SlideShare a Scribd company logo
Heat Transfer
Important: This chapter
follows mainly on chapter 4
in Turcotte and Schubert
textbook.
Heat transfer: the sources
Sun
Earth
From the sun:
• 2x1017 W
• 4x102 Wm-2
Derives surface processes:
• Water cycle
• Biosphere
• Rain
• Erosion
From the Earth interior:
• 4x1013 W
• 8x10-2 Wm-2
Derives deep Processes:
• Mantle convection
• Geodynamo
• Plate tectonics
• Metamorphism
• Volcanism
Earthquakes: 1011 W
Heat transfer: the mechanisms
Three mechanisms for heat transfer: conduction, convection and
radiation.
Heat transfer: the mechanisms
Conduction:
A diffusive process wherein
molecules transmit their kinetic
energy to other molecules by
colliding with them.
Heat transfer: the mechanisms
Convection:
A process associated with the
motion of the medium. When a
hot material flows into a cold
material, it will heat the region
- and vise versa.
Heat transfer: the mechanisms
Radiation:
The transfer of heat via electromagnetic radiation. Example - the
Sun.
Heat transfer: the mechanisms
• In the Earth, both conduction and convection are important.
• In the lithosphere, the temperature gradient is controlled mainly
by conduction.
• Convection in the lithosphere does play a role in:
• Mid-ocean ridges in the form of hydrothermal ocean
circulation.
• Volcanism and emplacement of magmatic bodies.
Heat transfer: heat flux
Heat flux is the flow per unit area and per unit time of heat. It is
directly proportional to the temperature gradient.
One dimensional Fourier's law:
where:
q is the heat flux
k is the coefficient of thermal conductivity
T is the temperature
y is a spatial coordinate
Question: why is the minus sign?

q  k
dT
dy
,
Question: is q a vector or a scalar?
Heat transfer: heat flux
Units:
• q is in [Wm-2]
• k is in [Wm-1K-1]
where W is read “watt”, and is equal to Joule per second.
A substance with a large value of k is a good thermal conductor,
whereas a substance with a small value of k is a poor thermal
conductor or a good thermal insulator.
Heat transfer: heat flux
Example 1: a slab of thickness l, and a temperature difference of
T:
The heat flux is given by:

q  k
T
l
.
Heat transfer: heat flux
Example 2: a composite slab
heat
k2 k1
T2 Tx T1
L2 L1
H.F. through slab 2:
H.F. through slab 1:
In steady-state q1=q2, we get:
Or more generally:
Note the trade-off between thermal conductivity, k, and the
medium thickness, L. Thus, the important quantity is L/k, often
referred to as thermal resistance.

q2  k2
T2  Tx
L2
.

q1  k1
Tx  T1
L1
.

q1  q2 
T2  T1
(L1 /k1)  (L2 /k2)
.
qn 
Tn T1
Li /ki
i1,n

.
Heat transfer: world-wide heat flow
• Highest heat loss at mid-
ocean ridges and lowest at
old oceanic crust.
• With temperature
gradient of 20-30 K/km,
and thermal conductivity of
2-3 WK-1m-1, the heat flux
is 40-90 mWm-2.
Heat transfer: measurements
Heat flow measurements: the global heat flow map on the
previous slide is based on a compilation of individual
measurements whose distribution is shown below.
For practical reasons, the vast majority of the measurements are
from continental areas.
Map from: www.heatflow.und.edu/
Heat transfer: heat flow over stable continental areas
• The surface heat flow is
strongly correlated with the
surface concentration of the
radioactive heat producing
elements.
Eastern US
Norway+Sweden
Sierra Nevada
Figure from Turcotte and Schubert textbook
Heat transfer: heat flow over stable continental areas
• In the stable continental
areas, surface heat flow
systematically decreases with
the age of the surface rocks.
• Latter we will see that this
effect can be attributed to the
decrease in the crustal
concentrations of the heat
producing isotopes due to
progressive erosion.
Heat transfer: heat flow over oceanic crust
What is the contribution from radioactive elements in the ocean?
• The concentration of the heat producing isotopes in oceanic
crust is about an order of magnitude less than in continental crust.
• The oceanic crust is about a factor of 5 thinner than the
continental crust.
Thus, the contribution of heat producing elements is negligible!
Heat transfer: heat flow over oceanic crust
• There is a systematic
dependence of the surface
heat flow on the age of the
sea floor.
• Later we will see that this
can be understood as
gradual cooling.
Heat transfer: conservation of energy in 1-dimension
Consider a slab of infinitesimal
thickness y; the heat flux out
of the slab is q(y + y), and the
heat flux into the slab q(y).
The net heat flow out of the
slab, per unit time and per unit
area of the slab's face, is:

q(y y)q(y).
Heat transfer: conservation of energy in 1-dimension
In the absence of internal heat production, conservation of
energy requires that:

q(y y)q(y) 0.
Since y is infinitesimal, we can expand q(y+y) in a Taylor series
as:

q(y  y)  q(y)  y
dq
dy

(y)2
2
d2
q
dy2

Ignoring terms higher than the first order term, leads to:

q(y y) q(y) y
dq
dy
y k
d2
T
dy2





 0.
Thus: d2
T
dy2
 0.
Heat transfer: conservation of energy in 1-dimension
Question: in the absence of internal heat production, how does
the geotherm look like?
If there's nonzero net heat flow per unit area out of the slab, this
heat must be generated internally in the slab. In that case:

q(y y) q(y) y
dq
dy
y k
d2
T
dy2





yH,
where:
H is the heat production rate per unit mass
 is the density
Question: what is the source for steady-state internal heating in
the Earth lithosphere?
Heat transfer: geotherm
The previous result may be integrated to determine the geotherm,
i.e. the temperature as a function of depth.
Hereafter we consider a half-space,
with a surface at y=0, where y is a
depth coordinate increasing
downward.
Boundary conditions are:
1) q=-q0 at y=0
2) T=T0 at y=0
Heat transfer: geotherm
Starting with:
and integrating once gives:
The 1st b.c. requires that: C1=q0, leading to:
Additional integration gives:
The 2nd b.c. requires that C2=kT0, giving:

H  k
d2
T
dy2
 0,

Hy  k
dT
dy
 C1.

Hy  k
dT
dy
 q0.

H
y2
2
 kT q0y  C2.
T  T0 
q0
k
y 
H
2k
y2
.

More Related Content

Similar to Heat Transfer_1.ppt

basics of HMT
basics of HMTbasics of HMT
basics of HMT
gajanand sharma
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
spsu
 
lecture-1-mechanismsof HT_524.ppt
lecture-1-mechanismsof HT_524.pptlecture-1-mechanismsof HT_524.ppt
lecture-1-mechanismsof HT_524.ppt
ShoebAhmedSyed2
 
PHT 080322.pptx
PHT 080322.pptxPHT 080322.pptx
PHT 080322.pptx
DesiganRavichandran
 
Heat transfer modes
Heat transfer modesHeat transfer modes
Heat transfer modes
arivazhaganrajangam
 
1.pdf
1.pdf1.pdf
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
OISTMEHOD
 
Modes of energy transfer in soil
Modes  of energy  transfer  in soilModes  of energy  transfer  in soil
Modes of energy transfer in soil
ShaheenPraveen1
 
CHAPTER -ONE.pdf
CHAPTER -ONE.pdfCHAPTER -ONE.pdf
CHAPTER -ONE.pdf
koxabey137
 
Chapter 2 1
Chapter 2 1Chapter 2 1
Chapter 2 1
Mike Lassa
 
Lecture 1
Lecture 1Lecture 1
Basics of heat transfer_Aircraft propulsion
Basics of heat transfer_Aircraft propulsion Basics of heat transfer_Aircraft propulsion
Basics of heat transfer_Aircraft propulsion
Suthan Rajendran
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
Zenaido Soldevilla
 
2 marks heat and mass transfer
2 marks   heat and mass transfer2 marks   heat and mass transfer
2 marks heat and mass transfer
Er.JOE.S 09943145604
 
heat
 heat heat
heat
farowk
 
Heat exchanger lecture ppt
Heat exchanger lecture pptHeat exchanger lecture ppt
Heat exchanger lecture ppt
arivazhaganrajangam
 
Heattransferheatexchangers 131120030357-phpapp01 (1)
Heattransferheatexchangers 131120030357-phpapp01 (1)Heattransferheatexchangers 131120030357-phpapp01 (1)
Heattransferheatexchangers 131120030357-phpapp01 (1)asim ahsan
 
MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1Ibrahim AboKhalil
 
Heat Exchange Fundamentals for Shell and Tube Units
Heat Exchange Fundamentals for Shell and Tube UnitsHeat Exchange Fundamentals for Shell and Tube Units
Heat Exchange Fundamentals for Shell and Tube Units
Mountain States Engineering and Controls
 
PC ME 501.pdf
PC ME 501.pdfPC ME 501.pdf
PC ME 501.pdf
SakKh2
 

Similar to Heat Transfer_1.ppt (20)

basics of HMT
basics of HMTbasics of HMT
basics of HMT
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
lecture-1-mechanismsof HT_524.ppt
lecture-1-mechanismsof HT_524.pptlecture-1-mechanismsof HT_524.ppt
lecture-1-mechanismsof HT_524.ppt
 
PHT 080322.pptx
PHT 080322.pptxPHT 080322.pptx
PHT 080322.pptx
 
Heat transfer modes
Heat transfer modesHeat transfer modes
Heat transfer modes
 
1.pdf
1.pdf1.pdf
1.pdf
 
convection-1.ppt
convection-1.pptconvection-1.ppt
convection-1.ppt
 
Modes of energy transfer in soil
Modes  of energy  transfer  in soilModes  of energy  transfer  in soil
Modes of energy transfer in soil
 
CHAPTER -ONE.pdf
CHAPTER -ONE.pdfCHAPTER -ONE.pdf
CHAPTER -ONE.pdf
 
Chapter 2 1
Chapter 2 1Chapter 2 1
Chapter 2 1
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
Basics of heat transfer_Aircraft propulsion
Basics of heat transfer_Aircraft propulsion Basics of heat transfer_Aircraft propulsion
Basics of heat transfer_Aircraft propulsion
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
2 marks heat and mass transfer
2 marks   heat and mass transfer2 marks   heat and mass transfer
2 marks heat and mass transfer
 
heat
 heat heat
heat
 
Heat exchanger lecture ppt
Heat exchanger lecture pptHeat exchanger lecture ppt
Heat exchanger lecture ppt
 
Heattransferheatexchangers 131120030357-phpapp01 (1)
Heattransferheatexchangers 131120030357-phpapp01 (1)Heattransferheatexchangers 131120030357-phpapp01 (1)
Heattransferheatexchangers 131120030357-phpapp01 (1)
 
MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1MET 214 Heat exchanger module-1
MET 214 Heat exchanger module-1
 
Heat Exchange Fundamentals for Shell and Tube Units
Heat Exchange Fundamentals for Shell and Tube UnitsHeat Exchange Fundamentals for Shell and Tube Units
Heat Exchange Fundamentals for Shell and Tube Units
 
PC ME 501.pdf
PC ME 501.pdfPC ME 501.pdf
PC ME 501.pdf
 

Recently uploaded

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 

Recently uploaded (20)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 

Heat Transfer_1.ppt

  • 1. Heat Transfer Important: This chapter follows mainly on chapter 4 in Turcotte and Schubert textbook.
  • 2. Heat transfer: the sources Sun Earth From the sun: • 2x1017 W • 4x102 Wm-2 Derives surface processes: • Water cycle • Biosphere • Rain • Erosion From the Earth interior: • 4x1013 W • 8x10-2 Wm-2 Derives deep Processes: • Mantle convection • Geodynamo • Plate tectonics • Metamorphism • Volcanism Earthquakes: 1011 W
  • 3. Heat transfer: the mechanisms Three mechanisms for heat transfer: conduction, convection and radiation.
  • 4. Heat transfer: the mechanisms Conduction: A diffusive process wherein molecules transmit their kinetic energy to other molecules by colliding with them.
  • 5. Heat transfer: the mechanisms Convection: A process associated with the motion of the medium. When a hot material flows into a cold material, it will heat the region - and vise versa.
  • 6. Heat transfer: the mechanisms Radiation: The transfer of heat via electromagnetic radiation. Example - the Sun.
  • 7. Heat transfer: the mechanisms • In the Earth, both conduction and convection are important. • In the lithosphere, the temperature gradient is controlled mainly by conduction. • Convection in the lithosphere does play a role in: • Mid-ocean ridges in the form of hydrothermal ocean circulation. • Volcanism and emplacement of magmatic bodies.
  • 8. Heat transfer: heat flux Heat flux is the flow per unit area and per unit time of heat. It is directly proportional to the temperature gradient. One dimensional Fourier's law: where: q is the heat flux k is the coefficient of thermal conductivity T is the temperature y is a spatial coordinate Question: why is the minus sign?  q  k dT dy , Question: is q a vector or a scalar?
  • 9. Heat transfer: heat flux Units: • q is in [Wm-2] • k is in [Wm-1K-1] where W is read “watt”, and is equal to Joule per second. A substance with a large value of k is a good thermal conductor, whereas a substance with a small value of k is a poor thermal conductor or a good thermal insulator.
  • 10. Heat transfer: heat flux Example 1: a slab of thickness l, and a temperature difference of T: The heat flux is given by:  q  k T l .
  • 11. Heat transfer: heat flux Example 2: a composite slab heat k2 k1 T2 Tx T1 L2 L1 H.F. through slab 2: H.F. through slab 1: In steady-state q1=q2, we get: Or more generally: Note the trade-off between thermal conductivity, k, and the medium thickness, L. Thus, the important quantity is L/k, often referred to as thermal resistance.  q2  k2 T2  Tx L2 .  q1  k1 Tx  T1 L1 .  q1  q2  T2  T1 (L1 /k1)  (L2 /k2) . qn  Tn T1 Li /ki i1,n  .
  • 12. Heat transfer: world-wide heat flow • Highest heat loss at mid- ocean ridges and lowest at old oceanic crust. • With temperature gradient of 20-30 K/km, and thermal conductivity of 2-3 WK-1m-1, the heat flux is 40-90 mWm-2.
  • 13. Heat transfer: measurements Heat flow measurements: the global heat flow map on the previous slide is based on a compilation of individual measurements whose distribution is shown below. For practical reasons, the vast majority of the measurements are from continental areas. Map from: www.heatflow.und.edu/
  • 14. Heat transfer: heat flow over stable continental areas • The surface heat flow is strongly correlated with the surface concentration of the radioactive heat producing elements. Eastern US Norway+Sweden Sierra Nevada Figure from Turcotte and Schubert textbook
  • 15. Heat transfer: heat flow over stable continental areas • In the stable continental areas, surface heat flow systematically decreases with the age of the surface rocks. • Latter we will see that this effect can be attributed to the decrease in the crustal concentrations of the heat producing isotopes due to progressive erosion.
  • 16. Heat transfer: heat flow over oceanic crust What is the contribution from radioactive elements in the ocean? • The concentration of the heat producing isotopes in oceanic crust is about an order of magnitude less than in continental crust. • The oceanic crust is about a factor of 5 thinner than the continental crust. Thus, the contribution of heat producing elements is negligible!
  • 17. Heat transfer: heat flow over oceanic crust • There is a systematic dependence of the surface heat flow on the age of the sea floor. • Later we will see that this can be understood as gradual cooling.
  • 18. Heat transfer: conservation of energy in 1-dimension Consider a slab of infinitesimal thickness y; the heat flux out of the slab is q(y + y), and the heat flux into the slab q(y). The net heat flow out of the slab, per unit time and per unit area of the slab's face, is:  q(y y)q(y).
  • 19. Heat transfer: conservation of energy in 1-dimension In the absence of internal heat production, conservation of energy requires that:  q(y y)q(y) 0. Since y is infinitesimal, we can expand q(y+y) in a Taylor series as:  q(y  y)  q(y)  y dq dy  (y)2 2 d2 q dy2  Ignoring terms higher than the first order term, leads to:  q(y y) q(y) y dq dy y k d2 T dy2       0. Thus: d2 T dy2  0.
  • 20. Heat transfer: conservation of energy in 1-dimension Question: in the absence of internal heat production, how does the geotherm look like? If there's nonzero net heat flow per unit area out of the slab, this heat must be generated internally in the slab. In that case:  q(y y) q(y) y dq dy y k d2 T dy2      yH, where: H is the heat production rate per unit mass  is the density Question: what is the source for steady-state internal heating in the Earth lithosphere?
  • 21. Heat transfer: geotherm The previous result may be integrated to determine the geotherm, i.e. the temperature as a function of depth. Hereafter we consider a half-space, with a surface at y=0, where y is a depth coordinate increasing downward. Boundary conditions are: 1) q=-q0 at y=0 2) T=T0 at y=0
  • 22. Heat transfer: geotherm Starting with: and integrating once gives: The 1st b.c. requires that: C1=q0, leading to: Additional integration gives: The 2nd b.c. requires that C2=kT0, giving:  H  k d2 T dy2  0,  Hy  k dT dy  C1.  Hy  k dT dy  q0.  H y2 2  kT q0y  C2. T  T0  q0 k y  H 2k y2 .