Embed presentation
Download to read offline


![2.28
∑ 𝐹𝜃 = 𝑚. 𝑎θ
0 = m [𝑟𝜃’’ + 2𝑟’𝜃’ ] = m[
1
𝑟
𝑑(𝑟2 𝜃)
𝑑𝑥
]
De donde:
d(r2
θ) = 0
integrando :
para ro = 0.5 y r = 0.25
se tiene :
(0.5)2
( 1) = c = (0.25)2
θ’
Para r = 0.25 : θ = 4 rads/s
Como jalamos a velocidad de 0.2 m/s
Entonces: r = -0.2m/s : r = 0
ar = r’’ - rθ’2
= 0-0.25(4)2
= -4m/s
sea la 2da ley en la dirección radial
∑ 𝐹𝑟 = 𝑚𝑎r : -T = 2(-4)
T = 8](https://image.slidesharecdn.com/guhui-171214155011/85/Guhui-3-320.jpg)
The document discusses the physics of a particle's motion involving angular velocities and accelerations in a radial coordinate system. It includes formulas for calculating the particle's acceleration and motion based on radius and angles, incorporating gravitational effects. Various integrals and specific values are presented to demonstrate the findings in a practical context.


![2.28
∑ 𝐹𝜃 = 𝑚. 𝑎θ
0 = m [𝑟𝜃’’ + 2𝑟’𝜃’ ] = m[
1
𝑟
𝑑(𝑟2 𝜃)
𝑑𝑥
]
De donde:
d(r2
θ) = 0
integrando :
para ro = 0.5 y r = 0.25
se tiene :
(0.5)2
( 1) = c = (0.25)2
θ’
Para r = 0.25 : θ = 4 rads/s
Como jalamos a velocidad de 0.2 m/s
Entonces: r = -0.2m/s : r = 0
ar = r’’ - rθ’2
= 0-0.25(4)2
= -4m/s
sea la 2da ley en la dirección radial
∑ 𝐹𝑟 = 𝑚𝑎r : -T = 2(-4)
T = 8](https://image.slidesharecdn.com/guhui-171214155011/85/Guhui-3-320.jpg)