SlideShare a Scribd company logo
TRAINING/INTERNSHIPREPORT ON Construction of Elevated
Road Corridor fromDighato Didarganj at Patna in the State of
Bihar
For
Bihar State Road DevelopmentCorporationLtd.
By
Navayuga Engineering Company Limited (NECL)
GAMMON INDIA LIMITED [EPC CONTRACTOR]
AECOM Asia Company Ltd.
In JV with
Rodic Consultants Pvt. Ltd. [CONSULTANT]
GANGA PATH PROJECT
(Marine Drive Project of Patna)
DECLARATION
I hehereby that this ReCollege, titled “GANGA PATH
PROJECT” submitted to the Bihar State Road
Development Corporation Ltd. State of Bihar is a
record of original work done by Deepak Kumar From
Government Engineering College, Buxar (University
Reg. No – 19101155012) under the guideline of Mr.
Sailesh kumar & K Brahadeeswaran.
The information and data given in the report is
authentic to the best of my knowledge.
I have not submitted the matter presented in this
Dissertation anywhere for award of any other
Degree.
Deepak Kumar
Under the guidelinesof
Dy.General Manager (Tech.)
INDEX
1 .About The Author
2. Acknowledgments
3. Project Information
4. Project Overview
5. Design Parameters
6. Locationon Map and SatelliteImage
7.QA/QC Lab
a. Seive analysis test
b. Aggregate Impact Value
c. Compressive strength of Cube test
d. StandardConsistency test of cement
e. Slump test of concrete.
8. Casting Yard
9. Componentsof Bridge
a. Pile and Pile Cap
b. Pier and Pier Cap
c. Abutment
d. Pedestal
e.Bearing
f. Seismic Stopper
g. Girder
h.Deck, Crash Barrier & Expansionjoint
10. Conclusion
11. Ask any query
ACKNOWLEDGMENTS
The internship opportunityI had with Bihar State Road
Development CorporationLtd. Was a great chance for learning and
professional development. Therefore, I consider myself as a very
lucky individual asI was provided with an opportunityto be a part
of it. I am also grateful for having a chance to meet so many
wonderful people and professionalswho led me though this
internship period.
Bearing in mind previousI am using this opportunityto express my
deepest gratitude and special thanks to the MD of Bihar State Road
Development CorporationLtd. Who in spite of being extraordinarily
busy with her/his duties, took time out to hear, guide and keep me
on the correct path and allowingme to carry out my project at their
esteemed organizationand extending during the training.
It is my radiant sentiment to place on record my best regards,
deepest sense of gratitude to BrahadeeswaranK (Project Manager
QA/QC),Rajeev Kumar (HR Officer), B V Swamiji (HR Officer),
Sailesh Kumar (Asst. Lab Engg.), Pankaj Verma (Asst. Bridge Engg.)
for their careful and precious guidance which were extremely
valuablefor my study both theoretically and practically.
I perceive as this opportunityas a big milestone in my career
development. I will strive to use gained skillsand knowledge in the
best possible way, and I will continueto work on their
improvement, in order to attaindesired career objectives. Hope to
continue cooperationwith all of you in the future.
Sincerely
Deepak Kumar
PROJECT INFORMATION
The Road Construction Department, Government of Bihar through
Bihar State Road Development CorporationLimited (BSRDCL) (the
“Authority”) Government of Biharundertaking, incorporated under
[Indian]Companies Act, 1956, is engaged in the developmentof
highwaysand as a part of this endeavor, the Authority has decided
to undertake “Construction of Ganga Path including 7.6 km of
elevated structure with dividedcarriageway of four lane standards
with alliedfacilities from Digha to Didarganj (21.5km) project cost of
₹3,160 crores at Patna in the state of Bihar” through an
Engineering,Procurement and Construction (the “EPC”) contract.This
project will connect east to west of patna,from aiims-digha flyover
to patna bakhtiyarpurhighway.
1. PURPOSE OF PROJECT
• Traffic mobilityfor heavy and small vehicle
• Decrease in traffic jams and reduce conjestion on current roads
• Time saving in transportationand for commute
• Decrease in pollution
• Reduced accidents on current routes
• Mesmerize view of nature with river front view
• To provide connectivity to the sub-urban populationof patna
PROJECT OVERVIEW
ITEM DESCRIPTION
Name of Client
BIHAR STATEROAD DEVELOPMENT
CORPORATIONLIMITED (A
GovernmentOf BiharUndertaking)
Name of Contractor
Navayuga Engineering Company Limited
(NECL)
Authority engineer
AECOM-RODIC consultants Pvt. Ltd.
(JV)
Value ofwork
₨ 3160 Crores
Totallengthof project
21.50 Km.
Length of highwayembankment
13.90 Km.
Length of elevatedroad
7.60 Km.
Length of service road
8.20 Km.
Vehicularunder pass
06 Nos.
Grade separatedinterchange
01 No.
At-grade intersection
02 Nos.
ROB
01 Nos.
Box culverts
13 Nos.
Footoverbridge
08 Nos.
Tollplaza
02 Nos.
Pedestrianfacilities
Pedestrian walkway of 5m. width
Truck laybyes
01 Nos.
Design Speed (Ruling) 100 Km/hr
Design speed (Minimum) 60 Km/hr
Top WidthatFinished Road Level 40.50 m
ProposedROW 120.00m
Cross sectional Surface Carriageway 2x7.0=14.00 m
elements main Kerb Shyness 2x0.5=1.00 m
Carriageway Paved Shoulder 2x1.5=3.00 m
Earthen Shoulder 1x1.5=1.50 m
Central Median (Raised) 4.50 m
Green Belt 2x5.0=10.00 m
Cross sectional Service Road -
elements service Cycle Track -
roads and allied Walkway (Riverside) 5.00 m
Separator 1.50 m
Facilities
Sub Total 40.50 m
ElevatedHighwaySection
Cross sectional Elevated Carriageway 2x7.5=15.00 m
element:main Maintenance Path 2x1.5=3.00 m
Carriageway Median 1.00 m
Crash Barrier (W-Beam) 2x0.5=1.00 m
Crash Barrier (Concrete) 2x0.5=1.00 m
Sub Total 21.00 m
DESIGN PARAMETERS
Location Map and Satellite Image
GANGA PATA PROJECT, PATNA
QA/QC LAB
Sieve Analysis test
1. Sieve analysis test of 20mm aggregate
Apparatus:- Sieve size of 40mm, 20mm, 10mm, 4.75mm & pan.
2. Sieve analysis test of 10mm aggregate
Apparatus:- Sieve size of 12.5mm, 10mm, 4.75mm, 2.36mm & pan
3. Sieve analysistest of fine aggregate
Apparatus:- Sieve size of 4.75mm, 2.36mm, 1.18mm, 600micron,
300micron, 150 micron.
Aggregate Impact Value
Purpose:- To evaluate resistance to impart of aggregate or
toughness of aggregate.
Apparatus:- 1. A cylindricalsteel cup of internal diameter 102 mm,
depth 50 mm and minimum thickness 6.3 mm.
2. Sieves:- 12.5mm, 10mm and 1.36mm.
3. A cylindricalmetal measure having an internaldiameter of 75 mm
and depth 50 mm for measuring aggregates.
4. One end rounded tamping rod 10 mm in diameter and 230 mm
long.
5. A balanceof capacity not less than 500 g, and readableand
accurate up to 0.1 g.
6. A metal hammer or tup weighting 13.5 to 14.0 kg the lower end is
cylindricalin shape, is 50 mm long, 100.0 mm in diameter, with a 2
mm chamfer at the lower edge and case hardened. The hammer is
arranged in such a way that it should slide freely between vertical
guides and be concentric with the cup. It is arranged that the free
fall of the hammer should be within 380±5
Procedure of Aggregate Impact value test:-
The test sample: normallyaggregates sized 10.0 mm to 12.5 mm. the
aggregates should be dried by heating at 100-110 0C for a period of
4 hours and cooled.
1. Sieve the material through 12.5mm and 10.0 mm IS sieves. The
aggregates passing through 12.5 mm sieve comprises the test
material.
2. 2.Then, just 1/3 rd depth of measuring cylinder is filled by
aggregate by pouring.
3. 3. Compact the material by giving 25 gentle blows with the
rounded end of the tamping rod in the cylinder.
4. 4.Two more layers are added in a similar manner, to make
cylinder full.
5. 5. Strike off the surplus aggregates.
6. 6. Determine the net weight of the aggregates to the nearest
gram (W1).
7. 7. Bring the impact machine to rest without wedging or packing
upon the level plate, block or floor, so that it is rigid and hammer
guide columnsare vertical.
8. 8. 25 gentle strokes with tamping rod are used to compact the
test sample by fixing the cup firmly in positionon the base of the
machine with placing the whole of the test sample in it.
9. 9. After that raise the hammer until its lower face is 380 mm
above the surface of the aggregate in the cup and allow it to fall
freely on the aggregate sample. 15 such blows at an intervalof
not less than one second between successive falls are acted on
it.
10. Remove the crushed aggregate from the cup and sieve it
through 2.36 mm IS sieves untilno further significant amount
passes in one minute. Weight the fraction passing the sieve to an
accuracy of 1 gm (W2). The fraction retained in
Note – If impart value is less than 10% then aggregate is said
to be exceptionally strong, if it is in of 10 to 20% then they are
good, and aggregates having impact value less than 35% are
considered satisfactory by IRC (Indian Road Congress)
Let total weight of dry sample taken = W1 gm &Weight of
portion passing 2.36 mm sieve = W2 gm
Then, Aggregate impact value = (W2 / W1 )*100 percent
Observations and Calculation
Compressive strength of
concrete cube test
Compressivestrength of concrete cube test is the most
important strength test for concrete. This single test gives an idea
about all the characteristics of concrete. Concrete are very strong
in compression. It is assumed that whole of the compression will
be taken up by the concrete at the time designing any RCC
structure.
Compressive strength of concrete dependson many factors such
as cement strength, water-cement ratio, qualityof concrete
material, qualitycontrol during the production of concrete etc.
Apparatus:-
. Weighting device
. Temper (16 mm dia & 600 mm height)
. Testing machine
. Three cubes (150 mm)
Procedure:-
1. Remove the specimen from the water after specified curing
time and wipe out excess water from the surface.
2. Take the dimension of the specimen to the nearest 0.2m
3. Clean the bearing surface of the testing machine
4. Place the specimen in the machine in such a manner that the
load shall be appliedto the opposite sides of the cube cast.
The strength of concrete increases with age. The table shows the strength of concrete at
different ages in comparison with the strength at 28 days after casting.
Age Strength percent
1 day 16%
3 days 40%
7 days 65%
14 days 90%
28 days 99%
5.Align the specimen centrally on the base plate of the machine.
6.Rotate the movable portion gently by hand so that it touches the
top surface of the specimen.
7. Apply the load graduallywithout shock and continuouslyat the rate
of 140 kg/cm2/minute till the specimen fails
8. Record the maximum load and note any
Compressive strength = (Load in N/ Area in mm2)=……………N/mm2
Observation & Calculation
Standard Consistently of cement
Apparatus:-
Vicat apparatus,
Balance,
Gauging Trowel,
Stop Watch, etc.
Procedure:- 1. The standard consistency of any cement is achieved
when cement permits the Vicat plunger to penetrate to a point 33 to
35 mm from the bottom of the Vicat mould.
2. First of all, take about 300 gm of cement into a tray and is mixed
with a known percentage of water by weight of cement. Let’s start
with 26% of water and then it is increased by 2% until the normal
consistency is achieved.
3. Prepare cement paste by adding 26% of water to 300 gm of cement
and mix it well with taking care that the time of mixing is not less than
3 minutes, nor more than 5 min and the mixing shall be completed
before any sign of setting occurs. The mixing time shall be counted
from the time of adding water to the dry cement until commencing to
fill the mold.
4. Fill the Vicat mold having 80mm diameter and 50mm height with
this paste, mold shall be resting upon a non-porous plate (glass plate).
After completely filling the mold with cement paste level the top
surface and remove any extra cement from the top and make it
smooth. Sometimes, shaking should be done to remove any extra air.
5. Place the cement paste-filled mold together with the non-porous
resting plate, under the consistency test plunger in the Vicat
apparatus.
Calculation:-
Weight of cement = 300 gm,
% of water = 26% to 38 % (normal consistency of OPC range between
this)
Take 26% of water for the test, then the amount of water to be
added in 300 gm of cement will be
= 300 x 26%
= 300 x (26/100)
= 78 ml
Then add 78 ml of water of 300 gm of cement, prepare well mix and
test.
If the test not successful, increase % of water as 28 %.
Take 28% of water for test, then the amount of water to be added in
300 gm of cement will be
= 300 x 28%
= 300 x (28/100)
= 84 ml
Then add 78 ml of water of 300 gm of cement prepare well mix and
test.
Procedure:-Slump test
Apparatus:- Metallicmould in the shape of a frustum of cone having
bottom diameter 20 cm (8 in), top diameter 10 cm (4 in) and height
30 cm (12in).
Steel tamping rod having 16 mm (5/8 in) diameter, 0.6 m (2 ft.) long
with bullet end.
Procedure:- During Slump test following steps are followed:
First of all, the internal surface of the mould is cleaned and free from
moisture and free from other old sets of concrete.
Then place the mould on the smooth horizontal, rigid, and non-
absorbant surface.
The mould is then filled with fresh concrete in four layers with taping
each layer 25 times by taping rod, and level the top surface with a
trowel.
Then the mould is slowly pulledin vertical and removed from
concrete, so as not to disturb the concrete cone.
This free concrete deform all the surface to subside due to the effect
of gravity.
That subsidence of concrete in the periphery is a SLUMP of concrete.
The height difference between the height of subsidence concrete
and mould cone in mm is ‘slump value of concrete’.
Place the cone next to the mound of wet concrete and put the steel
bar level on top of it, extending over the top of the mound.
Immediately measure the distance between the bottom of the steel
bar and the top of the concrete mound. The distance, measured to
the nearest ¼ inch is the concrete slump.
CASTING YARD
A casting yard is a confined place where all the concrete structures
like segments, I-girders/ beams etc are casted. The casting yard
brings factory controlledproduction techniques, efficiency, quality
control, and times savings to bridge construction. Fabricating
bridge segments in a separate area also removes casting operations
from the construction critical path and reduces overall construction
time.
Regardless of the project locationor size, a contractor’s casting
yard for bridge segments has several essential features.
These include: -delivery and storage areas,
-a concrete batch plant,
-a rebar cage assembly area,
-one or more casting cells,
-steam curing facilities,
-geometric control stations, and
-segment storage and handlingfacilities.
Segment:- The concrete ring is usuallycomposed of a variable
number of segments (from 4 to 10), depending on the tunnel
geometry and constraints
Field Segment
The Ganga path segmental bridge consists of two type of segments:-
• FIELD SEGMENT
• PIER SEGMENT
In one span 15 field segments and two pier segments are used.
Field segment is a part of span on which traffic will move and transfer
the load to
substructure.
It is 21000mm in length, 3030mm in width, 200mm in thickness and
3150mm in
height.
Its weight is 86 tonnes and requires 34m3 of concrete.
PIER SEGMENT
Through pier segment all the strands pass and hold the field
segment.
It is 21000mm in length, 2150mm in width, 200mm in thickness
and
3150mm in height.
It’s weight is 110 tonnes and requires 40m3 of concrete.
Some images in casting yard
COMPONENTS OF BRIDGE
PILE AND PILE CAP
PILE:- A pile is basicallya long cylinder of a strong material such as
concrete that is pushed into the ground to act as a steady support
for structures built on top of it.Pile foundations are used in the
following situations:When there is a layer of weak soil at the
surface. Thislayer cannot support the weight of the structure, so
the loadsof the structure have to bypassthis layer and be
transferred to the layer of stronger soil or rock that is below the
weak layer. When a structure has very heavy, concentrated loads,
such as in a high rise buildings,bridge, or water tank pile foundation
are used. Pile foundationsare capableof taking higher loadsthan
spread footings.
PILE CAP:- A pile cap is a thick concrete mat that rests on concrete
that have been driven into soft or unstable ground to provide a
suitable stable foundation.It usually forms part of the foundationof
a building,typicallya multi-story building,structure or support base
for heavy equipment. The cast concrete pile cap distributesthe load
of the buildinginto the piles.ons
PIER AND PIER CAP
PIER:- A pier is a raised structure typicallysupported by well-spaced
piles or pillars. Bridges, buildings, and walkways may all be supported
by piers.
PIER CAP:- The upper or bearing part of a bridge pier; usuallymade of
concrete or hard stone; designed to distribute concentrated loads
evenly over the area of the pier.
ABUTMENT
Abutment refers to the substructure at the ends of a bridge span or
dam whereon the structure’s superstructure rests or contacts.
Single-span bridges have abutmentsat each end which provide
vertical and lateralsupport for the bridge, as well as acting as
retaining walls to resist lateralmovement of the earthen fill of the
bridge approach. Multi-spanbridges require piers to support ends
of spans unsupported by abutments.
PEDESTAL
PEDESTAL A concrete pedestal is a compression element provided to
carry the loads from supported elements like columns, statues etc. It
is generally provided below the metal columns. In general pedestal
width is greater than its height.
The main functions of pedestal provision are as follows. To avoid
contact between soil and metal elements. To offer support for
elements at some elevationTo allow thinner foundationfooting.
BEARING
BEARING A bridge bearing is a component of a bridge which typically
provides a resting surface between bridge piers and the bridge deck.
The purpose of a bearing is to allow controlled movement and
thereby reduce the stresses involved.Movement could be thermal
expansion or contraction, or movement from other sources such as
seismic activity. There are several different types of bridge bearings
which are used depending on a number of different factors
includingthe bridge span. The oldest form of bridge bearing is
simply two platesresting on top of each other.
A common form of modern bridge bearing is the elastomeric bridge
bearing. Another type of bridge bearing is the mechanicalbridge
bearing. There are several types of mechanicalbridge bearing, such
as the pinned bearing, which in turn includes specific types such as
the rocker bearing, and the roller bearing. Another type of
mechanicalbearing is the fixed bearing, which allows rotation, but
not other forms of movement.e
SEISMIC STOPPER
Seismic stopper are mainlybased on the concept of vibrationcontrol
device (VCD) with capabilityof giving stable stage to the bridge and
mainly it absorbs the vibrationsand prevent the collapse of the
structure. Despite the fact that the stoppers, which restrain the
transverse seismic movements of the deck, are frequently used in
seismically isolatedbridge, the use of longitudinalstopper is
relativelyrare, mainly due to the large in-service constraint
movements of bridges.
GIRDER
A girder is a support beam used in construction. It is the main
horizontalsupport of a structure which supports smaller beams.
Girders often have an I-beam cross section composed of two load-
bearing flanges separated by a stabilizing web, but may also have a
Box shape,Z- shape, or other forms. A girder is commonly used to
buildbridges.
DESK, CRASH BARRIER & EXPANSION JOINT
DESK:- A deck is the surface of a bridge. A structural element of its
superstructure, it may be constructed of concrete, steel, open grating, or
wood. Sometimes the deck is covered a railroad bed and track, asphalt
concrete, or other form of pavement for ease of vehicle crossing. A
concrete deck may be an integral part of the bridge structure (T-beam or
double tee structure) or it may be supported with I-beams or steel girders.
CRASH BARRIER:-Crash/Traffic barriers keep vehicles within their roadway
and prevent them from colliding with dangerous obstacles such as boulders,
sign supports, trees, bridge abutments, buildings, walls, and large storm
drains, or from traversing steep (non- recoverable) slopes or entering deep
water. They are also installed within medians of divided highways to
prevent errant vehicles from entering the opposing carriageway of traffic
and help to reduce head-on collisions.cture
EXPANSION JOINT:-An expansion joint or movement joint is an assembly
designed to safely absorb the temperature-induced expansion and
contraction of construction materials, to absorb vibration, to hold parts
together, or to allow movement due to ground settlement or earthquakes.
They are commonly found between sections of buildings, bridges,
sidewalks, railway tracks, piping systems, ships, and other structures.
CONCLUSION
In conclusion, the training that I had already gone through is very
interesting, instructive and somehow challengingfor someone
that has zero-working experience. It gave me lots of benefit and
positive changes that enable me to enter the working
environment. Through this training I was able to gain new
insights and more comprehensive understanding about the real
working conditionand practice. The training has provided me
the opportunitiesto develop and improve my soft and functional
skills. All of this valuableexperience knowledge that I have
gained were not only acquired through the direct involvement in
task given but also through other aspect of the training such as
work observation, interaction with the staffs and local people.
From what I have undergone, I am hundred percent agree that
the training program have achieve its primary objective. It is the
platform to prepare for the students to face to real working life.
As a result of the program, I am more confident to enter the
working world and build my future career.
Deepak Kumar
Email – deep10121999@gmail.com
Mob - +919113785275

More Related Content

Similar to Ganga Path Project (marine drive project) Patna ,Bihar .pdf

Training report on railway structure at tata aldesa
Training report on railway structure at tata aldesaTraining report on railway structure at tata aldesa
Training report on railway structure at tata aldesa
Utsav Tripathy
 
HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...
HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...
HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...
L&W BUILDING SOLUTIONS PVT. LMT.
 

Similar to Ganga Path Project (marine drive project) Patna ,Bihar .pdf (20)

RCD INTERNSHIP REPORT
RCD INTERNSHIP REPORTRCD INTERNSHIP REPORT
RCD INTERNSHIP REPORT
 
Training report on railway structure at tata aldesa
Training report on railway structure at tata aldesaTraining report on railway structure at tata aldesa
Training report on railway structure at tata aldesa
 
Project report file on construction of flexible pavement by Harshit Prakash Garg
Project report file on construction of flexible pavement by Harshit Prakash GargProject report file on construction of flexible pavement by Harshit Prakash Garg
Project report file on construction of flexible pavement by Harshit Prakash Garg
 
om industrial training report.pptx
om industrial training report.pptxom industrial training report.pptx
om industrial training report.pptx
 
final review
final reviewfinal review
final review
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Project report - mechanical - internal pipe painting machine
Project report - mechanical - internal pipe painting machineProject report - mechanical - internal pipe painting machine
Project report - mechanical - internal pipe painting machine
 
Training project report NHAI by Amit Kumar
Training project report NHAI by Amit KumarTraining project report NHAI by Amit Kumar
Training project report NHAI by Amit Kumar
 
IRJET- Proposal of a New Bridge Across Pooyamkutty River
IRJET- Proposal of a New Bridge Across Pooyamkutty RiverIRJET- Proposal of a New Bridge Across Pooyamkutty River
IRJET- Proposal of a New Bridge Across Pooyamkutty River
 
“DESIGN AND DEVELOPMENT OF FIXTURE FOR FIXING BEARING IN CRANK-CASE
“DESIGN AND DEVELOPMENT OF FIXTURE FOR  FIXING BEARING IN CRANK-CASE“DESIGN AND DEVELOPMENT OF FIXTURE FOR  FIXING BEARING IN CRANK-CASE
“DESIGN AND DEVELOPMENT OF FIXTURE FOR FIXING BEARING IN CRANK-CASE
 
DMRC SUMMER INTERNSHIP REPORT
DMRC SUMMER INTERNSHIP REPORT DMRC SUMMER INTERNSHIP REPORT
DMRC SUMMER INTERNSHIP REPORT
 
HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...
HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...
HYDERABAD METRO RAIL - IMPACT ON EXISTING TRAFFIC, FUTURE TRAFFIC AND SUSTAIN...
 
Summer traning report BRPNNL by Amit Raj 14CE10005
Summer traning report BRPNNL by Amit Raj 14CE10005Summer traning report BRPNNL by Amit Raj 14CE10005
Summer traning report BRPNNL by Amit Raj 14CE10005
 
Gearless drive report 2014 lst
Gearless drive report 2014 lstGearless drive report 2014 lst
Gearless drive report 2014 lst
 
Design Intze Water tank mazor project Report
 Design Intze Water tank mazor project Report Design Intze Water tank mazor project Report
Design Intze Water tank mazor project Report
 
Electricity generation using speed breaker
Electricity generation using speed breakerElectricity generation using speed breaker
Electricity generation using speed breaker
 
Training under Gammon India Ltd. in Guwahati
Training under Gammon India Ltd. in GuwahatiTraining under Gammon India Ltd. in Guwahati
Training under Gammon India Ltd. in Guwahati
 
Summer internship report
Summer internship reportSummer internship report
Summer internship report
 
Plasser india internship report
Plasser india   internship reportPlasser india   internship report
Plasser india internship report
 
Abrasive belt grinder capstone report
Abrasive belt grinder   capstone reportAbrasive belt grinder   capstone report
Abrasive belt grinder capstone report
 

Recently uploaded

Genaihelloallstudyjamheregetstartedwithai
GenaihelloallstudyjamheregetstartedwithaiGenaihelloallstudyjamheregetstartedwithai
Genaihelloallstudyjamheregetstartedwithai
joceko6768
 
Dr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdf
Dr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdfDr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdf
Dr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdf
Dr. Nazrul Islam
 
Part 1.pptx Part 1.pptx Part 1.pptx Part 1.pptx
Part 1.pptx Part 1.pptx Part 1.pptx Part 1.pptxPart 1.pptx Part 1.pptx Part 1.pptx Part 1.pptx
Part 1.pptx Part 1.pptx Part 1.pptx Part 1.pptx
Sheldon Byron
 

Recently uploaded (20)

132. Acta Scientific Pharmaceutical Sciences
132. Acta Scientific Pharmaceutical Sciences132. Acta Scientific Pharmaceutical Sciences
132. Acta Scientific Pharmaceutical Sciences
 
D.El.Ed. College List -Session 2024-26.pdf
D.El.Ed. College List -Session 2024-26.pdfD.El.Ed. College List -Session 2024-26.pdf
D.El.Ed. College List -Session 2024-26.pdf
 
Genaihelloallstudyjamheregetstartedwithai
GenaihelloallstudyjamheregetstartedwithaiGenaihelloallstudyjamheregetstartedwithai
Genaihelloallstudyjamheregetstartedwithai
 
133. Reviewer Certificate in Advances in Research
133. Reviewer Certificate in Advances in Research133. Reviewer Certificate in Advances in Research
133. Reviewer Certificate in Advances in Research
 
Heidi Livengood Resume Senior Technical Recruiter / HR Generalist
Heidi Livengood Resume Senior Technical Recruiter / HR GeneralistHeidi Livengood Resume Senior Technical Recruiter / HR Generalist
Heidi Livengood Resume Senior Technical Recruiter / HR Generalist
 
0524.priorspeakingengagementslist-01.pdf
0524.priorspeakingengagementslist-01.pdf0524.priorspeakingengagementslist-01.pdf
0524.priorspeakingengagementslist-01.pdf
 
Day care leadership document it helps to a person who needs caring children
Day care leadership document it helps to a person who needs caring childrenDay care leadership document it helps to a person who needs caring children
Day care leadership document it helps to a person who needs caring children
 
0524.THOMASGIRARD_CURRICULUMVITAE-01.pdf
0524.THOMASGIRARD_CURRICULUMVITAE-01.pdf0524.THOMASGIRARD_CURRICULUMVITAE-01.pdf
0524.THOMASGIRARD_CURRICULUMVITAE-01.pdf
 
Dr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdf
Dr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdfDr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdf
Dr. Nazrul Islam, Northern University Bangladesh - CV (29.5.2024).pdf
 
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
 
Part 1.pptx Part 1.pptx Part 1.pptx Part 1.pptx
Part 1.pptx Part 1.pptx Part 1.pptx Part 1.pptxPart 1.pptx Part 1.pptx Part 1.pptx Part 1.pptx
Part 1.pptx Part 1.pptx Part 1.pptx Part 1.pptx
 
134. Reviewer Certificate in Computer Science
134. Reviewer Certificate in Computer Science134. Reviewer Certificate in Computer Science
134. Reviewer Certificate in Computer Science
 
Employee Background Verification Service in Bangladesh
Employee Background Verification Service in BangladeshEmployee Background Verification Service in Bangladesh
Employee Background Verification Service in Bangladesh
 
0524.THOMASGIRARD_SINGLEPAGERESUME-01.pdf
0524.THOMASGIRARD_SINGLEPAGERESUME-01.pdf0524.THOMASGIRARD_SINGLEPAGERESUME-01.pdf
0524.THOMASGIRARD_SINGLEPAGERESUME-01.pdf
 
135. Reviewer Certificate in Journal of Engineering
135. Reviewer Certificate in Journal of Engineering135. Reviewer Certificate in Journal of Engineering
135. Reviewer Certificate in Journal of Engineering
 
129. Reviewer Certificate in BioNature [2024]
129. Reviewer Certificate in BioNature [2024]129. Reviewer Certificate in BioNature [2024]
129. Reviewer Certificate in BioNature [2024]
 
太阳城娱乐-太阳城娱乐推荐-太阳城娱乐官方网站| 立即访问【ac123.net】
太阳城娱乐-太阳城娱乐推荐-太阳城娱乐官方网站| 立即访问【ac123.net】太阳城娱乐-太阳城娱乐推荐-太阳城娱乐官方网站| 立即访问【ac123.net】
太阳城娱乐-太阳城娱乐推荐-太阳城娱乐官方网站| 立即访问【ac123.net】
 
Widal Agglutination Test: A rapid serological diagnosis of typhoid fever
Widal Agglutination Test: A rapid serological diagnosis of typhoid feverWidal Agglutination Test: A rapid serological diagnosis of typhoid fever
Widal Agglutination Test: A rapid serological diagnosis of typhoid fever
 
欧洲杯投注网站-欧洲杯投注网站推荐-欧洲杯投注网站| 立即访问【ac123.net】
欧洲杯投注网站-欧洲杯投注网站推荐-欧洲杯投注网站| 立即访问【ac123.net】欧洲杯投注网站-欧洲杯投注网站推荐-欧洲杯投注网站| 立即访问【ac123.net】
欧洲杯投注网站-欧洲杯投注网站推荐-欧洲杯投注网站| 立即访问【ac123.net】
 
Master SEO in 2024 The Complete Beginner's Guide
Master SEO in 2024 The Complete Beginner's GuideMaster SEO in 2024 The Complete Beginner's Guide
Master SEO in 2024 The Complete Beginner's Guide
 

Ganga Path Project (marine drive project) Patna ,Bihar .pdf

  • 1. TRAINING/INTERNSHIPREPORT ON Construction of Elevated Road Corridor fromDighato Didarganj at Patna in the State of Bihar For Bihar State Road DevelopmentCorporationLtd. By Navayuga Engineering Company Limited (NECL) GAMMON INDIA LIMITED [EPC CONTRACTOR] AECOM Asia Company Ltd. In JV with Rodic Consultants Pvt. Ltd. [CONSULTANT] GANGA PATH PROJECT (Marine Drive Project of Patna)
  • 2. DECLARATION I hehereby that this ReCollege, titled “GANGA PATH PROJECT” submitted to the Bihar State Road Development Corporation Ltd. State of Bihar is a record of original work done by Deepak Kumar From Government Engineering College, Buxar (University Reg. No – 19101155012) under the guideline of Mr. Sailesh kumar & K Brahadeeswaran. The information and data given in the report is authentic to the best of my knowledge. I have not submitted the matter presented in this Dissertation anywhere for award of any other Degree. Deepak Kumar Under the guidelinesof Dy.General Manager (Tech.)
  • 3. INDEX 1 .About The Author 2. Acknowledgments 3. Project Information 4. Project Overview 5. Design Parameters 6. Locationon Map and SatelliteImage 7.QA/QC Lab a. Seive analysis test b. Aggregate Impact Value c. Compressive strength of Cube test d. StandardConsistency test of cement e. Slump test of concrete. 8. Casting Yard 9. Componentsof Bridge a. Pile and Pile Cap b. Pier and Pier Cap c. Abutment d. Pedestal e.Bearing f. Seismic Stopper g. Girder h.Deck, Crash Barrier & Expansionjoint 10. Conclusion 11. Ask any query
  • 4. ACKNOWLEDGMENTS The internship opportunityI had with Bihar State Road Development CorporationLtd. Was a great chance for learning and professional development. Therefore, I consider myself as a very lucky individual asI was provided with an opportunityto be a part of it. I am also grateful for having a chance to meet so many wonderful people and professionalswho led me though this internship period. Bearing in mind previousI am using this opportunityto express my deepest gratitude and special thanks to the MD of Bihar State Road Development CorporationLtd. Who in spite of being extraordinarily busy with her/his duties, took time out to hear, guide and keep me on the correct path and allowingme to carry out my project at their esteemed organizationand extending during the training. It is my radiant sentiment to place on record my best regards, deepest sense of gratitude to BrahadeeswaranK (Project Manager QA/QC),Rajeev Kumar (HR Officer), B V Swamiji (HR Officer), Sailesh Kumar (Asst. Lab Engg.), Pankaj Verma (Asst. Bridge Engg.) for their careful and precious guidance which were extremely valuablefor my study both theoretically and practically. I perceive as this opportunityas a big milestone in my career development. I will strive to use gained skillsand knowledge in the best possible way, and I will continueto work on their improvement, in order to attaindesired career objectives. Hope to continue cooperationwith all of you in the future. Sincerely Deepak Kumar
  • 5. PROJECT INFORMATION The Road Construction Department, Government of Bihar through Bihar State Road Development CorporationLimited (BSRDCL) (the “Authority”) Government of Biharundertaking, incorporated under [Indian]Companies Act, 1956, is engaged in the developmentof highwaysand as a part of this endeavor, the Authority has decided to undertake “Construction of Ganga Path including 7.6 km of elevated structure with dividedcarriageway of four lane standards with alliedfacilities from Digha to Didarganj (21.5km) project cost of ₹3,160 crores at Patna in the state of Bihar” through an Engineering,Procurement and Construction (the “EPC”) contract.This project will connect east to west of patna,from aiims-digha flyover to patna bakhtiyarpurhighway. 1. PURPOSE OF PROJECT • Traffic mobilityfor heavy and small vehicle • Decrease in traffic jams and reduce conjestion on current roads • Time saving in transportationand for commute • Decrease in pollution • Reduced accidents on current routes • Mesmerize view of nature with river front view • To provide connectivity to the sub-urban populationof patna
  • 6. PROJECT OVERVIEW ITEM DESCRIPTION Name of Client BIHAR STATEROAD DEVELOPMENT CORPORATIONLIMITED (A GovernmentOf BiharUndertaking) Name of Contractor Navayuga Engineering Company Limited (NECL) Authority engineer AECOM-RODIC consultants Pvt. Ltd. (JV) Value ofwork ₨ 3160 Crores Totallengthof project 21.50 Km. Length of highwayembankment 13.90 Km. Length of elevatedroad 7.60 Km. Length of service road 8.20 Km. Vehicularunder pass 06 Nos. Grade separatedinterchange 01 No. At-grade intersection 02 Nos. ROB 01 Nos. Box culverts 13 Nos. Footoverbridge 08 Nos. Tollplaza 02 Nos. Pedestrianfacilities Pedestrian walkway of 5m. width Truck laybyes 01 Nos.
  • 7. Design Speed (Ruling) 100 Km/hr Design speed (Minimum) 60 Km/hr Top WidthatFinished Road Level 40.50 m ProposedROW 120.00m Cross sectional Surface Carriageway 2x7.0=14.00 m elements main Kerb Shyness 2x0.5=1.00 m Carriageway Paved Shoulder 2x1.5=3.00 m Earthen Shoulder 1x1.5=1.50 m Central Median (Raised) 4.50 m Green Belt 2x5.0=10.00 m Cross sectional Service Road - elements service Cycle Track - roads and allied Walkway (Riverside) 5.00 m Separator 1.50 m Facilities Sub Total 40.50 m ElevatedHighwaySection Cross sectional Elevated Carriageway 2x7.5=15.00 m element:main Maintenance Path 2x1.5=3.00 m Carriageway Median 1.00 m Crash Barrier (W-Beam) 2x0.5=1.00 m Crash Barrier (Concrete) 2x0.5=1.00 m Sub Total 21.00 m DESIGN PARAMETERS
  • 8. Location Map and Satellite Image
  • 10. QA/QC LAB Sieve Analysis test 1. Sieve analysis test of 20mm aggregate Apparatus:- Sieve size of 40mm, 20mm, 10mm, 4.75mm & pan. 2. Sieve analysis test of 10mm aggregate Apparatus:- Sieve size of 12.5mm, 10mm, 4.75mm, 2.36mm & pan 3. Sieve analysistest of fine aggregate Apparatus:- Sieve size of 4.75mm, 2.36mm, 1.18mm, 600micron, 300micron, 150 micron.
  • 11.
  • 12. Aggregate Impact Value Purpose:- To evaluate resistance to impart of aggregate or toughness of aggregate. Apparatus:- 1. A cylindricalsteel cup of internal diameter 102 mm, depth 50 mm and minimum thickness 6.3 mm. 2. Sieves:- 12.5mm, 10mm and 1.36mm. 3. A cylindricalmetal measure having an internaldiameter of 75 mm and depth 50 mm for measuring aggregates. 4. One end rounded tamping rod 10 mm in diameter and 230 mm long. 5. A balanceof capacity not less than 500 g, and readableand accurate up to 0.1 g. 6. A metal hammer or tup weighting 13.5 to 14.0 kg the lower end is cylindricalin shape, is 50 mm long, 100.0 mm in diameter, with a 2 mm chamfer at the lower edge and case hardened. The hammer is arranged in such a way that it should slide freely between vertical guides and be concentric with the cup. It is arranged that the free fall of the hammer should be within 380±5 Procedure of Aggregate Impact value test:- The test sample: normallyaggregates sized 10.0 mm to 12.5 mm. the aggregates should be dried by heating at 100-110 0C for a period of 4 hours and cooled.
  • 13. 1. Sieve the material through 12.5mm and 10.0 mm IS sieves. The aggregates passing through 12.5 mm sieve comprises the test material. 2. 2.Then, just 1/3 rd depth of measuring cylinder is filled by aggregate by pouring. 3. 3. Compact the material by giving 25 gentle blows with the rounded end of the tamping rod in the cylinder. 4. 4.Two more layers are added in a similar manner, to make cylinder full. 5. 5. Strike off the surplus aggregates. 6. 6. Determine the net weight of the aggregates to the nearest gram (W1). 7. 7. Bring the impact machine to rest without wedging or packing upon the level plate, block or floor, so that it is rigid and hammer guide columnsare vertical. 8. 8. 25 gentle strokes with tamping rod are used to compact the test sample by fixing the cup firmly in positionon the base of the machine with placing the whole of the test sample in it. 9. 9. After that raise the hammer until its lower face is 380 mm above the surface of the aggregate in the cup and allow it to fall freely on the aggregate sample. 15 such blows at an intervalof not less than one second between successive falls are acted on it. 10. Remove the crushed aggregate from the cup and sieve it through 2.36 mm IS sieves untilno further significant amount passes in one minute. Weight the fraction passing the sieve to an accuracy of 1 gm (W2). The fraction retained in
  • 14. Note – If impart value is less than 10% then aggregate is said to be exceptionally strong, if it is in of 10 to 20% then they are good, and aggregates having impact value less than 35% are considered satisfactory by IRC (Indian Road Congress) Let total weight of dry sample taken = W1 gm &Weight of portion passing 2.36 mm sieve = W2 gm Then, Aggregate impact value = (W2 / W1 )*100 percent Observations and Calculation
  • 15. Compressive strength of concrete cube test Compressivestrength of concrete cube test is the most important strength test for concrete. This single test gives an idea about all the characteristics of concrete. Concrete are very strong in compression. It is assumed that whole of the compression will be taken up by the concrete at the time designing any RCC structure. Compressive strength of concrete dependson many factors such as cement strength, water-cement ratio, qualityof concrete material, qualitycontrol during the production of concrete etc. Apparatus:- . Weighting device . Temper (16 mm dia & 600 mm height) . Testing machine . Three cubes (150 mm) Procedure:- 1. Remove the specimen from the water after specified curing time and wipe out excess water from the surface. 2. Take the dimension of the specimen to the nearest 0.2m 3. Clean the bearing surface of the testing machine 4. Place the specimen in the machine in such a manner that the load shall be appliedto the opposite sides of the cube cast.
  • 16. The strength of concrete increases with age. The table shows the strength of concrete at different ages in comparison with the strength at 28 days after casting. Age Strength percent 1 day 16% 3 days 40% 7 days 65% 14 days 90% 28 days 99% 5.Align the specimen centrally on the base plate of the machine. 6.Rotate the movable portion gently by hand so that it touches the top surface of the specimen. 7. Apply the load graduallywithout shock and continuouslyat the rate of 140 kg/cm2/minute till the specimen fails 8. Record the maximum load and note any Compressive strength = (Load in N/ Area in mm2)=……………N/mm2 Observation & Calculation
  • 17. Standard Consistently of cement Apparatus:- Vicat apparatus, Balance, Gauging Trowel, Stop Watch, etc. Procedure:- 1. The standard consistency of any cement is achieved when cement permits the Vicat plunger to penetrate to a point 33 to 35 mm from the bottom of the Vicat mould. 2. First of all, take about 300 gm of cement into a tray and is mixed with a known percentage of water by weight of cement. Let’s start with 26% of water and then it is increased by 2% until the normal consistency is achieved. 3. Prepare cement paste by adding 26% of water to 300 gm of cement and mix it well with taking care that the time of mixing is not less than 3 minutes, nor more than 5 min and the mixing shall be completed before any sign of setting occurs. The mixing time shall be counted from the time of adding water to the dry cement until commencing to fill the mold. 4. Fill the Vicat mold having 80mm diameter and 50mm height with this paste, mold shall be resting upon a non-porous plate (glass plate). After completely filling the mold with cement paste level the top surface and remove any extra cement from the top and make it smooth. Sometimes, shaking should be done to remove any extra air. 5. Place the cement paste-filled mold together with the non-porous resting plate, under the consistency test plunger in the Vicat apparatus.
  • 18. Calculation:- Weight of cement = 300 gm, % of water = 26% to 38 % (normal consistency of OPC range between this) Take 26% of water for the test, then the amount of water to be added in 300 gm of cement will be = 300 x 26% = 300 x (26/100) = 78 ml Then add 78 ml of water of 300 gm of cement, prepare well mix and test. If the test not successful, increase % of water as 28 %. Take 28% of water for test, then the amount of water to be added in 300 gm of cement will be = 300 x 28% = 300 x (28/100) = 84 ml Then add 78 ml of water of 300 gm of cement prepare well mix and test.
  • 19. Procedure:-Slump test Apparatus:- Metallicmould in the shape of a frustum of cone having bottom diameter 20 cm (8 in), top diameter 10 cm (4 in) and height 30 cm (12in). Steel tamping rod having 16 mm (5/8 in) diameter, 0.6 m (2 ft.) long with bullet end. Procedure:- During Slump test following steps are followed: First of all, the internal surface of the mould is cleaned and free from moisture and free from other old sets of concrete. Then place the mould on the smooth horizontal, rigid, and non- absorbant surface. The mould is then filled with fresh concrete in four layers with taping each layer 25 times by taping rod, and level the top surface with a trowel. Then the mould is slowly pulledin vertical and removed from concrete, so as not to disturb the concrete cone. This free concrete deform all the surface to subside due to the effect of gravity. That subsidence of concrete in the periphery is a SLUMP of concrete. The height difference between the height of subsidence concrete and mould cone in mm is ‘slump value of concrete’.
  • 20. Place the cone next to the mound of wet concrete and put the steel bar level on top of it, extending over the top of the mound. Immediately measure the distance between the bottom of the steel bar and the top of the concrete mound. The distance, measured to the nearest ¼ inch is the concrete slump.
  • 21. CASTING YARD A casting yard is a confined place where all the concrete structures like segments, I-girders/ beams etc are casted. The casting yard brings factory controlledproduction techniques, efficiency, quality control, and times savings to bridge construction. Fabricating bridge segments in a separate area also removes casting operations from the construction critical path and reduces overall construction time. Regardless of the project locationor size, a contractor’s casting yard for bridge segments has several essential features. These include: -delivery and storage areas, -a concrete batch plant, -a rebar cage assembly area, -one or more casting cells, -steam curing facilities, -geometric control stations, and -segment storage and handlingfacilities. Segment:- The concrete ring is usuallycomposed of a variable number of segments (from 4 to 10), depending on the tunnel geometry and constraints
  • 22. Field Segment The Ganga path segmental bridge consists of two type of segments:- • FIELD SEGMENT • PIER SEGMENT In one span 15 field segments and two pier segments are used. Field segment is a part of span on which traffic will move and transfer the load to substructure. It is 21000mm in length, 3030mm in width, 200mm in thickness and 3150mm in height. Its weight is 86 tonnes and requires 34m3 of concrete.
  • 23. PIER SEGMENT Through pier segment all the strands pass and hold the field segment. It is 21000mm in length, 2150mm in width, 200mm in thickness and 3150mm in height. It’s weight is 110 tonnes and requires 40m3 of concrete.
  • 24. Some images in casting yard
  • 25. COMPONENTS OF BRIDGE PILE AND PILE CAP PILE:- A pile is basicallya long cylinder of a strong material such as concrete that is pushed into the ground to act as a steady support for structures built on top of it.Pile foundations are used in the following situations:When there is a layer of weak soil at the surface. Thislayer cannot support the weight of the structure, so the loadsof the structure have to bypassthis layer and be transferred to the layer of stronger soil or rock that is below the weak layer. When a structure has very heavy, concentrated loads, such as in a high rise buildings,bridge, or water tank pile foundation are used. Pile foundationsare capableof taking higher loadsthan spread footings.
  • 26. PILE CAP:- A pile cap is a thick concrete mat that rests on concrete that have been driven into soft or unstable ground to provide a suitable stable foundation.It usually forms part of the foundationof a building,typicallya multi-story building,structure or support base for heavy equipment. The cast concrete pile cap distributesthe load of the buildinginto the piles.ons
  • 27. PIER AND PIER CAP PIER:- A pier is a raised structure typicallysupported by well-spaced piles or pillars. Bridges, buildings, and walkways may all be supported by piers. PIER CAP:- The upper or bearing part of a bridge pier; usuallymade of concrete or hard stone; designed to distribute concentrated loads evenly over the area of the pier.
  • 28. ABUTMENT Abutment refers to the substructure at the ends of a bridge span or dam whereon the structure’s superstructure rests or contacts. Single-span bridges have abutmentsat each end which provide vertical and lateralsupport for the bridge, as well as acting as retaining walls to resist lateralmovement of the earthen fill of the bridge approach. Multi-spanbridges require piers to support ends of spans unsupported by abutments.
  • 29. PEDESTAL PEDESTAL A concrete pedestal is a compression element provided to carry the loads from supported elements like columns, statues etc. It is generally provided below the metal columns. In general pedestal width is greater than its height. The main functions of pedestal provision are as follows. To avoid contact between soil and metal elements. To offer support for elements at some elevationTo allow thinner foundationfooting.
  • 30. BEARING BEARING A bridge bearing is a component of a bridge which typically provides a resting surface between bridge piers and the bridge deck. The purpose of a bearing is to allow controlled movement and thereby reduce the stresses involved.Movement could be thermal expansion or contraction, or movement from other sources such as seismic activity. There are several different types of bridge bearings which are used depending on a number of different factors includingthe bridge span. The oldest form of bridge bearing is simply two platesresting on top of each other. A common form of modern bridge bearing is the elastomeric bridge bearing. Another type of bridge bearing is the mechanicalbridge bearing. There are several types of mechanicalbridge bearing, such as the pinned bearing, which in turn includes specific types such as the rocker bearing, and the roller bearing. Another type of mechanicalbearing is the fixed bearing, which allows rotation, but not other forms of movement.e
  • 31. SEISMIC STOPPER Seismic stopper are mainlybased on the concept of vibrationcontrol device (VCD) with capabilityof giving stable stage to the bridge and mainly it absorbs the vibrationsand prevent the collapse of the structure. Despite the fact that the stoppers, which restrain the transverse seismic movements of the deck, are frequently used in seismically isolatedbridge, the use of longitudinalstopper is relativelyrare, mainly due to the large in-service constraint movements of bridges.
  • 32. GIRDER A girder is a support beam used in construction. It is the main horizontalsupport of a structure which supports smaller beams. Girders often have an I-beam cross section composed of two load- bearing flanges separated by a stabilizing web, but may also have a Box shape,Z- shape, or other forms. A girder is commonly used to buildbridges.
  • 33. DESK, CRASH BARRIER & EXPANSION JOINT DESK:- A deck is the surface of a bridge. A structural element of its superstructure, it may be constructed of concrete, steel, open grating, or wood. Sometimes the deck is covered a railroad bed and track, asphalt concrete, or other form of pavement for ease of vehicle crossing. A concrete deck may be an integral part of the bridge structure (T-beam or double tee structure) or it may be supported with I-beams or steel girders. CRASH BARRIER:-Crash/Traffic barriers keep vehicles within their roadway and prevent them from colliding with dangerous obstacles such as boulders, sign supports, trees, bridge abutments, buildings, walls, and large storm drains, or from traversing steep (non- recoverable) slopes or entering deep water. They are also installed within medians of divided highways to prevent errant vehicles from entering the opposing carriageway of traffic and help to reduce head-on collisions.cture EXPANSION JOINT:-An expansion joint or movement joint is an assembly designed to safely absorb the temperature-induced expansion and contraction of construction materials, to absorb vibration, to hold parts together, or to allow movement due to ground settlement or earthquakes. They are commonly found between sections of buildings, bridges, sidewalks, railway tracks, piping systems, ships, and other structures.
  • 34. CONCLUSION In conclusion, the training that I had already gone through is very interesting, instructive and somehow challengingfor someone that has zero-working experience. It gave me lots of benefit and positive changes that enable me to enter the working environment. Through this training I was able to gain new insights and more comprehensive understanding about the real working conditionand practice. The training has provided me the opportunitiesto develop and improve my soft and functional skills. All of this valuableexperience knowledge that I have gained were not only acquired through the direct involvement in task given but also through other aspect of the training such as work observation, interaction with the staffs and local people. From what I have undergone, I am hundred percent agree that the training program have achieve its primary objective. It is the platform to prepare for the students to face to real working life. As a result of the program, I am more confident to enter the working world and build my future career.
  • 35. Deepak Kumar Email – deep10121999@gmail.com Mob - +919113785275