SlideShare a Scribd company logo
How to build your engineering
project
PRESENTED BY : MUHAMMAD SHORRAB
INTRODUCTION
Engineering projects involve creative problem solving, and they are not
hypothesis testing. Each engineering design, software application or device
project should have a clear engineering goal which can fit the following
model statement:
“The design and construction of an (engineered product) for (target user) to
do (some useful function).”
INTRODUCTION
You will use the engineering design process to create your fair entry. This
process is typical of those used by practicing engineers; the definition of
terms and the number of steps may vary, but these are “essential steps.”
Your very first step is to start a project notebook in which you will record
every step of your process and the results of your design efforts. The process
is iterative, meaning the designer will often repeat steps until he or she is
confident the design will meet the needs. Note: the terms product, invention,
project, design, and solution are often used interchangeably in Fair
Guidelines.
THE ENGINEERING DESIGN PROCESS
Define a need; express as a goal
Establish design criteria and constraints
Evaluate alternative designs
Build a prototype of best design
Test and evaluate the prototype using the design criteria
Analyze test results, make design changes, and retest
Communicate the design
STEP 1. IDENTIFY A NEED
The need (also called the problem you are solving or the Engineering Goal) is frequently
identified by customers–the users of the product. The customer could be a retail
consumer or the next team in a product development. Customers may express needs
by describing a product (I need a car) or as a functional requirement (I need a way to get
to school). The need should be described in a simple statement that includes what you
are designing (the product), who it is for (customer), what need does it satisfy (problem
to solve), and how does it improve previous designs (easier to use, less expensive, more
efficient, safer).
STEP 2. ESTABLISH DESIGN CRITERIA AND CONSTRAINTS
Design criteria are requirements you specify that will be used to make decisions about
how to build and evaluate the product. Criteria are derived from needs expressed by
customers. Criteria define the product’s physical and functional characteristics and must
be declared as a measurable quantity.  Some examples of measurable criteria include
length (in cm, km, etc.); mass (in mg, kg, etc.); velocity (in m/sec, km/hr., etc.); and
ruggedness (able to withstand an impact force of x Newtons).  Some examples of
measurable accuracy include. Constraints are factors that limit the engineer’s flexibility.
Some typical constraints are cost, time, and knowledge; legal issues; natural factors
such as topography, climate, raw materials; and where the product will be used. Good
designs will meet important design criteria within the limits fixed by the constraints.
Good designs are also economical to make and use because cost is always a design
constraint.
STEP 3. EVALUATE ALTERNATIVE DESIGNS AND CREATE
YOUR TEST PLAN
Your research into possible solutions will reveal what has been done to satisfy similar
needs. You’ll discover where knowledge and science limit your solutions, how previous
solutions may be improved, and what different approaches may meet design objectives.
You should consider at least two or three alternative designs and consider using
available technology, modifying current designs, or inventing new solutions. Superior
work will demonstrate tradeoff analyses such as comparing the strength vs. cost of
various bridge-building materials.It’s important to document in your project notebook
how you chose and evaluated alternative designs. Can you defend your choices to the
judges?. You will develop an initial test plan describing how you will test the design
criteria and constraints you listed in Step 2.
STEP 4. BUILD A PROTOTYPE OF BEST DESIGN
Use your alternative analyses to choose the design that best meets criteria considering
the constraints, then build a prototype. A prototype is the first full scale and usually
functional form of a new type or design.
STEP 5. TEST AND EVALUATE THE PROTOTYPE AGAINST
IMPORTANT DESIGN CRITERIA TO SHOW HOW WELL THE
PRODUCT MEETS THE NEED
You must test your prototype under actual or simulated operating conditions. Make
sure you test all of your criteria and constraints to evaluate the success of your
prototype.
STEP 6. ANALYZE TEST RESULTS, MAKE DESIGN CHANGES
AND RETEST
Testing will disclose some deficiencies in your design. Sometimes the testing fails
completely and sends the designer “back to the drawing board.” Make corrections and
retest OR prepare an analysis of what went wrong and how you will fix it. As always,
document your analyses, fixes, and retests in your notebook.
STEP 7. COMMUNICATE THE DESIGN
The designer’s real product is the description of a design from which others will build
the product. Use your notebook and the fair exhibit to communicate the design to your
customer and the judges. Your product description will be conveyed in drawings,
photos, materials lists, assembly instructions, test plans and results. Consider listing
lessons learned so future designers need not repeat any of your “frustrations.” You’ll
have clear instructions on how to produce your design, along with production cost
estimates.
STEP 8. WHAT ARE YOU WAITING FOR?! BUILD YOUR
 PROJECT FREELY
Prepare your engineering project exhibit board
think without boundaries
yes, you can do it, do not be afraid
always remember "The honor of trying success"
Thank You
MuhammadShorrab@ieee.org
WEB
Muhammad Shorrab
EMAIL

More Related Content

What's hot

Pdd
PddPdd
Fundamentals of Engineering Design
Fundamentals of Engineering DesignFundamentals of Engineering Design
Fundamentals of Engineering Design
asuarea48
 
Product Design Process
Product Design ProcessProduct Design Process
Product Design Process
Istiaque Reza
 
Product design jw salon presentation
Product design jw salon presentationProduct design jw salon presentation
Product design jw salon presentationJay Wu
 
Product and Design Process
Product and Design ProcessProduct and Design Process
Product and Design Process
Danilo Oliveira
 
Engineering design Process
Engineering design ProcessEngineering design Process
Engineering design Process
Velmurugan Sivaraman
 
INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN
INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN
INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN
Dr. C.V. Suresh Babu
 
1.0 engineering design
1.0 engineering design1.0 engineering design
1.0 engineering designnazimr76
 
12proto
12proto12proto
Product design and development
Product design and developmentProduct design and development
Product design and development
Soumyodeep Mukherjee
 
Product design analysys
Product design analysysProduct design analysys
Product design analysysFrank Bannon
 
Lecture 3 (quality of design and quality of conformance)
Lecture  3 (quality of design and quality of conformance)Lecture  3 (quality of design and quality of conformance)
Lecture 3 (quality of design and quality of conformance)
RAJ BAIRWA
 
PROCESSES IN DESIGN THINKING
PROCESSES IN DESIGN THINKING PROCESSES IN DESIGN THINKING
PROCESSES IN DESIGN THINKING
Dr. C.V. Suresh Babu
 
Lecture 5 concept appraisal and selection
Lecture 5   concept appraisal and selectionLecture 5   concept appraisal and selection
Lecture 5 concept appraisal and selection
andibrains
 
Lecture 1 a_review_design_process
Lecture 1 a_review_design_processLecture 1 a_review_design_process
Lecture 1 a_review_design_process
Azua Marian
 
Composing The Final Proposal
Composing The Final ProposalComposing The Final Proposal
Composing The Final Proposal
dwinter1
 
Introduction to Engineering Design Process
Introduction to Engineering Design ProcessIntroduction to Engineering Design Process
Introduction to Engineering Design Process
Lk Rigor
 
Writing Design Decisions
Writing Design DecisionsWriting Design Decisions
Writing Design Decisions
dwinter1
 
Considering Design Decisions
Considering Design DecisionsConsidering Design Decisions
Considering Design Decisions
dwinter1
 
Product Design & Development
Product Design & DevelopmentProduct Design & Development
Product Design & Development
Velmurugan Sivaraman
 

What's hot (20)

Pdd
PddPdd
Pdd
 
Fundamentals of Engineering Design
Fundamentals of Engineering DesignFundamentals of Engineering Design
Fundamentals of Engineering Design
 
Product Design Process
Product Design ProcessProduct Design Process
Product Design Process
 
Product design jw salon presentation
Product design jw salon presentationProduct design jw salon presentation
Product design jw salon presentation
 
Product and Design Process
Product and Design ProcessProduct and Design Process
Product and Design Process
 
Engineering design Process
Engineering design ProcessEngineering design Process
Engineering design Process
 
INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN
INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN
INTRODUCTION TO INFORMATION TECHNOLOGY DESIGN
 
1.0 engineering design
1.0 engineering design1.0 engineering design
1.0 engineering design
 
12proto
12proto12proto
12proto
 
Product design and development
Product design and developmentProduct design and development
Product design and development
 
Product design analysys
Product design analysysProduct design analysys
Product design analysys
 
Lecture 3 (quality of design and quality of conformance)
Lecture  3 (quality of design and quality of conformance)Lecture  3 (quality of design and quality of conformance)
Lecture 3 (quality of design and quality of conformance)
 
PROCESSES IN DESIGN THINKING
PROCESSES IN DESIGN THINKING PROCESSES IN DESIGN THINKING
PROCESSES IN DESIGN THINKING
 
Lecture 5 concept appraisal and selection
Lecture 5   concept appraisal and selectionLecture 5   concept appraisal and selection
Lecture 5 concept appraisal and selection
 
Lecture 1 a_review_design_process
Lecture 1 a_review_design_processLecture 1 a_review_design_process
Lecture 1 a_review_design_process
 
Composing The Final Proposal
Composing The Final ProposalComposing The Final Proposal
Composing The Final Proposal
 
Introduction to Engineering Design Process
Introduction to Engineering Design ProcessIntroduction to Engineering Design Process
Introduction to Engineering Design Process
 
Writing Design Decisions
Writing Design DecisionsWriting Design Decisions
Writing Design Decisions
 
Considering Design Decisions
Considering Design DecisionsConsidering Design Decisions
Considering Design Decisions
 
Product Design & Development
Product Design & DevelopmentProduct Design & Development
Product Design & Development
 

Similar to How to build your engineering project

lesson-4.pptx
lesson-4.pptxlesson-4.pptx
lesson-4.pptx
Out Cast
 
PLCM MODULE – 2 -Dr.GMS JSSATEB.pptx
PLCM MODULE – 2 -Dr.GMS JSSATEB.pptxPLCM MODULE – 2 -Dr.GMS JSSATEB.pptx
PLCM MODULE – 2 -Dr.GMS JSSATEB.pptx
swamy62
 
Basic Engineering Design: Overview
Basic Engineering Design:  OverviewBasic Engineering Design:  Overview
Basic Engineering Design: Overview
Denise Wilson
 
Chapter 1 intr m dfina
Chapter 1 intr m dfinaChapter 1 intr m dfina
Chapter 1 intr m dfina
Khalil Alhatab
 
Concepts in engineering design
Concepts in engineering designConcepts in engineering design
Concepts in engineering design
MITS Gwalior
 
Chapter 1 intr m dfina
Chapter 1 intr m dfinaChapter 1 intr m dfina
Chapter 1 intr m dfina
Khalil Alhatab
 
Engineering Design Notes
Engineering Design NotesEngineering Design Notes
Engineering Design Notes
Sead Spuzic
 
design_fundamental_new_.ppt
design_fundamental_new_.pptdesign_fundamental_new_.ppt
design_fundamental_new_.ppt
MohsenGhorbani9
 
Introduction to product design and development (module 1)
Introduction to product design and development  (module 1)Introduction to product design and development  (module 1)
Introduction to product design and development (module 1)
subhashFTVET
 
OPS 571T Education Specialist |tutorialrank.com
OPS 571T Education Specialist |tutorialrank.comOPS 571T Education Specialist |tutorialrank.com
OPS 571T Education Specialist |tutorialrank.com
ladworkspaces
 
JamesSticky NoteThis is an introduction to a volume of t.docx
JamesSticky NoteThis is an introduction to a volume of t.docxJamesSticky NoteThis is an introduction to a volume of t.docx
JamesSticky NoteThis is an introduction to a volume of t.docx
christiandean12115
 
PRODUCT AND SERVICE DESIGN
 PRODUCT AND SERVICE DESIGN  PRODUCT AND SERVICE DESIGN
PRODUCT AND SERVICE DESIGN
Alemayohu Workine
 
Chapter-4 Product and Service Design.pptx
Chapter-4 Product and Service Design.pptxChapter-4 Product and Service Design.pptx
Chapter-4 Product and Service Design.pptx
amanuel236786
 
Chapter 4 Product and Service Design.pptx
Chapter 4 Product and Service Design.pptxChapter 4 Product and Service Design.pptx
Chapter 4 Product and Service Design.pptx
amanuel236786
 
Chapter 4 Product and Service Design.ppt
Chapter 4 Product and Service Design.pptChapter 4 Product and Service Design.ppt
Chapter 4 Product and Service Design.ppt
amanuel236786
 
machine design 1 ( all basic part & model or the object design we can design )
machine design 1 ( all basic part & model or the object design we can design )machine design 1 ( all basic part & model or the object design we can design )
machine design 1 ( all basic part & model or the object design we can design )
forcealien03
 
Design For X Guidelines
Design For X GuidelinesDesign For X Guidelines
Design For X Guidelines
Ilker Illio Yilan
 
Discover Requirement
Discover RequirementDiscover Requirement
Discover Requirement
zeyadtarek13
 

Similar to How to build your engineering project (20)

lesson-4.pptx
lesson-4.pptxlesson-4.pptx
lesson-4.pptx
 
PLCM MODULE – 2 -Dr.GMS JSSATEB.pptx
PLCM MODULE – 2 -Dr.GMS JSSATEB.pptxPLCM MODULE – 2 -Dr.GMS JSSATEB.pptx
PLCM MODULE – 2 -Dr.GMS JSSATEB.pptx
 
Basic Engineering Design: Overview
Basic Engineering Design:  OverviewBasic Engineering Design:  Overview
Basic Engineering Design: Overview
 
Chapter 1 intr m dfina
Chapter 1 intr m dfinaChapter 1 intr m dfina
Chapter 1 intr m dfina
 
Concepts in engineering design
Concepts in engineering designConcepts in engineering design
Concepts in engineering design
 
Chapter 1 intr m dfina
Chapter 1 intr m dfinaChapter 1 intr m dfina
Chapter 1 intr m dfina
 
Engineering Design Notes
Engineering Design NotesEngineering Design Notes
Engineering Design Notes
 
Product design concept
Product design conceptProduct design concept
Product design concept
 
design_fundamental_new_.ppt
design_fundamental_new_.pptdesign_fundamental_new_.ppt
design_fundamental_new_.ppt
 
Topic 1 Design
Topic 1 DesignTopic 1 Design
Topic 1 Design
 
Introduction to product design and development (module 1)
Introduction to product design and development  (module 1)Introduction to product design and development  (module 1)
Introduction to product design and development (module 1)
 
OPS 571T Education Specialist |tutorialrank.com
OPS 571T Education Specialist |tutorialrank.comOPS 571T Education Specialist |tutorialrank.com
OPS 571T Education Specialist |tutorialrank.com
 
JamesSticky NoteThis is an introduction to a volume of t.docx
JamesSticky NoteThis is an introduction to a volume of t.docxJamesSticky NoteThis is an introduction to a volume of t.docx
JamesSticky NoteThis is an introduction to a volume of t.docx
 
PRODUCT AND SERVICE DESIGN
 PRODUCT AND SERVICE DESIGN  PRODUCT AND SERVICE DESIGN
PRODUCT AND SERVICE DESIGN
 
Chapter-4 Product and Service Design.pptx
Chapter-4 Product and Service Design.pptxChapter-4 Product and Service Design.pptx
Chapter-4 Product and Service Design.pptx
 
Chapter 4 Product and Service Design.pptx
Chapter 4 Product and Service Design.pptxChapter 4 Product and Service Design.pptx
Chapter 4 Product and Service Design.pptx
 
Chapter 4 Product and Service Design.ppt
Chapter 4 Product and Service Design.pptChapter 4 Product and Service Design.ppt
Chapter 4 Product and Service Design.ppt
 
machine design 1 ( all basic part & model or the object design we can design )
machine design 1 ( all basic part & model or the object design we can design )machine design 1 ( all basic part & model or the object design we can design )
machine design 1 ( all basic part & model or the object design we can design )
 
Design For X Guidelines
Design For X GuidelinesDesign For X Guidelines
Design For X Guidelines
 
Discover Requirement
Discover RequirementDiscover Requirement
Discover Requirement
 

Recently uploaded

The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 

Recently uploaded (20)

The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 

How to build your engineering project

  • 1. How to build your engineering project PRESENTED BY : MUHAMMAD SHORRAB
  • 2. INTRODUCTION Engineering projects involve creative problem solving, and they are not hypothesis testing. Each engineering design, software application or device project should have a clear engineering goal which can fit the following model statement: “The design and construction of an (engineered product) for (target user) to do (some useful function).”
  • 3. INTRODUCTION You will use the engineering design process to create your fair entry. This process is typical of those used by practicing engineers; the definition of terms and the number of steps may vary, but these are “essential steps.” Your very first step is to start a project notebook in which you will record every step of your process and the results of your design efforts. The process is iterative, meaning the designer will often repeat steps until he or she is confident the design will meet the needs. Note: the terms product, invention, project, design, and solution are often used interchangeably in Fair Guidelines.
  • 4. THE ENGINEERING DESIGN PROCESS Define a need; express as a goal Establish design criteria and constraints Evaluate alternative designs Build a prototype of best design Test and evaluate the prototype using the design criteria Analyze test results, make design changes, and retest Communicate the design
  • 5. STEP 1. IDENTIFY A NEED The need (also called the problem you are solving or the Engineering Goal) is frequently identified by customers–the users of the product. The customer could be a retail consumer or the next team in a product development. Customers may express needs by describing a product (I need a car) or as a functional requirement (I need a way to get to school). The need should be described in a simple statement that includes what you are designing (the product), who it is for (customer), what need does it satisfy (problem to solve), and how does it improve previous designs (easier to use, less expensive, more efficient, safer).
  • 6. STEP 2. ESTABLISH DESIGN CRITERIA AND CONSTRAINTS Design criteria are requirements you specify that will be used to make decisions about how to build and evaluate the product. Criteria are derived from needs expressed by customers. Criteria define the product’s physical and functional characteristics and must be declared as a measurable quantity.  Some examples of measurable criteria include length (in cm, km, etc.); mass (in mg, kg, etc.); velocity (in m/sec, km/hr., etc.); and ruggedness (able to withstand an impact force of x Newtons).  Some examples of measurable accuracy include. Constraints are factors that limit the engineer’s flexibility. Some typical constraints are cost, time, and knowledge; legal issues; natural factors such as topography, climate, raw materials; and where the product will be used. Good designs will meet important design criteria within the limits fixed by the constraints. Good designs are also economical to make and use because cost is always a design constraint.
  • 7. STEP 3. EVALUATE ALTERNATIVE DESIGNS AND CREATE YOUR TEST PLAN Your research into possible solutions will reveal what has been done to satisfy similar needs. You’ll discover where knowledge and science limit your solutions, how previous solutions may be improved, and what different approaches may meet design objectives. You should consider at least two or three alternative designs and consider using available technology, modifying current designs, or inventing new solutions. Superior work will demonstrate tradeoff analyses such as comparing the strength vs. cost of various bridge-building materials.It’s important to document in your project notebook how you chose and evaluated alternative designs. Can you defend your choices to the judges?. You will develop an initial test plan describing how you will test the design criteria and constraints you listed in Step 2.
  • 8. STEP 4. BUILD A PROTOTYPE OF BEST DESIGN Use your alternative analyses to choose the design that best meets criteria considering the constraints, then build a prototype. A prototype is the first full scale and usually functional form of a new type or design.
  • 9. STEP 5. TEST AND EVALUATE THE PROTOTYPE AGAINST IMPORTANT DESIGN CRITERIA TO SHOW HOW WELL THE PRODUCT MEETS THE NEED You must test your prototype under actual or simulated operating conditions. Make sure you test all of your criteria and constraints to evaluate the success of your prototype.
  • 10. STEP 6. ANALYZE TEST RESULTS, MAKE DESIGN CHANGES AND RETEST Testing will disclose some deficiencies in your design. Sometimes the testing fails completely and sends the designer “back to the drawing board.” Make corrections and retest OR prepare an analysis of what went wrong and how you will fix it. As always, document your analyses, fixes, and retests in your notebook.
  • 11. STEP 7. COMMUNICATE THE DESIGN The designer’s real product is the description of a design from which others will build the product. Use your notebook and the fair exhibit to communicate the design to your customer and the judges. Your product description will be conveyed in drawings, photos, materials lists, assembly instructions, test plans and results. Consider listing lessons learned so future designers need not repeat any of your “frustrations.” You’ll have clear instructions on how to produce your design, along with production cost estimates.
  • 12. STEP 8. WHAT ARE YOU WAITING FOR?! BUILD YOUR  PROJECT FREELY Prepare your engineering project exhibit board think without boundaries yes, you can do it, do not be afraid always remember "The honor of trying success"