1
 Abstract
 Purpose
 Method & Materials
 Result
 Conclusion
2
 A regional contrast based saliency extraction
algorithm
 Image segmentation
 Object recognition
 Adaptive compression of images
 Content-aware image resizing
 Image retrieval
 Compared
 State-of-the-art:precision = 75%, recall = 83%
 This study:precision = 90%, recall = 90%
3
 Contrast analysis for extracting high-resolution
 Which separates a large-scale object from its
surroundings.
 Assignment of comparable saliency values to similar
image regions, and can uniformly highlight entire
objects.
 Saliency of a region depends mainly on its contrast to
the nearby regions.
 Saliency maps should be fast and easy to generate.
4
 Bottom-up*
 Fast
 Pre-attentive
 Data driven
 底層特徵屬性
▪ 顏色、梯度、邊緣、邊界
 Top-down
 Slower
 Task dependent
 Goal driven
5
   

II
ikk
i
IIDIS ,
       Nkkkk IIDIIDIIDIS ,,, 21  
     
出現機率
影像內色彩總數
的色彩值像素
jj
kl
jl
n
j
jlk
cf
n
Ic
ccDfcSIS
:
:
:
,
1


6
  色彩空間內距離於兩像素 ***,:, baLIIIID ikik
 CIE 1976
 L*
 lightness of the color
 L* = 0, yields black
 L* = 100, indicates diffuse white
 a*
 between red/magenta and green
 negative values indicate green
 positive values indicate magenta
 b*
 between yellow and blue
 negative values indicate blue
 positive values indicate yellow
7
 彩色空間, n = 2563 = 16,777,216
 僅用亮度, n = 256
 忽略顏色訊息可區別性
 通道顏色量化
 自然影像顏色僅占全部色彩一小部份
 丟棄頻率較小的色彩(覆蓋5%)
 保留高頻色彩(覆蓋95%)
 每個通道色彩量化至12個值, n = 123
8
9
 改善”相似色彩量化為不同值”的缺點
 灰階相近的分配較大的權重
 相似的灰階會有相似的顯著性值
 最佳效果
 直方圖對比: L*a*b 色彩空間
 平滑: RGB色彩空間
 
 
    



m
i
ii cSccDT
Tm
cS
1
,
1
1
'
  cicDT ,
10
 

m
i
iccDT
1
,
4/nm 
11
 區域切割
 Efficient graph-based image segmentation. 2004
 區域顏色距離
 顯著性值
       jcicDjcficfrrD
n
i
n
j
r ,,,,,, 21
1 1
2121
1 2
 

     
  區域像素數量
 
i
rr
ikrik
rw
rrDrwrS
ik
,
12
http://www.cs.brown.edu/~pff/segment/
http://www.cs.brown.edu/~pff/papers/seg-ijcv.pdf 13
 增加空間權重
 臨近區域權重較大
 遠區域權重較小
       
   2
21
2
21
2
2
DistanceEuclidean
4.0,
DistanceEuclidean,
,
,
exp
yyxx
D
D
rrDrrw
rrD
rS
sss
s
iki
rr s
iks
k
ik









 
定為影響越小越大
兩區域重心


14
15
16
 GrabCut
 GrabCut -Interactive Foreground Extraction using
Iterated Graph Cuts. 2004
 初始閥值:recall=95%對應閥值
 膨漲&侵蝕
 Trimap:前景、背景、未知
 最多疊代四次
17
18
 
recall.thanmoreprecisionweight,3.0
1
2
2
2








RP
RP
F
19
20
21
22
23
 平色彩空間的滑操作
 控制量化缺陷
 RC-maps
 改善HC-map,結合空間關係
24
 致力於處理普通的自然景象
 高紋理的圖像場景不一定能達到最佳效果
25
 Region Contrast, RC:區域對比度
 Histogram Contrast, HC:直方圖對比度
26
27

Global contrast based salient region detection

  • 1.
  • 2.
     Abstract  Purpose Method & Materials  Result  Conclusion 2
  • 3.
     A regionalcontrast based saliency extraction algorithm  Image segmentation  Object recognition  Adaptive compression of images  Content-aware image resizing  Image retrieval  Compared  State-of-the-art:precision = 75%, recall = 83%  This study:precision = 90%, recall = 90% 3
  • 4.
     Contrast analysisfor extracting high-resolution  Which separates a large-scale object from its surroundings.  Assignment of comparable saliency values to similar image regions, and can uniformly highlight entire objects.  Saliency of a region depends mainly on its contrast to the nearby regions.  Saliency maps should be fast and easy to generate. 4
  • 5.
     Bottom-up*  Fast Pre-attentive  Data driven  底層特徵屬性 ▪ 顏色、梯度、邊緣、邊界  Top-down  Slower  Task dependent  Goal driven 5
  • 6.
        II ikk i IIDIS ,        Nkkkk IIDIIDIIDIS ,,, 21         出現機率 影像內色彩總數 的色彩值像素 jj kl jl n j jlk cf n Ic ccDfcSIS : : : , 1   6   色彩空間內距離於兩像素 ***,:, baLIIIID ikik
  • 7.
     CIE 1976 L*  lightness of the color  L* = 0, yields black  L* = 100, indicates diffuse white  a*  between red/magenta and green  negative values indicate green  positive values indicate magenta  b*  between yellow and blue  negative values indicate blue  positive values indicate yellow 7
  • 8.
     彩色空間, n= 2563 = 16,777,216  僅用亮度, n = 256  忽略顏色訊息可區別性  通道顏色量化  自然影像顏色僅占全部色彩一小部份  丟棄頻率較小的色彩(覆蓋5%)  保留高頻色彩(覆蓋95%)  每個通道色彩量化至12個值, n = 123 8
  • 9.
  • 10.
     改善”相似色彩量化為不同值”的缺點  灰階相近的分配較大的權重 相似的灰階會有相似的顯著性值  最佳效果  直方圖對比: L*a*b 色彩空間  平滑: RGB色彩空間             m i ii cSccDT Tm cS 1 , 1 1 '   cicDT , 10    m i iccDT 1 , 4/nm 
  • 11.
  • 12.
     區域切割  Efficientgraph-based image segmentation. 2004  區域顏色距離  顯著性值        jcicDjcficfrrD n i n j r ,,,,,, 21 1 1 2121 1 2            區域像素數量   i rr ikrik rw rrDrwrS ik , 12
  • 13.
  • 14.
     增加空間權重  臨近區域權重較大 遠區域權重較小            2 21 2 21 2 2 DistanceEuclidean 4.0, DistanceEuclidean, , , exp yyxx D D rrDrrw rrD rS sss s iki rr s iks k ik            定為影響越小越大 兩區域重心   14
  • 15.
  • 16.
  • 17.
     GrabCut  GrabCut-Interactive Foreground Extraction using Iterated Graph Cuts. 2004  初始閥值:recall=95%對應閥值  膨漲&侵蝕  Trimap:前景、背景、未知  最多疊代四次 17
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
     平色彩空間的滑操作  控制量化缺陷 RC-maps  改善HC-map,結合空間關係 24
  • 25.
  • 26.
     Region Contrast,RC:區域對比度  Histogram Contrast, HC:直方圖對比度 26
  • 27.

Editor's Notes

  • #4 Object recongnition:目標識別 Content-aware image resiziong: 內容感知影像縮放 Image retrieval: 影像檢索
  • #5 大範圍的目標和周圍環境分離開 相似區域有相似的顯著性,且可均勻突顯目標 區域顯著性主要依賴鄰近區域 快、簡單
  • #7 顯著值, 忽略空間關係,相同色彩有相同顯著值 算每個色彩值的顯著性