Causal Dynamical Triangulations
Israel Garc´ıa
@renegarxia
20 de mayo de 2015
Table of contents
The classical action
Quantum mechanics
Path Integrals in relativity
Path Integrals
Some waves
More waves (click to watch them)
Path Integrals
With xa, xb fixed, how do we minimize S?
S =
tb
ta
L(˙x, x, t)dt (action)
L =
m
2
˙x2
− V (x, t) (Lagrangian)
Path Integrals
Set x → x + δx, then
L →
m
2
(˙x + δ ˙x)2
− V (x + δx, t),
=
m
2
˙x2
+ m ˙xδ ˙x +
m
2
δ ˙x2
− V (x, t) − ∂x V (x, t)δx − O(δx2
),
Therefore,
L → L + m ˙xδ ˙x +
m
2
δ ˙x2
− ∂x V (x, t)δx − O(δx2
),
What happens to the action? (S)
The Action
S →
tb
ta
L + m ˙xδ ˙x +
m
2
δ ˙x2
− ∂x V (x, t)δx − O(δx2
) dt,
= S +
tb
ta
m ˙xδ ˙x − ∂x V (x, t)δx dt (up to first order)
With fixed extremes, δxa = δxb = 0. Integration by parts follows:
S → S −
tb
ta
(m¨x + ∂x V (x, t)) δx dt
Least action
The true x is such that, if
x → x + δx,
then S is the same, to first order. The true trajectory obeys this
equation:
m¨x = −∂x V (x, t),
which is the second law of mechanics in disguise.
Quantum mechanics `a la Feynman
The path integral:
K(a, b) =
b
a
ei/ S
Dx(t)
A relativistic example
See: counting-paths-in-spacetime, random-walks-in-a-lattice, and
corners-distribuition
Path integrals in relativity
There’s an action principle for general relativity:
SEH =
1
G
d4
x det g (R − 2Λ) (Einstein-Hilbert action)
Problem: Make sense of the path integral:
g∈G
Dg eiSEH
So, you want to quantize gravity?
String theory.
Loop quantum gravity.
Euclidean quantum gravity.
Causal dynamical triangulations.
What is curvature?
Discrete curvature
Euclidean Gravity
This is Wick’s rotation:
−dt2
+ dx2
→ d(i t)2
+ dx2
It makes gravity euclidean.
And turns amplitudes into probabilities!
First attempt: failed!
Causality (you can’t kill your parents...)
...before you are born...
Global hyperbolicity
This is acceptable: This is not:
Wormhole, baby universes.
Causal triangulations
Quantum gravity in your desktop
References I
J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, Quantum
Gravity via Causal Dynamical Triangulations.
Jan Ambjorn, J. Jurkiewicz, and R. Loll, Dynamically
triangulating Lorentzian quantum gravity, Nucl.Phys. B610
(2001), 347–382.
J. Ambjorn, J. Jurkiewicz, and R. Loll, The Universe from
scratch, Contemp.Phys. 47 (2006), 103–117.
R. Loll, The Emergence of spacetime or quantum gravity on
your desktop, Class.Quant.Grav. 25 (2008), 114006.

Causal Dynamical Triangulations

  • 1.
    Causal Dynamical Triangulations IsraelGarc´ıa @renegarxia 20 de mayo de 2015
  • 2.
    Table of contents Theclassical action Quantum mechanics Path Integrals in relativity
  • 3.
  • 4.
  • 5.
    More waves (clickto watch them)
  • 6.
    Path Integrals With xa,xb fixed, how do we minimize S? S = tb ta L(˙x, x, t)dt (action) L = m 2 ˙x2 − V (x, t) (Lagrangian)
  • 7.
    Path Integrals Set x→ x + δx, then L → m 2 (˙x + δ ˙x)2 − V (x + δx, t), = m 2 ˙x2 + m ˙xδ ˙x + m 2 δ ˙x2 − V (x, t) − ∂x V (x, t)δx − O(δx2 ), Therefore, L → L + m ˙xδ ˙x + m 2 δ ˙x2 − ∂x V (x, t)δx − O(δx2 ), What happens to the action? (S)
  • 8.
    The Action S → tb ta L+ m ˙xδ ˙x + m 2 δ ˙x2 − ∂x V (x, t)δx − O(δx2 ) dt, = S + tb ta m ˙xδ ˙x − ∂x V (x, t)δx dt (up to first order) With fixed extremes, δxa = δxb = 0. Integration by parts follows: S → S − tb ta (m¨x + ∂x V (x, t)) δx dt
  • 9.
    Least action The truex is such that, if x → x + δx, then S is the same, to first order. The true trajectory obeys this equation: m¨x = −∂x V (x, t), which is the second law of mechanics in disguise.
  • 10.
    Quantum mechanics `ala Feynman The path integral: K(a, b) = b a ei/ S Dx(t)
  • 11.
    A relativistic example See:counting-paths-in-spacetime, random-walks-in-a-lattice, and corners-distribuition
  • 12.
    Path integrals inrelativity There’s an action principle for general relativity: SEH = 1 G d4 x det g (R − 2Λ) (Einstein-Hilbert action) Problem: Make sense of the path integral: g∈G Dg eiSEH
  • 13.
    So, you wantto quantize gravity? String theory. Loop quantum gravity. Euclidean quantum gravity. Causal dynamical triangulations.
  • 14.
  • 15.
  • 16.
    Euclidean Gravity This isWick’s rotation: −dt2 + dx2 → d(i t)2 + dx2 It makes gravity euclidean. And turns amplitudes into probabilities!
  • 17.
  • 18.
    Causality (you can’tkill your parents...) ...before you are born...
  • 19.
    Global hyperbolicity This isacceptable: This is not: Wormhole, baby universes.
  • 20.
  • 21.
    Quantum gravity inyour desktop
  • 22.
    References I J. Ambjorn,A. Goerlich, J. Jurkiewicz, and R. Loll, Quantum Gravity via Causal Dynamical Triangulations. Jan Ambjorn, J. Jurkiewicz, and R. Loll, Dynamically triangulating Lorentzian quantum gravity, Nucl.Phys. B610 (2001), 347–382. J. Ambjorn, J. Jurkiewicz, and R. Loll, The Universe from scratch, Contemp.Phys. 47 (2006), 103–117. R. Loll, The Emergence of spacetime or quantum gravity on your desktop, Class.Quant.Grav. 25 (2008), 114006.