SlideShare a Scribd company logo
  1	
  
Bottom	
  sediments	
  provide	
  clues	
  to	
  glacial	
  Lake	
  Missoula’s	
  history	
  
by	
  
Richard	
  L.	
  Chambers	
  and	
  David	
  Alt	
  
	
  
INTRODUCTION	
  
	
  
During	
  the	
  last	
  ice	
  age	
  an	
  immense	
  lake	
  existed	
  in	
  the	
  western	
  Montana	
  basins	
  when	
  
the	
  Clark	
  Fork	
  River	
  was	
  dammed	
  by	
  the	
  Purcell	
  Lobe	
  of	
  the	
  Cordilleran	
  ice	
  sheet	
  at	
  
the	
  site	
  occupied	
  today	
  by	
  Lake	
  Pend	
  Oreille,	
  in	
  northern	
  Idaho.	
  	
  This	
  lake,	
  known	
  as	
  
glacial	
  Lake	
  Missoula,	
  held	
  as	
  much	
  water	
  as	
  the	
  combined	
  volumes	
  of	
  Lakes	
  Erie	
  
and	
  Ontario.	
  Once	
  the	
  water	
  level	
  reached	
  a	
  critical	
  depth,	
  the	
  ice	
  dam	
  began	
  to	
  float	
  
allowing	
  water	
  to	
  find	
  its	
  way	
  under	
  the	
  ice,	
  when	
  suddenly	
  the	
  ice	
  dam	
  collapsed	
  
releasing	
  an	
  enormous	
  discharge	
  of	
  water	
  that	
  had	
  only	
  one	
  way	
  to	
  go.	
  In	
  only	
  a	
  few	
  
days	
   nearly	
   2100	
   cubic	
   kilometers	
   of	
   floodwater	
   swept	
   across	
   northern	
   Idaho,	
  
eastern	
  Washington,	
  and	
  Oregon	
  and	
  down	
  the	
  Columbia	
  River	
  gorge	
  finding	
  its	
  way	
  
to	
  the	
  Pacific	
  Ocean	
  at	
  Portland,	
  Oregon.	
  In	
  its	
  wake	
  it	
  left	
  giant	
  flood	
  bars	
  and	
  trains	
  
of	
   huge	
   current	
   ripples	
   and	
   a	
   ravaged	
   landscape	
   known	
   as	
   the	
   “Channeled	
  
Scablands”	
  in	
  eastern	
  Washington.	
  The	
  Lake	
  Missoula	
  floods	
  probably	
  involved	
  the	
  
largest	
  freshwater	
  discharges	
  in	
  the	
  geologic	
  record;	
  about	
  20	
  times	
  greater	
  than	
  
the	
  average	
  worldwide	
  runoff	
  (Bretz,	
  1930,	
  1969;	
  Pardee,	
  1942;	
  Baker,	
  1973;	
  Baker	
  
and	
  Bunker,	
  1985).	
  
	
  
A	
  topic	
  still	
  debated	
  is	
  the	
  number	
  of	
  times	
  these	
  floods	
  occurred,	
  and	
  whether	
  each	
  
of	
   the	
   lake	
   drainages	
   was	
   the	
   result	
   of	
   a	
   catastrophic	
   collapse	
   of	
   the	
   ice	
   dam	
  
impounding	
  the	
  lake	
  and	
  the	
  torrential	
  release	
  of	
  its	
  enormous	
  water	
  volume.	
  	
  Some	
  
studies	
  suggest	
  dozens	
  of	
  floods	
  and	
  even	
  as	
  many	
  as	
  40	
  or	
  more	
  (Alt	
  and	
  Chambers,	
  
1970;	
   Chambers,	
   1971,	
   1984;	
   Waitt,	
   1980,	
   1984,	
   1985;	
   Alt,	
   2001;	
   Hanson,	
   et	
   al.,	
  
2012).	
   	
   Because	
   each	
   successive	
   flooding	
   event	
   would	
   rework	
   and	
   even	
   remove	
  
evidence	
  of	
  earlier	
  floods,	
  a	
  study	
  of	
  the	
  bottom	
  sediments	
  that	
  accumulated	
  in	
  the	
  
still	
  waters	
  in	
  glacial	
  Lake	
  Missoula	
  basins	
  should	
  provide	
  some	
  of	
  the	
  answers	
  to	
  
these	
  questions.	
  Despite	
  all	
  of	
  the	
  studies	
  on	
  the	
  Lake	
  Missoula	
  floods,	
  surprisingly	
  
little	
  was	
  known	
  about	
  the	
  nature	
  of	
  the	
  bottom	
  sediments	
  and	
  their	
  contribution	
  to	
  
unraveling	
  the	
  lake’s	
  history.	
  
	
  
D.	
  M.	
  Sieja,	
  a	
  graduate	
  student	
  in	
  geology	
  at	
  Montana	
  State	
  University,	
  conducted	
  the	
  
earliest	
  known	
  quantitative	
  study	
  of	
  the	
  Lake	
  Missoula	
  bottom	
  sediments	
  in	
  1959.	
  
The	
  main	
  purpose	
  of	
  his	
  study	
  was	
  to	
  document	
  the	
  clay	
  mineralogy	
  of	
  the	
  glacial	
  
Lake	
  Missoula	
  varves	
  and	
  to	
  see	
  if	
  the	
  clay	
  minerals	
  changed	
  in	
  quantity	
  vertically	
  in	
  
an	
  exposure	
  and	
  laterally	
  from	
  one	
  location	
  to	
  another	
  across	
  the	
  Missoula	
  Valley	
  
basin.	
  In	
  his	
  study,	
  Sieja	
  found	
  three	
  varve	
  types:	
  simple,	
  composite,	
  and	
  drainage;	
  
however	
  he	
  made	
  no	
  detailed	
  interpretation	
  for	
  their	
  origin,	
  other	
  than	
  to	
  note	
  that	
  
the	
  clays	
  probably	
  settled	
  to	
  the	
  lake	
  floor	
  through	
  calm	
  water,	
  whose	
  source	
  were	
  
the	
  Blackfoot	
  and	
  Rattlesnake	
  valley	
  glaciers.	
  
	
  
  2	
  
In	
   his	
   comprehensive	
   review	
   of	
   the	
   evidence	
   for	
   repeated	
   catastrophic	
   outbursts	
  
from	
  glacial	
  Lake	
  Missoula,	
  Bretz	
  (1969)	
  suggested	
  that	
  each	
  lake	
  sequence	
  should	
  
be	
   separated	
   by	
   an	
   unconformity	
   and	
   that	
   bogs	
   and	
   forests	
   would	
   occupy	
   the	
  
drained	
  lake	
  floor	
  only	
  to	
  become	
  buried	
  when	
  a	
  new	
  lake	
  formed.	
  	
  At	
  the	
  time	
  of	
  
Bretz’s	
   1969	
   review,	
   he	
   suggested	
   that	
   the	
   lake	
   sediments	
   should	
   contain	
   varves	
  
and	
  randomly	
  distributed	
  ice-­‐rafted	
  fragments.	
  	
  	
  
	
  
The	
  term	
  varve	
  is	
  a	
  derivative	
  of	
  the	
  Swedish	
  word	
  “varv”	
  whose	
  meaning	
  includes	
  
“a	
   periodical	
   iteration	
   of	
   layers.”	
   Varves	
   are	
   typically	
   associated	
   with	
   glacial	
   lake	
  
deposits	
  consisting	
  of	
  two	
  layers	
  –	
  a	
  lower	
  light-­‐colored	
  layer	
  composed	
  primarily	
  
of	
   silt	
   deposited	
   during	
   the	
   summer	
   by	
   melting	
   glaciers,	
   and	
   an	
   upper	
   darker-­‐
colored	
   layer	
   composed	
   mainly	
   of	
   clay	
   and	
   organic	
   matter	
   deposited	
   during	
   the	
  
winter	
  by	
  slowly	
  settling	
  sediment	
  through	
  calm	
  water.	
  Varves	
  were	
  recognized	
  as	
  
yearly	
   deposits	
   as	
   early	
   as	
   1832	
   and	
   have	
   been	
   successfully	
   used	
   to	
   correlate	
  
different	
  localities	
  and	
  by	
  counting	
  varves,	
  like	
  tree	
  rings,	
  it	
  is	
  possible	
  to	
  establish	
  a	
  
time	
  scale	
  for	
  glacial	
  lakes	
  and	
  glacial	
  retreat.	
  
	
  
CHARACTERISTICS	
  OF	
  THE	
  LAKE	
  MISSOULA	
  BOTTOM	
  SEDIMENTS	
  
	
  
	
  A	
   large,	
   well-­‐preserved	
   exposure	
   of	
  
glacial	
   Lake	
   Missoula	
   bottom	
   sediments	
  
(Fig.	
   1)	
   is	
   located	
   about	
   40	
   km	
   west	
   of	
  
Missoula,	
   Montana	
   along	
   Highway	
   90,	
  
near	
  the	
  juncture	
  of	
  the	
  Clark	
  Fork	
  River	
  
and	
   Ninemile	
   Creek.	
   The	
   exposure	
   is	
   a	
  
road	
   cut	
   about	
   250-­‐m	
   long	
   and	
   10-­‐25-­‐m	
  
in	
  height.	
  	
  	
  
	
  
Rather	
   than	
   finding	
   a	
   single	
   thick	
  
sequence	
  of	
  glacial	
  lake	
  varves	
  that	
  could	
  	
  
	
  
Figure	
  1.	
  Ninemile	
  Creek	
  exposure	
  of	
  Lake	
  Missoula	
  	
  
bottom	
  sediment.	
  
	
  
be	
   easily	
   counted	
   to	
   date	
   the	
   exposure,	
   Alt	
   and	
   Chambers	
   (1970)	
   and	
   Chambers	
  
(1971,	
  1984),	
  discovered	
  a	
  much	
  more	
  complex	
  and	
  far	
  more	
  interesting	
  situation.	
  
What	
  they	
  found	
  was	
  about	
  40	
  short	
  sequences	
  with	
  glacial	
  lake	
  varves	
  sandwiched	
  
between	
  layers	
  of	
  fine-­‐grained	
  sand	
  and	
  silt.	
  The	
  varves	
  record	
  the	
  times	
  when	
  a	
  
deep,	
  calm	
  lake	
  existed.	
  After	
  a	
  detailed	
  study	
  of	
  the	
  sand-­‐silt	
  layers,	
  they	
  became	
  
convinced	
  that	
  streams	
  traversing	
  the	
  drained	
  lake	
  floor	
  deposited	
  these	
  sediments	
  
into	
   fairly	
   shallow	
   water	
   as	
   the	
   lake	
   began	
   to	
   fill	
   once	
   the	
   ice	
   dam	
   reformed,	
  
blocking	
  the	
  outflow	
  of	
  the	
  Clark	
  Fork	
  River.	
  So,	
  Bretz’s	
  1969	
  hypothesis	
  of	
  multiple	
  
lake	
   sequences	
   proved	
   correct,	
   however	
   Alt	
  and	
  Chambers	
  (1970)	
  and	
  Chambers	
  
(1971,	
   1984)	
   did	
   not	
   find	
   any	
   evidence	
   of	
   tree	
   stumps	
   or	
   bogs	
   between	
   the	
  
sequences,	
  therefore,	
  suggesting	
  only	
  short	
  periods	
  of	
  time	
  between	
  successive	
  lake	
  
fillings,	
  thus	
  preventing	
  the	
  formation	
  of	
  deep	
  soil	
  profiles.	
  
  3	
  
Lake	
  Missoula	
  Rhythmites	
  
	
  
Well-­‐developed	
   small-­‐scale	
   cycles,	
   up	
   to	
   several	
   meters	
   thick,	
   characterize	
   the	
  
glacial	
  Lake	
  Missoula	
  bottom	
  sediments.	
  The	
  rhythmically	
  bedded	
  deposits	
  show	
  a	
  
very	
  distinctive	
  pattern	
  of	
  alternating	
  light	
  and	
  dark-­‐colored	
  layering	
  at	
  the	
  outcrop	
  
scale	
  (Fig.	
  1).	
  	
  A	
  typical	
  rhythmite	
  has	
  a	
  light-­‐colored	
  base	
  of	
  fine-­‐grained	
  sand	
  and	
  
silt	
  passing	
  upward	
  into	
  a	
  darker-­‐toned	
  sequence	
  of	
  glacial	
  lake	
  varves	
  composed	
  of	
  
silt	
  and	
  clay-­‐size	
  sediment.	
  	
  
	
  
Stream	
  Deposits	
  
	
  
The	
   basal	
   sand-­‐silt	
   layer	
   (Fig.	
   2)	
   present	
   in	
   each	
  
rhythmite	
  is	
  characterized	
  by	
  planar	
  bedding,	
  with	
  
about	
  half	
  of	
  them	
  containing	
  ripple	
  cross	
  bedding	
  
and	
   other	
   sedimentary	
   features	
   suggestive	
   of	
  
deposition	
  by	
  streams.	
  
	
  
The	
  lower	
  contact	
  between	
  successive	
  rhythmites	
  
is	
   unconformable	
   to	
   the	
   underlying	
   sediment,	
  
usually	
  an	
  earlier	
  sequence	
  of	
  varves.	
  The	
  feature	
  
outlined	
   in	
   Figure	
   2	
   is	
   interpreted	
   to	
   be	
   gravel	
  
deposited	
  by	
  a	
  local	
  stream	
  that	
  flowed	
  across	
  the	
  
exposed	
  lake	
  floor	
  eroding	
  the	
  varves	
  deposited	
  in	
  
a	
  former	
  lake.	
  	
  
	
  
Figure	
  2.	
  An	
  example	
  of	
  the	
  basal	
  silt	
  unit	
  in	
  a	
  	
  
Lake	
  Missoula	
  rhythmite	
  and	
  a	
  small	
  channel	
  	
  
deposit	
  of	
  gravel	
  (outlined).	
  
	
  
Varves	
  
The	
   basal	
   sand-­‐silt	
   layer	
   passes	
   upward	
   into	
   a	
  
sequence	
  of	
  varves	
  (Fig.	
  3).	
  The	
  varved	
  couplets	
  tend	
  
to	
   thin	
   upward	
   in	
   any	
   sequence	
   indicating	
   a	
  
deepening	
  lake	
  that	
  continued	
  to	
  deepen	
  until	
  the	
  ice	
  
dam	
  failed	
  (Chambers,	
  1971,	
  1984).	
  	
  The	
  varves	
  have	
  
a	
   sharp,	
   unconformable	
   contact	
   with	
   the	
   next	
  
rhythmite	
  deposited	
  in	
  a	
  new	
  lake.	
  Although	
  no	
  deep	
  
soil	
  profiles	
  were	
  found,	
  thin	
  zones	
  of	
  desiccated	
  and	
  
weathered	
  varves	
  were	
  found	
  between	
  22	
  rhythmites.	
  
Two	
  varve	
  sequences	
  were	
  so	
  deeply	
  weathered	
  that	
  
no	
   varve	
   count	
   was	
   possible.	
   The	
   top	
   most	
   7	
   cycles	
  
became	
  so	
  deeply	
  weathered	
  since	
  the	
  final	
  retreat	
  of	
  
the	
   glaciers	
   about	
   12,000	
   years	
   ago,	
   that	
   detailing	
  
those	
  cycles	
  proved	
  impossible.	
  
	
  
Figure	
  3.	
  Rhythmite	
  20	
  showing	
  22	
  varves.	
  
	
  
  4	
  
In	
  1971,	
  Chambers	
  counted	
  766	
  varves	
  at	
  the	
  Ninemile	
  Creek	
  road	
  cut,	
  however	
  this	
  
number	
  does	
  not	
  take	
  into	
  account	
  the	
  22	
  zones	
  of	
  weather	
  varves,	
  or	
  the	
  varves	
  in	
  
cycles	
   33	
   to	
   40.	
   	
   In	
   that	
   study,	
   Chambers	
   estimated	
   that	
   more	
   than	
   100	
   varves	
  
needed	
  to	
  be	
  included	
  raising	
  the	
  count	
  to	
  about	
  900	
  varves.	
  Hanson,	
  et	
  al.	
  (2012)	
  
visited	
   the	
   Ninemile	
   Creek	
   exposure	
   and	
   counted	
   only	
   583	
   varves,	
   however	
   they	
  
apparently	
   did	
   not	
   include	
   an	
   estimate	
   of	
   varves	
   in	
   the	
   weather	
   zones.	
   The	
  
discrepancy	
  between	
  766	
  and	
  583	
  could	
  be	
  explained	
  by	
  1)	
  weathering	
  of	
  the	
  upper	
  
part	
  of	
  the	
  exposure	
  over	
  the	
  past	
  several	
  decades	
  preventing	
  Hanson,	
  et	
  al.	
  to	
  count	
  
varves	
   in	
   the	
   upper	
   section,	
   2)	
   Chambers	
   (1971)	
   counted	
   composite	
   varves	
   as	
  
simple	
   varves,	
   thereby	
   increasing	
   the	
   number,	
   or	
   3)	
   that	
   Hanson	
   et	
   al.	
   (2012)	
  
grouped	
   thinner	
   varves	
   into	
   composite	
   varves	
   resulting	
   in	
   a	
   fewer	
   number	
   of	
  
varves.	
  
	
  
Subaerial	
   exposure	
   of	
   the	
   lake	
   floor	
   indicates	
   that	
  
glacial	
   Lake	
   Missoula	
   drained	
   or	
   partially	
   drained	
  
about	
   40	
   times.	
   The	
   22	
   weathered	
   zones	
   range	
   in	
  
thickness	
  from	
  2.3	
  to	
  18-­‐cm	
  and	
  average	
  about	
  7.2-­‐cm	
  
(Fig.	
  4).	
  Although	
  the	
  top	
  of	
  about	
  12	
  varve	
  sequences	
  
do	
   not	
   appear	
   weathered,	
   it	
   is	
   possible	
   that	
   some	
  
material	
   is	
   missing	
   because	
   of	
   stream	
   erosion	
   and	
  
subsequent	
   deposition	
   of	
   the	
   next	
   sand-­‐silt	
   layer.	
  
Frost	
   cracks	
   (Chambers	
   1971)	
   or	
   ice-­‐wedge	
   casts	
  
(Hanson,	
  et	
  al.,	
  2012)	
  suggest	
  that	
  the	
  lake	
  floor	
  was	
  
exposed	
   to	
   subaerial	
   conditions	
   for	
   several	
   years;	
   a	
  
period	
   of	
   time	
   much	
   longer	
   than	
   simple	
   lake-­‐level	
  
fluctuations.	
   The	
   ice-­‐wedges	
   were	
   filled	
   with	
  
weathered	
  varves	
  or	
  sand.	
  	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  4.	
  A	
  varve	
  sequence	
  illustrating	
  a	
  	
  
weathered	
  material	
  infilling	
  a	
  frost	
  crack	
  
created	
  in	
  the	
  exposed	
  lake	
  flood	
  sediment.	
  
	
  
	
  
Discussion	
  
	
  
About	
   40	
   last	
   glacial	
   Lakes	
   Missoula	
   are	
   documented	
   in	
   the	
   Ninemile	
   road	
   cut,	
  
however	
   there	
   is	
   no	
   conclusive	
   evidence	
   that	
   each	
   drainage	
   was	
   complete	
   or	
  
catastrophic	
  (Chambers,	
  1971,	
  1984;	
  Hanson,	
  et	
  al.,	
  2012),	
  but	
  the	
  lake	
  did	
  drain	
  
below	
  an	
  altitude	
  of	
  985-­‐m.	
  	
  Because	
  the	
  number	
  of	
  varves	
  in	
  any	
  given	
  sequence	
  
ranges	
  from	
  9	
  to	
  58,	
  Alt	
  and	
  Chambers	
  (1970)	
  inferred	
  periods	
  of	
  several	
  decades	
  
between	
  lake	
  drainages;	
  Alt	
  (2001)	
  thought	
  that	
  the	
  average	
  interval	
  between	
  lake	
  
fillings	
   to	
   be	
   about	
   50	
   years.	
   The	
   deduction	
   that	
   each	
   lake	
   draining	
   resulted	
   in	
   a	
  
  5	
  
catastrophic	
   flood	
   was	
   made	
   by	
   Alt	
   (in	
   Alt	
   and	
   Chambers,	
   1970),	
   then	
   by	
   Waitt	
  
(1980,	
  1984,	
  1985),	
  and	
  again	
  by	
  Alt	
  (2001).	
  	
  
	
  
Looking	
  at	
  the	
  Ninemile	
  road	
  cut,	
  it	
  is	
  easy	
  to	
  observe	
  that	
  each	
  younger	
  cycle	
  is	
  
thinner	
  than	
  the	
  preceding	
  cycle,	
  suggesting	
  that	
  each	
  filling	
  of	
  glacial	
  Lake	
  Missoula	
  
contained	
   less	
   water	
   than	
   the	
   one	
   before.	
   This	
   seems	
   consistent	
   with	
   the	
  
observation	
  that	
  the	
  greater	
  number	
  of	
  varves	
  occur	
  lower	
  in	
  the	
  section,	
  becoming	
  
fewer	
  in	
  number	
  at	
  the	
  top	
  of	
  the	
  road	
  cut.	
  Thus,	
  in	
  the	
  waning	
  stages	
  of	
  the	
  last	
  ice	
  
age,	
  the	
  ice	
  dam	
  became	
  thinner	
  and	
  less	
  able	
  to	
  impound	
  great	
  quantities	
  of	
  water,	
  
thus	
  reducing	
  the	
  amount	
  of	
  time	
  between	
  lake	
  drainages.	
  	
  
	
  
Chambers	
   (1971,	
   1984)	
   also	
   noted	
   that	
   multiple	
   cycles	
   of	
   lake	
   deposits	
   are	
  
preserved	
  within	
  the	
  troughs	
  of	
  the	
  giant	
  current	
  ripples	
  in	
  Camus	
  Prairie.	
  This	
  led	
  
him	
  to	
  conclude	
  that	
  the	
  later	
  drainages	
  must	
  have	
  been	
  much	
  slower	
  than	
  earlier	
  
discharges	
  otherwise	
  the	
  fragile	
  lake	
  sediment	
  would	
  have	
  been	
  flushed	
  from	
  the	
  
basin.	
   It	
   is	
   very	
   probable	
   that	
   the	
   unconsolidated	
   lake	
   bottom	
   sediment	
   could	
   be	
  
preserved	
   even	
   when	
   the	
   lake	
   drained	
   catastrophically.	
   A	
   good	
   analogy	
   of	
   glacial	
  
Lake	
  Missoula	
  draining	
  is	
  to	
  observe	
  a	
  bathtub	
  empty	
  when	
  filled	
  with	
  water.	
  The	
  
drain	
  plug	
  would	
  be	
  the	
  ice	
  dam,	
  whereas	
  the	
  back	
  of	
  the	
  bathtub	
  represents	
  the	
  
Missoula	
  and	
  Bitterroot	
  valleys.	
  When	
  the	
  plug	
  is	
  pulled,	
  all	
  the	
  action	
  happens	
  at	
  
the	
  front	
  of	
  the	
  tub,	
  at	
  the	
  drain	
  hole,	
  however	
  the	
  water	
  level	
  at	
  the	
  back	
  of	
  the	
  tub	
  
gently	
  lowers	
  with	
  no	
  turbulence.	
  Once	
  the	
  ice	
  dam	
  burst,	
  Camas	
  Prairie,	
  the	
  Little	
  
Bitterroot	
  and	
  Mission	
  valleys	
  would	
  empty	
  first,	
  followed	
  by	
  the	
  slower	
  emptying	
  
of	
  the	
  Missoula	
  and	
  Bitterroot	
  valleys.	
  The	
  Ninemile	
  Creek	
  road	
  cut	
  is	
  almost	
  245	
  
km	
   from	
   the	
   site	
   of	
   the	
   ice	
   dam	
   and	
   at	
   that	
   distance	
   the	
   water	
   level	
   most	
   likely	
  
gently	
  lowered	
  preserving	
  the	
  lake	
  bottom	
  sediments.	
  
	
  
References	
  
	
  
Alt,	
  D.,	
  2001.	
  Glacial	
  Lake	
  Missoula	
  and	
  its	
  Humongous	
  Floods,	
  Mountain	
  Press,	
  Missoula,	
  197	
  p.	
  
	
  
Alt,	
  D.	
  and	
  R.	
  L.	
  Chambers,	
  1970.	
  Repetition	
  of	
  the	
  Spokane	
  flood:	
  American	
  Quaternary	
  Association	
  
Meeting	
  1,	
  Yellowstone	
  Park	
  and	
  Bozeman,	
  Montana,	
  Abstracts.	
  Montana	
  State	
  University,	
  Bozeman,	
  
p.	
  1.	
  
	
  
Baker,	
  V.	
  R.,	
  1973,	
  Paleohydrology	
  and	
  Sedimentology	
  of	
  Lake	
  Missoula	
  Flooding	
  in	
  Eastern	
  
Washington:	
  Geological	
  Society	
  of	
  America	
  Special	
  Paper	
  144,	
  73	
  p.	
  
	
  
Barker,	
  V.	
  R.	
  and	
  R.	
  C.	
  Bunker,	
  1985.	
  Cataclysmic	
  late	
  Pleistocene	
  flooding	
  from	
  glacial	
  Lake	
  Missoula:	
  
a	
  review:	
  Quaternary	
  Research,	
  27:	
  182-­‐201.	
  	
  
	
  
Bretz,	
  J	
  H.,	
  1969.	
  The	
  Lake	
  Missoula	
  floods	
  and	
  the	
  Channeled	
  Scabland:	
  The	
  Journal	
  of	
  Geology,	
  77:	
  
505–543.	
  
	
  
Bretz,	
  J	
  H.,	
  1930.	
  Lake	
  Missoula	
  and	
  the	
  Spokane	
  Flood:	
  Geological	
  Society	
  of	
  America	
  Bulletin,	
  38:	
  
385-­‐422.	
  
	
  
Chambers,	
  R.L.,	
  1971.	
  Sedimentation	
  in	
  glacial	
  Lake	
  Missoula,	
  MSc.	
  Thesis,	
  University	
  of	
  Montana,	
  
Missoula.	
  
  6	
  
Chambers,	
  R.L.,	
  1984.	
  Sedimentary	
  evidence	
  for	
  multiple	
  glacial	
  Lakes	
  Missoula,	
  in:	
  McBane,	
  J.	
  D.	
  and	
  
P.	
  B.	
  Garrison	
  (Eds.),	
  Northwest	
  Montana	
  and	
  Adjacent	
  Canada.	
  Montana	
  Geological	
  Society,	
  Billings,	
  
pp.	
  189–199.	
  
	
  
Hanson,	
  M.	
  A.,	
  Olav,	
  B.	
  L.,	
  and	
  J.	
  J.	
  Claque,	
  2012.	
  The	
  sequence	
  and	
  timing	
  of	
  large	
  late	
  Pleistocene	
  
floods	
  from	
  glacial	
  lake	
  Missoula,	
  Quaternary	
  Science	
  Reviews,	
  31:	
  67-­‐81.	
  
	
  
Pardee,	
  J.	
  T.,	
  1942.	
  Unusual	
  currents	
  in	
  glacial	
  Lake	
  Missoula,	
  Montana:	
  Geological	
  Society	
  of	
  America	
  
Bulletin,	
  53:	
  1569–1599.	
  
	
  
Sieja,	
  D.	
  M.,	
  1959.	
  Clay	
  Mineralogy	
  of	
  Glacial	
  Lake	
  Missoula	
  Varves,	
  Missoula	
  County,	
  Montana,	
  MSc.	
  
Thesis,	
  Montana	
  State	
  University,	
  Montana.	
  
	
  
Waitt,	
  R.	
  B.,	
  1980.	
  About	
  forty	
  last-­‐glacial	
  Lake	
  Missoula	
  jökulhlaups	
  through	
  southern	
  Washington,	
  
Journal	
  of	
  Geology,	
  88:	
  653–679.	
  
	
  
Waitt,	
  R.	
  B.,	
  1984.	
  Periodic	
  jökulhlaups	
  from	
  Pleistocene	
  Glacial	
  Lake	
  Missoula	
  —	
  new	
  evidence	
  from	
  
varved	
  sediment	
  in	
  northern	
  Idaho	
  and	
  Washington,	
  Quaternary	
  Research,	
  22:	
  46-­‐48.	
  
	
  
Waitt,	
  R.	
  B.,	
  1985.	
  Case	
  for	
  periodic,	
  colossal	
  jökulhlaups	
  from	
  Pleistocene	
  glacial	
  Lake	
  Missoula,	
  
Geological	
  Society	
  of	
  America	
  Bulletin,	
  96:	
  1271–1286.	
  
	
  
	
  

More Related Content

What's hot

Ancient hydrothermal seafloor deposits in Eridania basin on Mars
Ancient hydrothermal seafloor deposits in Eridania basin on MarsAncient hydrothermal seafloor deposits in Eridania basin on Mars
Ancient hydrothermal seafloor deposits in Eridania basin on Mars
Sérgio Sacani
 
River regime of the colorado river
River regime of the colorado riverRiver regime of the colorado river
River regime of the colorado river
Nishay Patel
 
Base level is the lowest level to which erosion by running water can take place
Base level is the lowest level to which erosion by running water can take placeBase level is the lowest level to which erosion by running water can take place
Base level is the lowest level to which erosion by running water can take placeKennyboo Brown
 
River Rejuvenation
River RejuvenationRiver Rejuvenation
River Rejuvenation
jezbo16
 
Geological action of river
Geological action of riverGeological action of river
Geological action of river
Rizwan Siddique
 
Environment Institute Seminar Series 5 Martin Williams
Environment Institute Seminar Series 5 Martin WilliamsEnvironment Institute Seminar Series 5 Martin Williams
Environment Institute Seminar Series 5 Martin Williams
University of Adelaide
 
ENV 101 Ch08 lecture ppt_a
ENV 101 Ch08 lecture ppt_aENV 101 Ch08 lecture ppt_a
ENV 101 Ch08 lecture ppt_a
BHUOnlineDepartment
 
Rejuvenation presentation
Rejuvenation presentationRejuvenation presentation
Rejuvenation presentation
Olexiy Dubilet
 
Lacustrine
LacustrineLacustrine
Lacustrine
M.T.H Group
 
Hadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentologyHadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentology
rad8
 
Physical Landscapes
Physical LandscapesPhysical Landscapes
Physical Landscapes
neilgood
 
The work of rivers
The work of riversThe work of rivers
The work of riversMoses Lutta
 
Science Project - Chintan Shah 8-1
Science Project - Chintan Shah 8-1Science Project - Chintan Shah 8-1
Science Project - Chintan Shah 8-1
Chintan Shah
 
Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...
Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...
Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...
Kerwin Abinoja
 
River land forms
River land formsRiver land forms
River land forms
Yonas Gemeda
 
Field Journal: Geography 5
Field Journal: Geography 5Field Journal: Geography 5
Field Journal: Geography 5
sportgirl613
 

What's hot (20)

Ancient hydrothermal seafloor deposits in Eridania basin on Mars
Ancient hydrothermal seafloor deposits in Eridania basin on MarsAncient hydrothermal seafloor deposits in Eridania basin on Mars
Ancient hydrothermal seafloor deposits in Eridania basin on Mars
 
River regime of the colorado river
River regime of the colorado riverRiver regime of the colorado river
River regime of the colorado river
 
Base level is the lowest level to which erosion by running water can take place
Base level is the lowest level to which erosion by running water can take placeBase level is the lowest level to which erosion by running water can take place
Base level is the lowest level to which erosion by running water can take place
 
River Rejuvenation VLE
River Rejuvenation VLERiver Rejuvenation VLE
River Rejuvenation VLE
 
River Rejuvenation
River RejuvenationRiver Rejuvenation
River Rejuvenation
 
Rivers and streams
Rivers and streamsRivers and streams
Rivers and streams
 
Geological action of river
Geological action of riverGeological action of river
Geological action of river
 
Environment Institute Seminar Series 5 Martin Williams
Environment Institute Seminar Series 5 Martin WilliamsEnvironment Institute Seminar Series 5 Martin Williams
Environment Institute Seminar Series 5 Martin Williams
 
River Rejuvenation VLE
River Rejuvenation VLERiver Rejuvenation VLE
River Rejuvenation VLE
 
The work of rivers
The work of riversThe work of rivers
The work of rivers
 
ENV 101 Ch08 lecture ppt_a
ENV 101 Ch08 lecture ppt_aENV 101 Ch08 lecture ppt_a
ENV 101 Ch08 lecture ppt_a
 
Rejuvenation presentation
Rejuvenation presentationRejuvenation presentation
Rejuvenation presentation
 
Lacustrine
LacustrineLacustrine
Lacustrine
 
Hadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentologyHadlari etal. 2006 baker lake rift basin sedimentology
Hadlari etal. 2006 baker lake rift basin sedimentology
 
Physical Landscapes
Physical LandscapesPhysical Landscapes
Physical Landscapes
 
The work of rivers
The work of riversThe work of rivers
The work of rivers
 
Science Project - Chintan Shah 8-1
Science Project - Chintan Shah 8-1Science Project - Chintan Shah 8-1
Science Project - Chintan Shah 8-1
 
Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...
Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...
Kerwin Abinoja - ENVE341 Research Poster November 2015 (Assessing River Recov...
 
River land forms
River land formsRiver land forms
River land forms
 
Field Journal: Geography 5
Field Journal: Geography 5Field Journal: Geography 5
Field Journal: Geography 5
 

Viewers also liked

Natalie Duran - Publications-Abstracts
Natalie Duran - Publications-AbstractsNatalie Duran - Publications-Abstracts
Natalie Duran - Publications-AbstractsNatalie Duran
 
Dieta mediterranea
Dieta mediterraneaDieta mediterranea
Dieta mediterranea
Ariadna Moreno Gutierrez
 
Programa de filosofia 10 º e 11º anos 2
Programa de filosofia 10 º  e 11º anos 2Programa de filosofia 10 º  e 11º anos 2
Programa de filosofia 10 º e 11º anos 2
j_sdias
 
Informatica jesus boet
Informatica jesus boetInformatica jesus boet
Informatica jesus boet
jesusA30boet
 
Etiqueta en la empresa
Etiqueta en la empresaEtiqueta en la empresa
Etiqueta en la empresa
yuditdb17
 
Plano de aula reformulc%cc%a7a%cc%83o -3
Plano de aula   reformulc%cc%a7a%cc%83o -3Plano de aula   reformulc%cc%a7a%cc%83o -3
Plano de aula reformulc%cc%a7a%cc%83o -3
j_sdias
 
enfermeria
enfermeriaenfermeria
enfermeria
johnysanchez93
 
De la chirurgie Plastique à L'Art Contemporain
De la chirurgie Plastique à L'Art ContemporainDe la chirurgie Plastique à L'Art Contemporain
De la chirurgie Plastique à L'Art Contemporain
Jacques OHANA
 
JaneSimmondsMPHFinal1
JaneSimmondsMPHFinal1JaneSimmondsMPHFinal1
JaneSimmondsMPHFinal1Jane Simmonds
 
Elementos internos del computador
Elementos internos del computadorElementos internos del computador
Elementos internos del computador
jehiber
 
La tecnologia y su impacto en la manera de vivir 1
La tecnologia y su impacto en la manera de vivir 1La tecnologia y su impacto en la manera de vivir 1
La tecnologia y su impacto en la manera de vivir 1
Ximena Lucero
 
Curriculum Vitae Kevin Harkin
Curriculum Vitae Kevin HarkinCurriculum Vitae Kevin Harkin
Curriculum Vitae Kevin HarkinKevin Harkin
 

Viewers also liked (14)

Natalie Duran - Publications-Abstracts
Natalie Duran - Publications-AbstractsNatalie Duran - Publications-Abstracts
Natalie Duran - Publications-Abstracts
 
Dieta mediterranea
Dieta mediterraneaDieta mediterranea
Dieta mediterranea
 
Programa de filosofia 10 º e 11º anos 2
Programa de filosofia 10 º  e 11º anos 2Programa de filosofia 10 º  e 11º anos 2
Programa de filosofia 10 º e 11º anos 2
 
Informatica jesus boet
Informatica jesus boetInformatica jesus boet
Informatica jesus boet
 
Etiqueta en la empresa
Etiqueta en la empresaEtiqueta en la empresa
Etiqueta en la empresa
 
9
99
9
 
13913169
1391316913913169
13913169
 
Plano de aula reformulc%cc%a7a%cc%83o -3
Plano de aula   reformulc%cc%a7a%cc%83o -3Plano de aula   reformulc%cc%a7a%cc%83o -3
Plano de aula reformulc%cc%a7a%cc%83o -3
 
enfermeria
enfermeriaenfermeria
enfermeria
 
De la chirurgie Plastique à L'Art Contemporain
De la chirurgie Plastique à L'Art ContemporainDe la chirurgie Plastique à L'Art Contemporain
De la chirurgie Plastique à L'Art Contemporain
 
JaneSimmondsMPHFinal1
JaneSimmondsMPHFinal1JaneSimmondsMPHFinal1
JaneSimmondsMPHFinal1
 
Elementos internos del computador
Elementos internos del computadorElementos internos del computador
Elementos internos del computador
 
La tecnologia y su impacto en la manera de vivir 1
La tecnologia y su impacto en la manera de vivir 1La tecnologia y su impacto en la manera de vivir 1
La tecnologia y su impacto en la manera de vivir 1
 
Curriculum Vitae Kevin Harkin
Curriculum Vitae Kevin HarkinCurriculum Vitae Kevin Harkin
Curriculum Vitae Kevin Harkin
 

Similar to GLM-Long

10. fluvioglacial landforms
10. fluvioglacial landforms10. fluvioglacial landforms
10. fluvioglacial landforms
http://www.coolgeography.co.uk
 
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdfDeposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
j c
 
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdfDeposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
j c
 
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great LakesImproving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
Derek Moy
 
Niagara
NiagaraNiagara
Niagara
aea_aa
 
Three Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and PresentThree Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and Present
DesLandTrust
 
Lakes of the world
Lakes of the worldLakes of the world
Lakes of the world
Prof. A.Balasubramanian
 
Mosquito Poster Final
Mosquito Poster FinalMosquito Poster Final
Mosquito Poster FinalSamuel Timko
 
Colusa_11_FloodMgmt
Colusa_11_FloodMgmtColusa_11_FloodMgmt
Colusa_11_FloodMgmtAhmad Mousa
 
Work's of river, winds, seas and their Engineering Importance
Work's of river, winds, seas and their Engineering ImportanceWork's of river, winds, seas and their Engineering Importance
Work's of river, winds, seas and their Engineering Importance
JohnCarloEdejer
 
15. the astonishing genesis flood, part 2
15. the astonishing genesis flood, part 215. the astonishing genesis flood, part 2
15. the astonishing genesis flood, part 2
Ariel Roth
 
Karst in Southern Ontario and the Niagara Escarpment
Karst in Southern Ontario and the Niagara EscarpmentKarst in Southern Ontario and the Niagara Escarpment
Karst in Southern Ontario and the Niagara EscarpmentSkyler MacGowan
 
Mt. Saint Helens Presentation
Mt. Saint Helens PresentationMt. Saint Helens Presentation
Mt. Saint Helens PresentationMax Barnett
 
Cataclysms on the Columbia: The Great Missoula Floods
Cataclysms on the Columbia: The Great Missoula FloodsCataclysms on the Columbia: The Great Missoula Floods
Cataclysms on the Columbia: The Great Missoula Floods
OMSI Science Pub
 
River Channel Processes & Landforms
River Channel Processes & LandformsRiver Channel Processes & Landforms
River Channel Processes & LandformsMalia Damit
 
floodplain presentation
floodplain presentationfloodplain presentation
floodplain presentation
rupankar456
 

Similar to GLM-Long (20)

10. fluvioglacial landforms
10. fluvioglacial landforms10. fluvioglacial landforms
10. fluvioglacial landforms
 
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdfDeposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
 
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdfDeposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
Deposition from Melt Waters, Late-Glacial and Postglacial Phenomena.pdf
 
Photo journal
Photo journalPhoto journal
Photo journal
 
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great LakesImproving Ocean Literacy by Teaching the Geology of the Great Lakes
Improving Ocean Literacy by Teaching the Geology of the Great Lakes
 
Niagara
NiagaraNiagara
Niagara
 
Three Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and PresentThree Sisters and Whychus Creek— A Geologic Past and Present
Three Sisters and Whychus Creek— A Geologic Past and Present
 
Lakes of the world
Lakes of the worldLakes of the world
Lakes of the world
 
Rivers
RiversRivers
Rivers
 
Mosquito Poster Final
Mosquito Poster FinalMosquito Poster Final
Mosquito Poster Final
 
Geography 5
Geography 5Geography 5
Geography 5
 
Colusa_11_FloodMgmt
Colusa_11_FloodMgmtColusa_11_FloodMgmt
Colusa_11_FloodMgmt
 
Work's of river, winds, seas and their Engineering Importance
Work's of river, winds, seas and their Engineering ImportanceWork's of river, winds, seas and their Engineering Importance
Work's of river, winds, seas and their Engineering Importance
 
15. the astonishing genesis flood, part 2
15. the astonishing genesis flood, part 215. the astonishing genesis flood, part 2
15. the astonishing genesis flood, part 2
 
Karst in Southern Ontario and the Niagara Escarpment
Karst in Southern Ontario and the Niagara EscarpmentKarst in Southern Ontario and the Niagara Escarpment
Karst in Southern Ontario and the Niagara Escarpment
 
Mt. Saint Helens Presentation
Mt. Saint Helens PresentationMt. Saint Helens Presentation
Mt. Saint Helens Presentation
 
Varvitos
VarvitosVarvitos
Varvitos
 
Cataclysms on the Columbia: The Great Missoula Floods
Cataclysms on the Columbia: The Great Missoula FloodsCataclysms on the Columbia: The Great Missoula Floods
Cataclysms on the Columbia: The Great Missoula Floods
 
River Channel Processes & Landforms
River Channel Processes & LandformsRiver Channel Processes & Landforms
River Channel Processes & Landforms
 
floodplain presentation
floodplain presentationfloodplain presentation
floodplain presentation
 

GLM-Long

  • 1.   1   Bottom  sediments  provide  clues  to  glacial  Lake  Missoula’s  history   by   Richard  L.  Chambers  and  David  Alt     INTRODUCTION     During  the  last  ice  age  an  immense  lake  existed  in  the  western  Montana  basins  when   the  Clark  Fork  River  was  dammed  by  the  Purcell  Lobe  of  the  Cordilleran  ice  sheet  at   the  site  occupied  today  by  Lake  Pend  Oreille,  in  northern  Idaho.    This  lake,  known  as   glacial  Lake  Missoula,  held  as  much  water  as  the  combined  volumes  of  Lakes  Erie   and  Ontario.  Once  the  water  level  reached  a  critical  depth,  the  ice  dam  began  to  float   allowing  water  to  find  its  way  under  the  ice,  when  suddenly  the  ice  dam  collapsed   releasing  an  enormous  discharge  of  water  that  had  only  one  way  to  go.  In  only  a  few   days   nearly   2100   cubic   kilometers   of   floodwater   swept   across   northern   Idaho,   eastern  Washington,  and  Oregon  and  down  the  Columbia  River  gorge  finding  its  way   to  the  Pacific  Ocean  at  Portland,  Oregon.  In  its  wake  it  left  giant  flood  bars  and  trains   of   huge   current   ripples   and   a   ravaged   landscape   known   as   the   “Channeled   Scablands”  in  eastern  Washington.  The  Lake  Missoula  floods  probably  involved  the   largest  freshwater  discharges  in  the  geologic  record;  about  20  times  greater  than   the  average  worldwide  runoff  (Bretz,  1930,  1969;  Pardee,  1942;  Baker,  1973;  Baker   and  Bunker,  1985).     A  topic  still  debated  is  the  number  of  times  these  floods  occurred,  and  whether  each   of   the   lake   drainages   was   the   result   of   a   catastrophic   collapse   of   the   ice   dam   impounding  the  lake  and  the  torrential  release  of  its  enormous  water  volume.    Some   studies  suggest  dozens  of  floods  and  even  as  many  as  40  or  more  (Alt  and  Chambers,   1970;   Chambers,   1971,   1984;   Waitt,   1980,   1984,   1985;   Alt,   2001;   Hanson,   et   al.,   2012).     Because   each   successive   flooding   event   would   rework   and   even   remove   evidence  of  earlier  floods,  a  study  of  the  bottom  sediments  that  accumulated  in  the   still  waters  in  glacial  Lake  Missoula  basins  should  provide  some  of  the  answers  to   these  questions.  Despite  all  of  the  studies  on  the  Lake  Missoula  floods,  surprisingly   little  was  known  about  the  nature  of  the  bottom  sediments  and  their  contribution  to   unraveling  the  lake’s  history.     D.  M.  Sieja,  a  graduate  student  in  geology  at  Montana  State  University,  conducted  the   earliest  known  quantitative  study  of  the  Lake  Missoula  bottom  sediments  in  1959.   The  main  purpose  of  his  study  was  to  document  the  clay  mineralogy  of  the  glacial   Lake  Missoula  varves  and  to  see  if  the  clay  minerals  changed  in  quantity  vertically  in   an  exposure  and  laterally  from  one  location  to  another  across  the  Missoula  Valley   basin.  In  his  study,  Sieja  found  three  varve  types:  simple,  composite,  and  drainage;   however  he  made  no  detailed  interpretation  for  their  origin,  other  than  to  note  that   the  clays  probably  settled  to  the  lake  floor  through  calm  water,  whose  source  were   the  Blackfoot  and  Rattlesnake  valley  glaciers.    
  • 2.   2   In   his   comprehensive   review   of   the   evidence   for   repeated   catastrophic   outbursts   from  glacial  Lake  Missoula,  Bretz  (1969)  suggested  that  each  lake  sequence  should   be   separated   by   an   unconformity   and   that   bogs   and   forests   would   occupy   the   drained  lake  floor  only  to  become  buried  when  a  new  lake  formed.    At  the  time  of   Bretz’s   1969   review,   he   suggested   that   the   lake   sediments   should   contain   varves   and  randomly  distributed  ice-­‐rafted  fragments.         The  term  varve  is  a  derivative  of  the  Swedish  word  “varv”  whose  meaning  includes   “a   periodical   iteration   of   layers.”   Varves   are   typically   associated   with   glacial   lake   deposits  consisting  of  two  layers  –  a  lower  light-­‐colored  layer  composed  primarily   of   silt   deposited   during   the   summer   by   melting   glaciers,   and   an   upper   darker-­‐ colored   layer   composed   mainly   of   clay   and   organic   matter   deposited   during   the   winter  by  slowly  settling  sediment  through  calm  water.  Varves  were  recognized  as   yearly   deposits   as   early   as   1832   and   have   been   successfully   used   to   correlate   different  localities  and  by  counting  varves,  like  tree  rings,  it  is  possible  to  establish  a   time  scale  for  glacial  lakes  and  glacial  retreat.     CHARACTERISTICS  OF  THE  LAKE  MISSOULA  BOTTOM  SEDIMENTS      A   large,   well-­‐preserved   exposure   of   glacial   Lake   Missoula   bottom   sediments   (Fig.   1)   is   located   about   40   km   west   of   Missoula,   Montana   along   Highway   90,   near  the  juncture  of  the  Clark  Fork  River   and   Ninemile   Creek.   The   exposure   is   a   road   cut   about   250-­‐m   long   and   10-­‐25-­‐m   in  height.         Rather   than   finding   a   single   thick   sequence  of  glacial  lake  varves  that  could       Figure  1.  Ninemile  Creek  exposure  of  Lake  Missoula     bottom  sediment.     be   easily   counted   to   date   the   exposure,   Alt   and   Chambers   (1970)   and   Chambers   (1971,  1984),  discovered  a  much  more  complex  and  far  more  interesting  situation.   What  they  found  was  about  40  short  sequences  with  glacial  lake  varves  sandwiched   between  layers  of  fine-­‐grained  sand  and  silt.  The  varves  record  the  times  when  a   deep,  calm  lake  existed.  After  a  detailed  study  of  the  sand-­‐silt  layers,  they  became   convinced  that  streams  traversing  the  drained  lake  floor  deposited  these  sediments   into   fairly   shallow   water   as   the   lake   began   to   fill   once   the   ice   dam   reformed,   blocking  the  outflow  of  the  Clark  Fork  River.  So,  Bretz’s  1969  hypothesis  of  multiple   lake   sequences   proved   correct,   however   Alt  and  Chambers  (1970)  and  Chambers   (1971,   1984)   did   not   find   any   evidence   of   tree   stumps   or   bogs   between   the   sequences,  therefore,  suggesting  only  short  periods  of  time  between  successive  lake   fillings,  thus  preventing  the  formation  of  deep  soil  profiles.  
  • 3.   3   Lake  Missoula  Rhythmites     Well-­‐developed   small-­‐scale   cycles,   up   to   several   meters   thick,   characterize   the   glacial  Lake  Missoula  bottom  sediments.  The  rhythmically  bedded  deposits  show  a   very  distinctive  pattern  of  alternating  light  and  dark-­‐colored  layering  at  the  outcrop   scale  (Fig.  1).    A  typical  rhythmite  has  a  light-­‐colored  base  of  fine-­‐grained  sand  and   silt  passing  upward  into  a  darker-­‐toned  sequence  of  glacial  lake  varves  composed  of   silt  and  clay-­‐size  sediment.       Stream  Deposits     The   basal   sand-­‐silt   layer   (Fig.   2)   present   in   each   rhythmite  is  characterized  by  planar  bedding,  with   about  half  of  them  containing  ripple  cross  bedding   and   other   sedimentary   features   suggestive   of   deposition  by  streams.     The  lower  contact  between  successive  rhythmites   is   unconformable   to   the   underlying   sediment,   usually  an  earlier  sequence  of  varves.  The  feature   outlined   in   Figure   2   is   interpreted   to   be   gravel   deposited  by  a  local  stream  that  flowed  across  the   exposed  lake  floor  eroding  the  varves  deposited  in   a  former  lake.       Figure  2.  An  example  of  the  basal  silt  unit  in  a     Lake  Missoula  rhythmite  and  a  small  channel     deposit  of  gravel  (outlined).     Varves   The   basal   sand-­‐silt   layer   passes   upward   into   a   sequence  of  varves  (Fig.  3).  The  varved  couplets  tend   to   thin   upward   in   any   sequence   indicating   a   deepening  lake  that  continued  to  deepen  until  the  ice   dam  failed  (Chambers,  1971,  1984).    The  varves  have   a   sharp,   unconformable   contact   with   the   next   rhythmite  deposited  in  a  new  lake.  Although  no  deep   soil  profiles  were  found,  thin  zones  of  desiccated  and   weathered  varves  were  found  between  22  rhythmites.   Two  varve  sequences  were  so  deeply  weathered  that   no   varve   count   was   possible.   The   top   most   7   cycles   became  so  deeply  weathered  since  the  final  retreat  of   the   glaciers   about   12,000   years   ago,   that   detailing   those  cycles  proved  impossible.     Figure  3.  Rhythmite  20  showing  22  varves.    
  • 4.   4   In  1971,  Chambers  counted  766  varves  at  the  Ninemile  Creek  road  cut,  however  this   number  does  not  take  into  account  the  22  zones  of  weather  varves,  or  the  varves  in   cycles   33   to   40.     In   that   study,   Chambers   estimated   that   more   than   100   varves   needed  to  be  included  raising  the  count  to  about  900  varves.  Hanson,  et  al.  (2012)   visited   the   Ninemile   Creek   exposure   and   counted   only   583   varves,   however   they   apparently   did   not   include   an   estimate   of   varves   in   the   weather   zones.   The   discrepancy  between  766  and  583  could  be  explained  by  1)  weathering  of  the  upper   part  of  the  exposure  over  the  past  several  decades  preventing  Hanson,  et  al.  to  count   varves   in   the   upper   section,   2)   Chambers   (1971)   counted   composite   varves   as   simple   varves,   thereby   increasing   the   number,   or   3)   that   Hanson   et   al.   (2012)   grouped   thinner   varves   into   composite   varves   resulting   in   a   fewer   number   of   varves.     Subaerial   exposure   of   the   lake   floor   indicates   that   glacial   Lake   Missoula   drained   or   partially   drained   about   40   times.   The   22   weathered   zones   range   in   thickness  from  2.3  to  18-­‐cm  and  average  about  7.2-­‐cm   (Fig.  4).  Although  the  top  of  about  12  varve  sequences   do   not   appear   weathered,   it   is   possible   that   some   material   is   missing   because   of   stream   erosion   and   subsequent   deposition   of   the   next   sand-­‐silt   layer.   Frost   cracks   (Chambers   1971)   or   ice-­‐wedge   casts   (Hanson,  et  al.,  2012)  suggest  that  the  lake  floor  was   exposed   to   subaerial   conditions   for   several   years;   a   period   of   time   much   longer   than   simple   lake-­‐level   fluctuations.   The   ice-­‐wedges   were   filled   with   weathered  varves  or  sand.               Figure  4.  A  varve  sequence  illustrating  a     weathered  material  infilling  a  frost  crack   created  in  the  exposed  lake  flood  sediment.       Discussion     About   40   last   glacial   Lakes   Missoula   are   documented   in   the   Ninemile   road   cut,   however   there   is   no   conclusive   evidence   that   each   drainage   was   complete   or   catastrophic  (Chambers,  1971,  1984;  Hanson,  et  al.,  2012),  but  the  lake  did  drain   below  an  altitude  of  985-­‐m.    Because  the  number  of  varves  in  any  given  sequence   ranges  from  9  to  58,  Alt  and  Chambers  (1970)  inferred  periods  of  several  decades   between  lake  drainages;  Alt  (2001)  thought  that  the  average  interval  between  lake   fillings   to   be   about   50   years.   The   deduction   that   each   lake   draining   resulted   in   a  
  • 5.   5   catastrophic   flood   was   made   by   Alt   (in   Alt   and   Chambers,   1970),   then   by   Waitt   (1980,  1984,  1985),  and  again  by  Alt  (2001).       Looking  at  the  Ninemile  road  cut,  it  is  easy  to  observe  that  each  younger  cycle  is   thinner  than  the  preceding  cycle,  suggesting  that  each  filling  of  glacial  Lake  Missoula   contained   less   water   than   the   one   before.   This   seems   consistent   with   the   observation  that  the  greater  number  of  varves  occur  lower  in  the  section,  becoming   fewer  in  number  at  the  top  of  the  road  cut.  Thus,  in  the  waning  stages  of  the  last  ice   age,  the  ice  dam  became  thinner  and  less  able  to  impound  great  quantities  of  water,   thus  reducing  the  amount  of  time  between  lake  drainages.       Chambers   (1971,   1984)   also   noted   that   multiple   cycles   of   lake   deposits   are   preserved  within  the  troughs  of  the  giant  current  ripples  in  Camus  Prairie.  This  led   him  to  conclude  that  the  later  drainages  must  have  been  much  slower  than  earlier   discharges  otherwise  the  fragile  lake  sediment  would  have  been  flushed  from  the   basin.   It   is   very   probable   that   the   unconsolidated   lake   bottom   sediment   could   be   preserved   even   when   the   lake   drained   catastrophically.   A   good   analogy   of   glacial   Lake  Missoula  draining  is  to  observe  a  bathtub  empty  when  filled  with  water.  The   drain  plug  would  be  the  ice  dam,  whereas  the  back  of  the  bathtub  represents  the   Missoula  and  Bitterroot  valleys.  When  the  plug  is  pulled,  all  the  action  happens  at   the  front  of  the  tub,  at  the  drain  hole,  however  the  water  level  at  the  back  of  the  tub   gently  lowers  with  no  turbulence.  Once  the  ice  dam  burst,  Camas  Prairie,  the  Little   Bitterroot  and  Mission  valleys  would  empty  first,  followed  by  the  slower  emptying   of  the  Missoula  and  Bitterroot  valleys.  The  Ninemile  Creek  road  cut  is  almost  245   km   from   the   site   of   the   ice   dam   and   at   that   distance   the   water   level   most   likely   gently  lowered  preserving  the  lake  bottom  sediments.     References     Alt,  D.,  2001.  Glacial  Lake  Missoula  and  its  Humongous  Floods,  Mountain  Press,  Missoula,  197  p.     Alt,  D.  and  R.  L.  Chambers,  1970.  Repetition  of  the  Spokane  flood:  American  Quaternary  Association   Meeting  1,  Yellowstone  Park  and  Bozeman,  Montana,  Abstracts.  Montana  State  University,  Bozeman,   p.  1.     Baker,  V.  R.,  1973,  Paleohydrology  and  Sedimentology  of  Lake  Missoula  Flooding  in  Eastern   Washington:  Geological  Society  of  America  Special  Paper  144,  73  p.     Barker,  V.  R.  and  R.  C.  Bunker,  1985.  Cataclysmic  late  Pleistocene  flooding  from  glacial  Lake  Missoula:   a  review:  Quaternary  Research,  27:  182-­‐201.       Bretz,  J  H.,  1969.  The  Lake  Missoula  floods  and  the  Channeled  Scabland:  The  Journal  of  Geology,  77:   505–543.     Bretz,  J  H.,  1930.  Lake  Missoula  and  the  Spokane  Flood:  Geological  Society  of  America  Bulletin,  38:   385-­‐422.     Chambers,  R.L.,  1971.  Sedimentation  in  glacial  Lake  Missoula,  MSc.  Thesis,  University  of  Montana,   Missoula.  
  • 6.   6   Chambers,  R.L.,  1984.  Sedimentary  evidence  for  multiple  glacial  Lakes  Missoula,  in:  McBane,  J.  D.  and   P.  B.  Garrison  (Eds.),  Northwest  Montana  and  Adjacent  Canada.  Montana  Geological  Society,  Billings,   pp.  189–199.     Hanson,  M.  A.,  Olav,  B.  L.,  and  J.  J.  Claque,  2012.  The  sequence  and  timing  of  large  late  Pleistocene   floods  from  glacial  lake  Missoula,  Quaternary  Science  Reviews,  31:  67-­‐81.     Pardee,  J.  T.,  1942.  Unusual  currents  in  glacial  Lake  Missoula,  Montana:  Geological  Society  of  America   Bulletin,  53:  1569–1599.     Sieja,  D.  M.,  1959.  Clay  Mineralogy  of  Glacial  Lake  Missoula  Varves,  Missoula  County,  Montana,  MSc.   Thesis,  Montana  State  University,  Montana.     Waitt,  R.  B.,  1980.  About  forty  last-­‐glacial  Lake  Missoula  jökulhlaups  through  southern  Washington,   Journal  of  Geology,  88:  653–679.     Waitt,  R.  B.,  1984.  Periodic  jökulhlaups  from  Pleistocene  Glacial  Lake  Missoula  —  new  evidence  from   varved  sediment  in  northern  Idaho  and  Washington,  Quaternary  Research,  22:  46-­‐48.     Waitt,  R.  B.,  1985.  Case  for  periodic,  colossal  jökulhlaups  from  Pleistocene  glacial  Lake  Missoula,   Geological  Society  of  America  Bulletin,  96:  1271–1286.