L.J., Bandara, G.C., Weber, G.L., Remcho, V. T. (2015). Detection of water contamination  from hydraulic fracturing wastewater: a μPAD for bromide analysis in natural waters.  Analyst, 140(16), 5501­5507.  Lutz, B.D., Lewis, A.N., Doyle, M.W. (2013). Generation, transport, and disposal of wastewater  associated with Marcellus Shale gas development. Water Resources Research, 49,  647–656.  Marcellus Shale Coalition (2015). Class IID Underground Injection Control (UIC) Wells: What  should Pennsylvanians know? Fact sheet.    8 
  • 9.
    Morrison, J. (2015). Disclosure Debate. Chem. Eng. News, 93(7), 13­14.  Rahm, B.G., Bates, J.T., Bertoia, L.R., Galford, A.E., Yoxtheimer, D.A., & Riha, S.J. (2013).  Wastewater management and Marcellus Shale gas development: Trends, drivers, and  planning implications. Journal of Environmental Management, 120, 105­113.  Stebe, K. (2015). Nano­structured membranes developed to filter wastewater produced by  fracking. Membrane Technology, 2015(3), 9.  Thurman, E.M., Imma Ferrer, I., Blotevogel, J., Borch, T. (2014). Analysis of Hydraulic  Fracturing Flowback and Produced Waters Using Accurate Mass: Identification of  Ethoxylated Surfactants. Anal. Chem., 86, 9653­9661.  USEPA. (2014). The Verification of a Method for Detecting and Quantifying Diethylene Glycol,  Triethylene Glycol, Tetraethylene Glycol, 2­Butoxyethanol and 2­Methoxyethanol in  Ground and Surface Waters. U.S. Environmental Protection Agency, Office of Research  and Development, Washington, DC. EPA/600/R­14/008. January.   USEPA. (2015). Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on  Drinking Water Resources. External Review Draft. U.S. Environmental Protection  Agency, Office of Research and Development, Washington, DC. EPA/600/R­15/047.  June.   Younos, T., Tulou, K. (2005). Overview of desalination techniques. Journal of Contemporary  Water Research & Education, 132(1), 3­10.  Zhang, T., Bain, D., Hammack, R., Vidic, R.D. (2015). Analysis of Radium­226 in High Salinity  Wastewater from Unconventional Gas Extraction by Inductively Coupled Plasma­Mass  Spectrometry. Environ. Sci. Technol., 49, 2969­2976.            9 
  • 10.
  • 11.
  • 12.