www.georgeprep.com
0
Geometry Concept Session 1
0
www.georgeprep.com
1
Chapter Pathway
02
03
04
01
05
Triangle Properties
Polygons
Quadrilaterals
Circle Properties
Mensuration
1
www.georgeprep.com
2
Building Blocks of Geometry
2
www.georgeprep.com
3
Solving Linear Equations
1) Acute
2) Right
3) Obtuse
4) Reflex
Reflex
3
www.georgeprep.com
4
Classification of angles
4
www.georgeprep.com
5
Building blocks of Geometry
Vertically opposite
angles
Linear Pair
5
www.georgeprep.com
6
Parallel lines and transversal
6
www.georgeprep.com
7
Parallel lines and transversal
7
www.georgeprep.com
8
Properties of Triangles
8
www.georgeprep.com
9
Triangle – Basic Properties
Basic Properties
• The sum of three internal angles = 180
• The sum of three exyernal angles = 360
• Exterior angle is equal to sum of interior opposite
Side related properties
• Sum of any two sides is greater than the third side
• Difference of any two sides is lesser than the third side
• Side opposite the greater angle is greater and vice versa
• Sides opposite equal angles are equal and vice versa
Classification
• On the basis of angles
• On the basis of sides
9
www.georgeprep.com
10
Problems
In the figure, find the value of 𝑥 + 𝑦 + 𝑧 (in degrees)
Answer: 143
10
www.georgeprep.com
11
Congruency
- Corresponding sides and corresponding
angles are equal
- Congruency conditions
- SSS
- SAS
- AAS
- ASA
- RHS
- Properties of two congruent triangles
11
www.georgeprep.com
12
Similarity
• Corresponding sides proportional;
corresponding angles are equal
• Any congruency condition is also a similarity
condition(the vice versa is not true)
• Properties of two similar triangles
12
www.georgeprep.com
13
Special Triangles and their Properties
13
www.georgeprep.com
14
Pythagoras theorem
Pythagoras triplets
14
Special Triangles – Right Angled Triangle
www.georgeprep.com
15
1) Special Right Angled triangles
15
90-60-30
triangle
90-45-45
triangle
Side Ratios 2: √3:1 √2 : 1: 1
Special Triangles – Right Angled Triangle
www.georgeprep.com
16
16
The perimeter of an isosceles right triangle is (32 + 32 2).
What is the length of the hypotenuse of the triangle?
A. 32
B. 16
C. 16 2
D.
32
2
E. 18
Problems
www.georgeprep.com
17
17
Problems
Answer: option 1
www.georgeprep.com
18
18
Problems
Answer: option 1
www.georgeprep.com
19
19
In terms
of side, a
In terms of
altitude, h
Side - 2h/ √3
Altitude √3a/2 -
Circumradius a/√3 2/3 h
Inradius a/2√3 1/3 h
Area √3a2 /4 h2/√3
Special Triangles –EquilateralTriangle
www.georgeprep.com
20
20
Problems
Answer: option B
www.georgeprep.com
21
Polygons and their properties
21
www.georgeprep.com
22
22
Parameter Properties
Sum of external angles 360
Sum of internal angles (n-2)180
No of sides
360
𝑒𝑥𝑡. 𝑎𝑛𝑔𝑙𝑒
No of diagonals 𝑛 𝑛 − 3
2
Area
Hexagon = 3√3
𝑎2
2
Octagon = 2a2 (1+ √2)
Polygons
www.georgeprep.com
23
The points of a six-pointed star consist of six identical equilateral
triangles, with each side 6 cm (see figure). What is the area of the
shaded region?
A. 54 3
B. 48 3
C. 64 3
D. 84 3
E. 108 3
23
6cm 6cm
Problems

GRE - Geometry Session 1

Editor's Notes