SlideShare a Scribd company logo
Error! Unknown document property name.
	
  
	
  
	
  
	
  
Author:	
  	
  
Samuel	
  Chuah	
  21642303	
  
	
  
	
   	
  
	
  
	
  
	
  
	
  
	
  
CIV	
  4210:	
  Final	
  Year	
  Project	
  	
  
	
  
Fabrication	
  and	
  Characterization	
  of	
  Carbon	
  Nanotube	
  
Epoxy	
  Nanocomposites:	
  	
  
Effect	
  of	
  the	
  Geometry	
  of	
  Carbon	
  Nanotubes	
  
ii	
  |	
  P a g e 	
  
Executive	
  Summary	
  
The	
   final	
   year	
   project	
   encompasses	
   two	
   fundamental	
   components	
   in	
   research.	
   Literature	
   review	
   and	
  
experiments	
   were	
   conducted	
   to	
   study	
   the	
   properties,	
   problems	
   and	
   potential	
   of	
   carbon	
   nanotubes	
  
(CNT).	
  A	
  lot	
  of	
  interest	
  is	
  generated	
  in	
  this	
  material	
  because	
  it	
  displays	
  exceptional	
  mechanical,	
  thermal	
  
and	
   electrical	
   properties.	
   However,	
   agglomeration	
   is	
   the	
   biggest	
   problem	
   that	
   limits	
   the	
   mechanical	
  
properties	
   of	
   CNT.	
   To	
   overcome	
   the	
   string	
   intermolecular	
   forces,	
   dispersion	
   during	
   fabrication	
   is	
  
necessary	
  to	
  enhance	
  the	
  mechanical	
  properties.	
  Chemical	
  and	
  physical	
  dispersion	
  can	
  be	
  performed	
  to	
  
achieve	
  this	
  goal.	
  	
  
The	
  conference	
  paper	
  was	
  produced	
  to	
  investigate	
  the	
  effect	
  of	
  carbon	
  nanotube	
  (CNT)	
  geometry	
  on	
  
quality	
  of	
  CNT	
  dispersion	
  in	
  solvent	
  media.	
  Results	
  show	
  that	
  the	
  CNT	
  diameter	
  has	
  a	
  significant	
  effect	
  
on	
  quality	
  of	
  its	
  dispersion	
  in	
  matrix.	
  It	
  demonstrates	
  that,	
  Bigger	
  the	
  CNT	
  diameter,	
  better	
  the	
  CNT	
  
dispersion	
  in	
  media.	
  It	
  is	
  because,	
  the	
  bigger	
  diameter	
  leads	
  to	
  less	
  interaction	
  energy	
  in	
  CNT	
  bundle	
  and	
  
make	
  it	
  easier	
  to	
  exfoliate	
  CNT	
  from	
  bundle.	
  In	
  contrast,	
  CNT	
  length	
  has	
  not	
  significant	
  influence	
  on	
  
quality	
  of	
  CNT	
  dispersion	
  in	
  matrix.	
  It	
  is	
  because,	
  although	
  long	
  CNTs	
  entangle	
  each	
  other	
  more	
  than	
  
short	
   CNTs,	
   entanglement	
   is	
   not	
   dominant	
   reason	
   and	
   with	
   constant	
   diameter	
   and	
   weight	
   quantity,	
  
short	
   or	
   long	
   CNT	
   bundle	
   have	
   the	
   same	
   interaction	
   energy	
   in	
   bundle.	
   Accordingly,	
   with	
   constant	
  
dispersion	
  energy	
  both	
  of	
  them	
  have	
  almost	
  equal	
  dispersion	
  quality	
  in	
  matrix.	
  We	
  hope	
  that	
  this	
  study	
  
will	
  provide	
  insight	
  into	
  further	
  understanding	
  of	
  the	
  intricacies	
  of	
  dispersing	
  CNTs	
  in	
  media.	
  
	
  
	
  
	
  
	
  
	
  
Acknowledgements	
  
I	
  would	
  like	
  to	
  thank	
  my	
  supervisor,	
  Asghar	
  who	
  taught	
  me	
  a	
  lot	
  on	
  CNTs	
  as	
  well	
  as	
  my	
  lecturer,	
  
Dr.	
  Wen	
  Hui	
  Duan	
  who	
  patiently	
  guided	
  me	
  throughout	
  the	
  year.	
  I	
  would	
  also	
  like	
  to	
  take	
  this	
  
opportunity	
  to	
  thank	
  my	
  family	
  for	
  their	
  unending	
  support.	
  
	
   	
  
iii	
  |	
  P a g e 	
  
Table	
  of	
  Contents	
  
Executive	
  Summary	
  ......................................................................................................................................	
  ii	
  
Acknowledgements	
  ......................................................................................................................................	
  ii	
  
Introduction	
  .................................................................................................................................................	
  1	
  
Problem	
  Statement	
  .................................................................................................................................	
  1	
  
Aim	
  ...........................................................................................................................................................	
  2	
  
Outline	
  .....................................................................................................................................................	
  2	
  
Literature	
  review	
  ..........................................................................................................................................	
  3	
  
General	
  ....................................................................................................................................................	
  3	
  
a.	
   Synthesis	
  of	
  carbon	
  nanotube	
  ......................................................................................................	
  3	
  
b.	
   Properties	
  of	
  carbon	
  nanotube	
  ....................................................................................................	
  3	
  
c.	
   Mechanics	
  of	
  carbon	
  nanotube	
  ...................................................................................................	
  4	
  
d.	
   Characteristics	
  of	
  epoxy	
  ...............................................................................................................	
  5	
  
e.	
   Epoxy-­‐Carbon	
  Nanotube	
  Composite	
  Characteristics	
  ...................................................................	
  5	
  
f.	
   Mechanical	
  Properties	
  .................................................................................................................	
  5	
  
g.	
   Themo	
  mechanical	
  Properties	
  .....................................................................................................	
  8	
  
Specific	
  Topic:	
  Dispersion	
  ........................................................................................................................	
  9	
  
a.	
   Fabrication	
  methods	
  ....................................................................................................................	
  9	
  
b.	
   Polymers	
  to	
  disperse	
  CNT	
  ..........................................................................................................	
  10	
  
c.	
   Uv-­‐Vis	
  to	
  monitor	
  dispersion	
  of	
  CNT	
  ..........................................................................................	
  10	
  
Experimental	
  ..............................................................................................................................................	
  11	
  
Experiment	
  1:	
  Procedure	
  .......................................................................................................................	
  11	
  
Experiment	
  1:	
  Results	
  and	
  discussion	
  ....................................................................................................	
  12	
  
a.	
   UV–vis	
  spectra	
  of	
  MWCNTs–BYK9076	
  solutions	
  ........................................................................	
  12	
  
a.	
   Effect	
  of	
  CNT	
  diameter	
  on	
  dispersion	
  ........................................................................................	
  14	
  
b.	
   Effect	
  of	
  CNT	
  length	
  on	
  CNT	
  dispersion	
  .....................................................................................	
  15	
  
Experiment	
  2:	
  Procedure	
  .......................................................................................................................	
  16	
  
Experiment	
  2:	
  Results	
  and	
  discussion	
  ....................................................................................................	
  17	
  
a.	
  High	
  speed	
  shear	
  mixing	
  ................................................................................................................	
  17	
  
b.	
  Ultrasonication:	
  ..............................................................................................................................	
  18	
  
c.	
  Amount	
  of	
  CNT	
  ...............................................................................................................................	
  19	
  
	
  
1	
  |	
  P a g e 	
  
Introduction	
  
Carbon	
  nanotube,	
  which	
  is	
  also	
  known	
  as	
  CNT	
  is	
  referred	
  to	
  the	
  small,	
  nano-­‐sized	
  cylindrical	
  
tubes	
  composed	
  of	
  sheets	
  of	
  carbon	
  atoms	
  which	
  was	
  discovered	
  by	
  Iijima	
  in	
  1991	
  (S.	
  Iijima	
  
1991).	
   At	
   present,	
   CNTs	
   are	
   hailed	
   as	
   the	
   building	
   blocks	
   of	
   nanotechnology	
   with	
   possible	
  
applications	
  in	
  the	
  near	
  future.	
  This	
  bold	
  statement	
  arises	
  from	
  the	
  exceptional	
  mechanical,	
  
thermal	
  and	
  electrical	
  properties	
  which	
  generate	
  interest	
  among	
  researchers	
  and	
  the	
  society	
  
alike	
   (Montazeri,	
   Montazeri	
   et	
   al.	
   2011).	
   CNT	
   holds	
   the	
   promise	
   of	
   delivering	
   superior	
  
composite	
   materials(Sun,	
   Warren	
   et	
   al.	
   2008),	
   electronic	
   appliances(Zhu,	
   Peng	
   et	
   al.	
   2004),	
  
lightweight	
  products	
  in	
  the	
  sports	
  and	
  transportation	
  industries(Yuanxin,	
  Pervin	
  et	
  al.	
  2007).	
  In	
  
relation	
  to	
  the	
  potential	
  application	
  in	
  the	
  construction	
  industry,	
  CNT	
  mechanical	
  properties	
  
such	
  as	
  the	
  high	
  elastic	
  modulus,	
  tensile	
  strength,	
  flexural	
  strength	
  and	
  hardness	
  are	
  the	
  focus	
  
of	
  attention	
  because	
  of	
  its	
  immense	
  potential	
  as	
  a	
  reinforcement	
  (Young	
  Seok	
  and	
  Jae	
  Ryoun	
  
2005;	
  Zheng,	
  Zhang	
  et	
  al.	
  2006).	
  
	
  
Problem	
  Statement	
  
These	
  rolled	
  graphite	
  sheets	
  face	
  a	
  major	
  obstacle,	
  namely	
  the	
  tendency	
  to	
  agglomerate	
  and	
  
entangle.	
   Factors	
   contributing	
   to	
   this	
   agglomeration	
   phenomenon	
   include	
   the	
   atomically	
  
smooth	
  surfaces,	
  flexible	
  CNT	
  and	
  the	
  high	
  aspect	
  ratio	
  (Fukui,	
  Taninaka	
  et	
  al.	
  2007).	
  Moreover,	
  
CNTs	
  have	
  small	
  diameters	
  that	
  tend	
  to	
  form	
  bundle	
  structures	
  due	
  to	
  their	
  substantial	
  van	
  der	
  
Waals	
  interaction.	
  There	
  is	
  significant	
  dependence	
  of	
  the	
  thermal,	
  rheological,	
  and	
  mechanical	
  
properties	
   of	
   the	
   CNT	
   nanocomposites	
   on	
   the	
   concentration	
   and	
   dispersion	
   state	
   of	
   CNT.	
  
Literature	
   shows	
   CNT-­‐epoxy	
   nanocomposites	
   have	
   either	
   weaker	
   or	
   just	
   a	
   little	
   bit	
   higher	
  
mechanical	
  properties	
  compare	
  to	
  that	
  of	
  pure	
  epoxy	
  (Wladyka-­‐Przybylak,	
  Wesolek	
  et	
  al.	
  2011;	
  
Loos,	
   Yang	
   et	
   al.	
   2012).	
   CNT	
   poor	
   dispersion	
   and	
   weak	
   CNT-­‐matrix	
   interaction	
   are	
   being	
  
generally	
  described	
  as	
  the	
  cause	
  for	
  this	
  lack	
  of	
  enhancement.	
  Therefore,	
  good	
  dispersion	
  is	
  
necessary	
  to	
  realize	
  the	
  full	
  potential	
  of	
  the	
  CNT	
  mechanical	
  properties.	
  Different	
  methods	
  have	
  
been	
  investigated	
  to	
  efficiently	
  disperse	
  the	
  CNT	
  such	
  as	
  high	
  speed	
  shear	
  mixing,	
  calendaring,	
  
ultrasonication,	
   use	
   of	
   solvent	
   and	
   surfactant	
   (Rana,	
   Alagirusamy	
   et	
   al.	
   2009).	
   If	
   CNT	
   well	
  
dispersed,	
   the	
   potential	
   filler-­‐matrix	
   interface	
   area	
   is	
   huge,	
   and	
   a	
   perfect	
   control	
   of	
   the	
  
interfacial	
  interaction	
  is	
  crucial	
  for	
  obtaining	
  optimal	
  properties	
  (Vaisman,	
  Wagner	
  et	
  al.	
  2006).	
  	
  
	
  
	
  
	
  
2	
  |	
  P a g e 	
  
Aim	
  
The	
  goals	
  of	
  the	
  final	
  year	
  project	
  are	
  listed	
  as	
  follows:	
  
1. Study	
  the	
  characteristics	
  of	
  CNT	
  to	
  realize	
  its	
  full	
  potential	
  
2. Understand	
  the	
  role	
  of	
  carbon	
  nanotube	
  geometry	
  on	
  efficient	
  dispersion	
  
3. Harnessing	
  the	
  superior	
  properties	
  of	
  nanocarbon	
  in	
  the	
  construction	
  industry	
  
The	
  experiment	
  was	
  performed	
  to	
  investigate	
  the	
  effects	
  of	
  CNT	
  diameter	
  and	
  length	
  on	
  CNT	
  
dispersion	
  and	
  understand	
  the	
  role	
  of	
  carbon	
  nanotube	
  geometry	
  on	
  efficient	
  dispersion.	
  	
  
	
  
Outline	
  
This	
   report	
   provides	
   a	
   holistic	
   literature	
   review	
   concerning	
   the	
   synthesis,	
   fabrication	
   and	
  
properties	
  of	
  carbon	
  nanotube	
  to	
  gain	
  in-­‐depth	
  background	
  knowledge	
  on	
  the	
  research	
  topic.	
  
The	
   specific	
   topic	
   for	
   the	
   conference	
   paper	
   is	
   titled	
   “Carbon	
   nanotube	
   dispersion	
   in	
   solvent	
  
media:	
   Effect	
   of	
   carbon	
   nanotube	
   geometry”.	
   	
   The	
   next	
   section	
   describes	
   the	
   experiment	
  
conducted	
   during	
   this	
   semester	
   with	
   corresponding	
   results	
   and	
   discussion.	
   The	
   findings	
   are	
  
then	
  compiled	
  into	
  a	
  conference	
  paper.	
  
	
  
	
   	
  
3	
  |	
  P a g e 	
  
Literature	
  review	
  
The	
  literature	
  review	
  covers	
  two	
  aspects,	
  namely	
  a	
  general	
  knowledge	
  on	
  CNT	
  followed	
  by	
  a	
  
literature	
  review	
  on	
  the	
  specific	
  topic	
  of	
  CNT	
  dispersion.	
  
General	
  
a. Synthesis	
  of	
  carbon	
  nanotube	
  
During	
  the	
  early	
  90s,	
  carbon	
  nanotubes	
  were	
  first	
  synthesised	
  by	
  arc-­‐evaporation.	
  Similar	
  to	
  
electrolysis,	
  the	
  process	
  requires	
  two	
  pure	
  graphite	
  electrodes	
  and	
  a	
  power	
  supply	
  but	
  there	
  is	
  
no	
   electrolyte.	
   Instead,	
   the	
   chamber	
   is	
   filled	
   with	
   inert	
   gas	
   such	
   as	
   argon	
   or	
   helium	
   as	
   the	
  
graphite	
  anode	
  is	
  vapourised	
  and	
  deposited	
  on	
  the	
  cathode.	
  The	
  carbon	
  vapour	
  condenses	
  on	
  
the	
  cathode	
  to	
  form	
  deposits	
  of	
  nanotubes	
  (Jones,	
  et.	
  al.,	
  1996).	
  The	
  set-­‐up	
  is	
  in	
  Figure	
  1.	
  
	
  
Figure	
  1	
  Schematic	
  diagram	
  of	
  the	
  modified	
  arc	
  evaporation	
  apparatus	
  (Coll,	
  et.	
  al.,	
  1992)	
  
	
  
Nevertheless,	
   other	
   methods	
   can	
   be	
   employed	
   to	
   obtain	
   carbon	
   nanotubes.	
   Those	
   methods	
  
include	
  laser	
  ablation,	
  gas	
  phase	
  catalytic	
  growth	
  from	
  carbon	
  monoxide	
  and	
  chemical	
  vapour	
  
deposition	
  form	
  hydrocarbons	
  (Nikolaev	
  et.	
  al.,	
  1999).	
  	
  	
  	
  
b. Properties	
  of	
  carbon	
  nanotube	
  
Carbon	
   nanotube	
   is	
   touted	
   as	
   the	
   construction	
   material	
   of	
   the	
   future	
   because	
   of	
   their	
   high	
  
strength-­‐to-­‐weight	
  ratio.	
  	
  Pipes	
  et.	
  al	
  investigated	
  the	
  relationship	
  between	
  chiral	
  integers	
  and	
  
density,	
  while	
  establishing	
  the	
  density	
  of	
  carbon	
  nanotube	
  at	
  1.4g/cm3
	
  for	
  single-­‐walled	
  carbon	
  
nanotube	
   and	
   a	
   maximum	
   of	
   2.1	
   g/cm3
	
   (2003).	
   As	
   a	
   comparison,	
   steel	
   has	
   a	
   density	
   of	
  
7.84g/cm3
,	
  making	
  carbon	
  nanotube	
  an	
  interesting	
  proposition	
  especially	
  in	
  terms	
  of	
  material	
  
mobility	
  at	
  site.	
  	
  	
  	
  
4	
  |	
  P a g e 	
  
The	
  strength	
  and	
  stiffness	
  of	
  carbon	
  nanotube	
  are	
  best	
  described	
  by	
  their	
  high	
  tensile	
  strength	
  
and	
  elastic	
  modulus	
  respectively.	
  A	
  background	
  in	
  quantum	
  chemistry	
  is	
  required	
  to	
  explain	
  the	
  
unique	
   mechanical	
   property	
   of	
   carbon	
   nanotube.	
   	
   The	
   chemical	
   bonding	
   within	
   nanotubes	
  
consists	
  of	
  sp2
	
  bonds,	
  similar	
  to	
  those	
  of	
  graphite.	
  These	
  bonds	
  or	
  rehybridisations,	
  which	
  are	
  
stronger	
  than	
  the	
  sp3
	
  bonds	
  found	
  in	
  alkanes	
  enable	
  nanotubes	
  to	
  possess	
  superior	
  strength	
  
(Ebbesen,	
  1997).	
  	
  
In	
  addition,	
  carbon	
  nanotubes	
  are	
  good	
  thermal	
  conductors.	
  Kim,	
  et.	
  al.	
  demonstrated	
  that	
  the	
  
room-­‐temperature	
   thermal	
   conductivity	
   over	
   200	
   W/m	
   K	
   for	
   bulk	
   samples	
   of	
   single-­‐walled	
  
nanotubes	
   	
   whereas	
   3000	
   W/m	
   K	
   for	
   individual	
   multiwalled	
   nanotubes	
   (2001).	
   Additions	
   of	
  
nanotubes	
  to	
  epoxy	
  resin	
  can	
  double	
  the	
  thermal	
  conductivity	
  for	
  a	
  loading	
  of	
  only	
  1%,	
  showing	
  
that	
  nanotube	
  composite	
  materials	
  may	
  be	
  useful	
  for	
  thermal	
  management	
  applications	
  (Hone,	
  
2004).	
  	
  	
  
c. Mechanics	
  of	
  carbon	
  nanotube	
  
The	
  behaviour	
  of	
  carbon	
  nanotube	
  in	
  response	
  to	
  loading	
  is	
  the	
  next	
  focus	
  of	
  this	
  study.	
  This	
  
section	
  also	
  demonstrates	
  the	
  two	
  varieties	
  of	
  atomic	
  structure	
  which	
  differ	
  in	
  vector	
  notation	
  
as	
   shown	
   in	
   Figure	
   2.	
   Chirality	
   is	
   a	
   vector	
   that	
   describes	
   the	
   non-­‐identical	
   plane.	
   This	
  
characteristic	
  dictates	
  the	
  electrical	
  conductivity	
  and	
  torsional	
  resistance	
  of	
  the	
  specific	
  shell	
  of	
  
the	
  carbon	
  nanotube.	
  	
  
	
  
Figure	
  2	
  Illustrations	
  of	
  the	
  atomic	
  structure	
  of	
  (a)	
  an	
  arm	
  chair,	
  (b)	
  a	
  ziz-­‐zag	
  nanotube	
  and	
  (c)	
  
Chiral	
  vector.	
  (Makar	
  &	
  Beaudoin,	
  2003)	
  
	
  
Generally,	
   carbon	
   nanotubes	
   can	
   be	
   synthesised	
   as	
   single	
   walled	
   (SWNT)	
   or	
   multi	
   walled	
  
nanotubes	
  (MWNT).	
  The	
  defects	
  in	
  SWNTs	
  can	
  be	
  a	
  point	
  of	
  weakness	
  while	
  MWNTs	
  contains	
  
many	
  layers	
  that	
  can	
  compensate	
  defects	
  present	
  at	
  any	
  given	
  layer	
  (Harris,	
  2009).	
  Moreover,	
  
5	
  |	
  P a g e 	
  
SWNTs	
  are	
  susceptible	
  to	
  elastic	
  bucking	
  under	
  high	
  pressure	
  whereas	
  MWNTs	
  have	
  weak	
  van	
  
der	
  Waals	
  forces	
  but	
  negligible	
  contribution	
  to	
  both	
  the	
  tensile	
  and	
  shear	
  stiffness	
  (Thostenson	
  
et.	
  al.,	
  2001).	
  
d. Characteristics	
  of	
  epoxy	
  	
  	
  	
  
Epoxy	
   is	
   a	
   thermosetting	
   polymer	
   resulting	
   from	
   the	
   chemical	
   reaction	
   when	
   the	
   resin	
   and	
  
hardener	
  are	
  mixed	
  in	
  equal	
  proportions.	
  Unlike	
  thermoplastic	
  materials,	
  epoxy	
  is	
  hard,	
  rigid	
  
but	
  brittle.	
  In	
  the	
  epoxy-­‐carbon	
  nanotube	
  composite	
  specifically,	
  the	
  epoxy	
  plays	
  a	
  dual	
  role	
  of	
  
being	
  an	
  adhesive	
  resin	
  and	
  a	
  structural	
  matrix.	
  
The	
   physical	
   appearance	
   is	
   always	
   best	
   described	
   in	
   terms	
   of	
   the	
   chemistry	
   and	
   molecular	
  
interactions.	
  An	
  epoxide	
  group	
  is	
  mixed	
  with	
  bisphenol	
  to	
  produce	
  an	
  epoxy	
  resin.	
  The	
  amine	
  
groups	
  react	
  with	
  the	
  epoxide	
  group	
  to	
  form	
  a	
  covalent	
  bond	
  reinforced	
  with	
  dense	
  cross-­‐links	
  
arising	
   from	
   the	
   reaction	
   of	
   the	
   NH	
   group	
   and	
   epoxide	
   group.	
   Subsequently,	
   the	
   resulting	
  
polymer	
  is	
  a	
  thermoset	
  exhibiting	
  high	
  rigidity	
  and	
  strength	
  (Jin,	
  Qipeng	
  et	
  al.	
  2010).	
  
e. Epoxy-­‐Carbon	
  Nanotube	
  Composite	
  Characteristics	
  
Nanocomposites	
  are	
  engineering	
  materials	
  made	
  up	
  of	
  carbon	
  nanotube	
  core	
  embedded	
  in	
  an	
  
epoxy	
  resin.	
  Composites	
  are	
  vital	
  engineering	
  materials	
  because	
  the	
  composite	
  utilises	
  the	
  high	
  
strength	
   of	
   the	
   carbon	
   fibre	
   while	
   the	
   epoxy	
   matrix	
   serves	
   to	
   protect	
   the	
   reinforcement	
   in	
  
order	
  to	
  produce	
  a	
  composite	
  with	
  better	
  properties	
  better	
  than	
  its	
  individual	
  materials	
  (Philip	
  
&	
  Bolton,	
  2002).	
  However,	
  the	
  strength	
  of	
  the	
  new	
  material	
  depends	
  on	
  the	
  direction	
  of	
  the	
  
load	
  due	
  to	
  material	
  anisotropy.	
  	
  
The	
  application	
  of	
  epoxy	
  matrix	
  reinforced	
  with	
  carbon	
  nanotube	
  into	
  the	
  construction	
  industry	
  
is	
  still	
  premature	
  at	
  this	
  stage	
  due	
  to	
  several	
  shortcomings.	
  These	
  challenges	
  include	
  poorly	
  
dispersed	
  multiwalled	
  carbon	
  nanotube,	
  aligment	
  problems	
  and	
  weak	
  interfacial	
  bonding	
  in	
  the	
  
epoxy	
  matrix	
  (Kathi	
  et.	
  al.,	
  2009).	
  These	
  problems	
  are	
  a	
  direct	
  result	
  of	
  the	
  chemically	
  inert	
  
nature	
  of	
  the	
  carbon	
  nanotube.	
  Inevitably,	
  carbon	
  nanotubes	
  are	
  supplied	
  as	
  heavily	
  entangled	
  
bundles	
  which	
  results	
  in	
  agglomeration	
  issues.	
  
Therefore,	
  several	
  techniques	
  are	
  available	
  to	
  produce	
  a	
  successful	
  composite.	
  The	
  experiments	
  
performed	
   involve	
   manipulating	
   the	
   temperature	
   by	
   pre-­‐heating	
   and	
   the	
   application	
   of	
  
sonication	
  whereby	
  the	
  samples	
  are	
  prepared	
  during	
  the	
  fabrication	
  phase.	
  	
  
f. Mechanical	
  Properties	
  
Firstly,	
   the	
   density	
   and	
   hardness	
   of	
   the	
   nanocomposite	
   can	
   be	
   measured	
   easily	
   to	
   obtain	
   a	
  
general	
  idea	
  of	
  the	
  mechanical	
  properties.	
  According	
  to	
  Le,	
  et.	
  al.,	
  the	
  Vickers	
  hardness	
  is	
  8.5	
  at	
  
an	
  optimum	
  CNT	
  content	
  of	
  1.5-­‐2%	
  weight	
  (undated).	
  Zheng	
  et.al.	
  measured	
  the	
  density	
  of	
  the	
  
MWNT	
  which	
  lies	
  around	
  1.26kg/m3
.	
  The	
  bending	
  strength	
  is	
  recorded	
  within	
  a	
  range	
  of	
  30	
  to	
  
70	
   MPa	
   depending	
   on	
   the	
   method	
   of	
   treatment.	
   Meanwhile,	
   the	
   flexural	
   modulus	
   is	
  
6	
  |	
  P a g e 	
  
significantly	
  higher	
  at	
  1500	
  to	
  2400	
  MPa.	
  Figures	
  1	
  to	
  3	
  provides	
  a	
  graphical	
  representation	
  of	
  
the	
  mechanical	
  properties	
  based	
  on	
  Zheng	
  et.	
  al.’s	
  experiments	
  (2005).	
  	
  	
  
	
  
Figure	
  3	
  Correlation	
  between	
  MWNT	
  content	
  with	
  density	
  
	
  
	
  
Figure	
  4	
  Correlation	
  between	
  MWNT	
  content	
  with	
  bending	
  strength	
  
	
  
7	
  |	
  P a g e 	
  
	
  
Figure	
  5	
  Correlation	
  between	
  MWNT	
  content	
  with	
  bending	
  modulus	
  
	
  
The	
   Young’s	
   modulus	
   is	
   the	
   main	
   mechanical	
   characteristic	
   of	
   interest	
   since	
   it	
   is	
   related	
   to	
  
stiffness	
  as	
  well	
  as	
  describing	
  the	
  correlation	
  between	
  stress	
  and	
  strain	
  of	
  the	
  nanocomposite.	
  
Experimental	
  results	
  suggest	
  the	
  elastic	
  modulus	
  is	
  1	
  GPa	
  and	
  capable	
  of	
  reaching	
  up	
  to	
  1.29	
  
GPa	
  as	
  the	
  carbon	
  nanotibe	
  fibre	
  is	
  added	
  to	
  2%	
  by	
  weight	
  (Sun,	
  et.	
  al.,	
  2011).	
  Certainly,	
  carbon	
  
nanotubes	
   embedded	
   in	
   an	
   epoxy	
   matrix	
   displays	
   superior	
   properties	
   provided	
   several	
  
problems	
  are	
  mitiated.	
  
Composite	
   structural	
   properties	
   rely	
   on	
   the	
   characteristics	
   of	
   the	
   individual	
   components.	
  
Besides	
   the	
   compatibility	
   of	
   its	
   component	
   materials,	
   the	
   interfacial	
   adhesion	
   between	
   the	
  
carbon	
  nanotube	
  and	
  the	
  matrix	
  dictates	
  the	
  mechanical	
  properties	
  of	
  the	
  composite.	
  Effective	
  
load	
  transfer	
  between	
  the	
  carbon	
  nanotube	
  reinforcement	
  and	
  the	
  epoxy	
  matrix	
  is	
  crucial	
  in	
  
producing	
  a	
  strong	
  and	
  superior	
  composite.	
  Otherwise,	
  the	
  composite	
  mechanical	
  properties	
  
will	
   only	
   be	
   slightly	
   stronger	
   than	
   an	
   ordinary	
   weak	
   pure	
   epoxy.	
   Research	
   by	
   Lau	
   et.	
   al.	
  
suggested	
   that	
   the	
   mechanical	
   properties	
   of	
   the	
   composite	
   is	
   inferior	
   to	
   pure	
   epoxy	
   when	
  
excessive	
  di-­‐methylformamide	
  is	
  used	
  in	
  treating	
  the	
  carbon	
  nanotube	
  (2005).	
  In	
  addition,	
  the	
  
pull	
  out	
  of	
  carbon	
  nanotube	
  reinforcement	
  phenomenon	
  is	
  associated	
  to	
  the	
  weak	
  interface	
  
between	
  the	
  two	
  materials.	
  
Another	
  major	
  problem	
  is	
  the	
  dispersion	
  of	
  carbon	
  nanotube	
  in	
  the	
  matrix.	
  The	
  weak	
  Van	
  der	
  
Waals	
  forces	
  of	
  attraction	
  between	
  the	
  carbon	
  nanotube	
  graphene	
  layers	
  will	
  deteriorate	
  the	
  
properties	
  and	
  ductility	
  of	
  the	
  matrix	
  (Bai,	
  2003).	
  The	
  carbon	
  nanotube	
  reinforcement	
  has	
  a	
  
small	
  diameter	
  which	
  promotes	
  adhesion	
  with	
  the	
  epoxy	
  matrix	
  and	
  desirable	
  as	
  an	
  interface	
  
for	
  stress	
  transfer.	
  However,	
  the	
  downside	
  of	
  this	
  large	
  total	
  surface	
  area	
  is	
  strong	
  attractive	
  
forces	
  between	
  the	
  carbon	
  nanotube	
  fibres	
  are	
  induced	
  (Gojny,	
  et.	
  al.,	
  2005).	
  	
  	
  	
  
8	
  |	
  P a g e 	
  
g. Themo	
  mechanical	
  Properties	
  
Temperature	
   plays	
   a	
   significant	
   role	
   in	
   influencing	
   the	
   mechanical	
   properties	
   of	
   the	
  
nanocomposite.	
   The	
   inclusion	
   of	
   carbon	
   nanotube	
   fibres	
   will	
   enhance	
   the	
   glass	
   transition,	
  
melting	
  and	
  thermal	
  decomposition	
  temperatures	
  of	
  the	
  composite.	
  For	
  instance,	
  the	
  addition	
  
of	
  1%	
  by	
  weight	
  of	
  carbon	
  nanotube	
  raises	
  the	
  glass	
  transition	
  temperature	
  from	
  63	
  to	
  88⁰C.	
  
On	
  top	
  of	
  that,	
  the	
  thermal	
  conductivity	
  is	
  improved	
  by	
  70%	
  (Xiao-­‐Lin,	
  Yiu-­‐Wing	
  et	
  al.	
  2005).	
  
The	
  storage	
  modulus	
  G’	
  and	
  tanδ	
  curves	
  of	
  the	
  CNT/epoxy	
  nanocomposite	
  are	
  plotted	
  based	
  on	
  
the	
  results	
  of	
  the	
  DMA	
  analysis	
  carried	
  out	
  by	
  Yan,	
  Ming	
  et.al.	
  in	
  figure	
  4	
  (2008).	
  Tanδ	
  behaves	
  
as	
  an	
  indicator	
  if	
  the	
  relative	
  importance	
  of	
  both	
  viscous	
  and	
  elastic	
  behaviours	
  of	
  materials	
  
such	
  that	
  tanδ	
  <	
  1	
  tends	
  to	
  possess	
  elastic	
  behaviour	
  and	
  acts	
  like	
  a	
  solid	
  whereas	
  tanδ	
  >	
  1	
  
shows	
  viscosity	
  and	
  liquid-­‐like	
  (Jeefferie,	
  et.al.,	
  undated).	
  In	
  simpler	
  terms,	
  the	
  glass	
  transition	
  
temperatures	
  can	
  be	
  estimated	
  from	
  the	
  peaks	
  of	
  the	
  tanδ	
  curve	
  versus	
  CNT	
  content.	
  	
  	
  
	
  
Figure	
  6	
  Storage	
  Modulus	
  and	
  tanδ	
  as	
  a	
  function	
  of	
  temperature.	
  
The	
  epoxy	
  based	
  nanocomposites	
  are	
  popular	
  and	
  attractive	
  research	
  topic	
  but	
  the	
  dilemma	
  
lies	
  in	
  the	
  dispersion	
  of	
  CNTs	
  and	
  interfacial	
  bond	
  between	
  CNTs	
  and	
  epoxy.	
  There	
  are	
  multiple	
  
ways	
  to	
  counteract	
  those	
  problems.	
  The	
  solution	
  is	
  to	
  add	
  functionalised	
  group	
  to	
  the	
  surface	
  
of	
  CNTS.	
  The	
  use	
  of	
  a	
  nonionic	
  surfactant	
  is	
  proposed	
  to	
  treat	
  CNT	
  surface	
  for	
  nanocomposite	
  
fabrication,	
  which	
  can	
  act	
  as	
  a	
  bridge	
  between	
  CNTs	
  and	
  epoxy	
  matrix	
  without	
  disturbing	
  CNT	
  
structure	
   or	
   introducing	
   defects.	
   Another	
   method	
   to	
   improve	
   interfacial	
   adhesion	
   is	
   by	
  
mechanical	
  means	
  such	
  as	
  using	
  vibratory	
  methods	
  such	
  as	
  sonication.	
  Once	
  the	
  CNTs	
  are	
  will	
  
dispersed,	
   those	
   epoxy	
   based	
   composites	
   will	
   fulfill	
   its	
   potential	
   of	
   exhibiting	
   excellent	
  
mechanical,	
  electrical	
  and	
  thermal	
  properties.	
  
9	
  |	
  P a g e 	
  
Specific	
  Topic:	
  Dispersion	
  
a. Fabrication	
  methods	
  
Regarding	
  the	
  original	
  prediction,	
  the	
  carbon	
  nanotube	
  and	
  epoxy	
  composite	
  should	
  possess	
  
excellent	
   mechanical	
   properties	
   and	
   thermal	
   resistance	
   to	
   apply	
   as	
   an	
   effective	
   structural	
  
member.	
   The	
   application	
   of	
   epoxy	
   matrix	
   reinforced	
   with	
   carbon	
   nanotube	
   into	
   the	
  
construction	
   industry	
   is	
   still	
   premature	
   at	
   this	
   stage	
   due	
   to	
   several	
   shortcomings.	
   These	
  
challenges	
  that	
  are	
  well	
  documented	
  laments	
  the	
  unexpected	
  result	
  of	
  an	
  ineffective	
  composite	
  
as	
  a	
  result	
  of	
  poorly	
  dispersed	
  multiwalled	
  carbon	
  nanotube	
  and	
  weak	
  interfacial	
  bonding	
  in	
  the	
  
epoxy	
  matrix	
  (Amal	
  and	
  Mahmoud	
  2007).	
  	
  
Despite	
  the	
  aforementioned	
  shortcomings,	
  there	
  are	
  several	
  available	
  techniques	
  to	
  amend	
  the	
  
properties	
  of	
  epoxy	
  resin.	
  The	
  rule	
  of	
  thumb	
  centres	
  on	
  a	
  homogenous	
  distribution	
  of	
  epoxy	
  
resin	
   and	
   increase	
   the	
   interfacial	
   friction	
   with	
   epoxy	
   matrix.	
   The	
   first	
   method	
   is	
   the	
   direct	
  
dispersion,	
   commonly	
   known	
   as	
   mechanical	
   method.	
   Since	
   the	
   composite	
   is	
   in	
   nano	
   scale,	
  
devices	
   like	
   the	
   ultrasonicator	
   in	
   a	
   bath	
   or	
   probe	
   sonicator,	
   high	
   shear	
   mixing	
   in	
   a	
   solvent,	
  
calendaring	
  and	
  ball	
  milling	
  can	
  be	
  used	
  as	
  a	
  combination	
  in	
  series	
  or	
  parallel.	
  These	
  tools	
  are	
  
able	
   to	
   disentangle	
   CNTs	
   from	
   each	
   other	
   by	
   means	
   of	
   vibratory	
   energy	
   or	
   shear	
   force.	
  
Although	
  this	
  technique	
  successfully	
  separate	
  the	
  fibres	
  from	
  each	
  other,	
  a	
  substantial	
  amount	
  
of	
   energy	
   input	
   is	
   required	
   besides	
   resulting	
   in	
   damage	
   and	
   breakage	
   of	
   CNTs	
   into	
   smaller	
  
lengths	
  (Sohel	
  and	
  Mangala,	
  2009).	
  
Chemical	
   methods	
   create	
   surface	
   functionalities	
   in	
   CNTs	
   to	
   promote	
   the	
   intermolecular	
  
dispersion	
  by	
  improving	
  the	
  chemical	
  compatibility	
  or	
  interactions	
  with	
  a	
  polymer	
  or	
  solvent.	
  
Functionalities	
   refer	
   to	
   the	
   creation	
   of	
   functional	
   group	
   on	
   the	
   CNT	
   surface	
   to	
   encourage	
  
interfacial	
  interactions	
  (Young	
  Seok	
  and	
  Jae	
  Ryoun	
  2005).	
  Two	
  pertinent	
  issues	
  to	
  worry	
  about	
  
when	
   chemical	
   methods	
   are	
   used	
   is	
   the	
   aggressive	
   nature	
   of	
   treatment	
   and	
   unexpected	
  
interfacial	
  bonding	
  results.	
  The	
  most	
  effective	
  chemical	
  method	
  requires	
  concentrated	
  acids	
  in	
  
the	
  oxidation	
  process.	
  Then	
  again,	
  the	
  corrosiveness	
  of	
  acids	
  generates	
  structural	
  defects	
  by	
  
deteriorating	
  the	
  intrinsic	
  properties	
  of	
  CNTs,	
  creating	
  defects	
  and	
  reduces	
  the	
  aspect	
  ratios	
  of	
  
CNT	
   which	
   result	
   in	
   degraded	
   mechanical	
   properties.	
   Replacing	
   acids	
   with	
   milder	
  
functionalisation	
  processes	
  such	
  as	
  UV/ozone	
  treatment	
  or	
  plasmas	
  followed	
  by	
  amine,	
  silane	
  
or	
  fluorine	
  treatments	
  limits	
  the	
  active	
  sites	
  on	
  the	
  CNT	
  surface,	
  leading	
  to	
  a	
  low	
  efficiency	
  of	
  
functionalisation.	
  Milder	
  treatment	
  also	
  means	
  the	
  dispersibility	
  of	
  CNTs	
  in	
  the	
  composite	
  is	
  
marginally	
  altered.	
  	
  
Recently,	
  amino	
  functionalisation	
  is	
  devised	
  to	
  improve	
  the	
  dispersion	
  and	
  interfacial	
  adhesion	
  
of	
   CNTs	
   with	
   polymer	
   resins.	
   Demonstrations	
   suggest	
   strong	
   correlations	
   between	
   amino-­‐
functionalisation,	
  dispersion,	
  wettability,	
  interfacial	
  interaction	
  and	
  re-­‐agglomeration	
  behaviour	
  
of	
   CNTs	
   and	
   the	
   corresponding	
   mechanical	
   and	
   thermo-­‐mechanical	
   properties	
   of	
  
10	
  |	
  P a g e 	
  
nanocomposites	
  (Peng-­‐Cheng,	
  Shan-­‐Yin	
  et	
  al.	
  2010).	
  To	
  sum	
  up,	
  several	
  targets	
  can	
  be	
  met	
  by	
  
the	
  synthesis	
  of	
  amino	
  functionalisation.	
  The	
  uniform	
  dispersion	
  of	
  agglomerated	
  CNTs	
  in	
  the	
  
epoxy	
  resin	
  are	
  stabilised	
  and	
  dispersed	
  CNTs	
  under	
  high	
  temperature	
  applied	
  for	
  curing	
  can	
  be	
  
achieved	
  to	
  prevent	
  re-­‐agglomeration.	
  	
  
Application	
  of	
  surfactants	
  and	
  polymer	
  coatings	
  provides	
  an	
  interesting	
  prospect	
  to	
  disperse	
  
the	
  CNT	
  fibres.	
  Surfactant	
  treatment	
  is	
  widely	
  considered	
  as	
  the	
  best	
  choice	
  of	
  CNT	
  dispersion	
  
because	
  the	
  physical	
  adsorption	
  seldom	
  damages	
  the	
  CNT	
  structure,	
  nor	
  disrupts	
  the	
  π-­‐bond	
  of	
  
CNTs	
  and	
  thus,	
  the	
  electrical	
  properties	
  are	
  not	
  perturbed	
  (Sun,	
  Nicolosi	
  et	
  al.	
  2008).	
  Other	
  
novel	
   method	
   in	
   progress	
   worth	
   mentioning	
   to	
   cure	
   the	
   epoxy	
   is	
   by	
   exposing	
   the	
   epoxy	
   to	
  
gamma	
  radiation	
  and	
  electron	
  beam	
  in	
  order	
  to	
  improve	
  the	
  thermal	
  stability	
  and	
  yield	
  strength	
  
(Nho,	
   Kang	
   et	
   al.	
   2004).	
   In	
   essence,	
   continuous	
   efforts	
   are	
   required	
   to	
   explore	
   various	
  
treatment	
  methods	
  besides	
  improving	
  the	
  current	
  treatment	
  practices	
  to	
  make	
  the	
  CNT	
  and	
  
epoxy	
  a	
  successful	
  composite.	
  
b. Polymers	
  to	
  disperse	
  CNT	
  
The	
   literature	
   review	
   was	
   conducted	
   during	
   the	
   mid-­‐semester	
   break.	
   The	
   findings	
   of	
   the	
  
literature	
  review	
  were	
  presented	
  in	
  point	
  form	
  in	
  a	
  presentable	
  manner.	
  Refer	
  to	
  Appendix	
  A	
  
for	
  the	
  information	
  obtained.	
  
c. Uv-­‐Vis	
  to	
  monitor	
  dispersion	
  of	
  CNT	
  
The	
  literature	
  review	
  was	
  conducted	
  during	
  the	
  beginning	
  of	
  semester	
  2.	
  The	
  findings	
  of	
  the	
  
literature	
  review	
  were	
  presented	
  in	
  point	
  form	
  in	
  a	
  presentable	
  manner.	
  Refer	
  to	
  Appendix	
  B	
  
for	
  the	
  information	
  obtained.	
  
	
   	
  
11	
  |	
  P a g e 	
  
Experimental	
  
Several	
   experiments	
   were	
   performed	
   throughout	
   the	
   year.	
   However,	
   out	
   of	
   the	
   four	
  
experiments	
  performed,	
  only	
  one	
  is	
  selected	
  to	
  be	
  presented	
  in	
  a	
  conference	
  paper.	
  The	
  first	
  
experiment,	
   Experiment	
   1	
   describes	
   the	
   effect	
   of	
   carbon	
   nanotube	
   geometry	
   on	
   dispersion.	
  
Meanwhile,	
   Experiment	
   2	
   explains	
   the	
   effect	
   of	
   ultrasonication	
   and	
   amount	
   of	
   CNT	
   on	
   the	
  
composite	
  mechanical	
  properties.	
  	
  
Experiment	
  1:	
  Procedure	
  
Experiment	
  1	
  investigates	
  the	
  effect	
  of	
  CNT	
  geometry	
  on	
  dispersion.	
  In	
  this	
  study,	
  the	
  multi	
  
walled	
  carbon	
  nanotubes	
  (MWCNT)	
  used	
  was	
  supplied	
  by	
  NTP	
  Company.	
  Properties	
  of	
  used	
  
CNTs	
  are	
  tabulated	
  in	
  Table	
  1	
  and	
  SEM	
  images	
  of	
  CNTs	
  are	
  illustrated	
  in	
  Figure	
  7.	
  Dispersing	
  
agent	
  was	
  BYK9076,	
  an	
  Alkylammonium	
  salt	
  of	
  a	
  high	
  molecular	
  weight	
  copolymer	
  which	
  was	
  
kindly	
  offered	
  by	
  Nuplex	
  Resins	
  Company.	
  The	
  solvent	
  was	
  ethanol	
  with	
  99%	
  purity	
  from	
  Grale	
  
Scientific.	
  
Table	
  1:	
  CNTs	
  data	
  provided	
  by	
  manufacturer	
  
S-1020 L-1020 L-2040 L-4060
Main rang of
diameter (nm)
10-20 10-20 20-40 40-60
Length (μm) 1-2 5-15 5-15 5-15
Purity (%) ≥ 95 ≥ 95 ≥ 95 ≥ 95
Ash (wt %) ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2
Special surface
area (m2
/g)
40-300 40-300 40-300 40-300
Amorphous
carbon (%)
< 3 < 3 < 3 < 3
	
  
	
  
Figure	
  7:	
  SEM	
  image	
  of	
  used	
  MWCNT	
  in	
  this	
  research	
  A:	
  S1020,	
  B:	
  L1020,	
  C:	
  L2040,	
  D:	
  L4060	
  
12	
  |	
  P a g e 	
  
All	
  solutions	
  were	
  prepared	
  by	
  mixing	
  315.8	
  mg	
  CNT	
  with	
  40	
  ml	
  ethanol	
  and	
  79	
  mg	
  surfactant	
  in	
  
a	
  beaker.	
  Thereafter	
  the	
  resulting	
  solution	
  was	
  sonicated	
  about	
  1	
  hour	
  by	
  100	
  KJs	
  dispersion	
  
energy.	
   All	
   sonication	
   processes	
   were	
   carried	
   out	
   with	
   a	
   horn	
   sonicator	
   (VCX 500W)	
   with	
   a	
  
cylindrical	
   tip	
   (19	
   mm	
   end	
   cap	
   diameter).	
   The	
   output	
   power	
   was	
   fixed	
   at	
   around	
   25W.	
   To	
  
prevent	
  rising	
  the	
  mixture	
  temperature	
  the	
  beaker	
  of	
  solution	
  was	
  placed	
  in	
  a	
  water-­‐ice	
  bath	
  
during	
  sonication.	
  
UV–vis	
  measurements	
  were	
  carried	
  out	
  on	
  a	
  DR	
  5000	
  Spectrophotometer	
  with	
  a	
  wavelength	
  range	
  
of	
  190	
  to	
  1100	
  nm	
  and	
  Wavelength	
  accuracy	
  of	
  ±	
  1	
  nm	
  in	
  Wavelength	
  Range	
  200–900	
  nm.	
  Samples	
  
were	
  taken	
  after	
  the	
  sonication	
  process,	
  diluted	
  by	
  a	
  factor	
  of	
  35,	
  resulting	
  in	
  a	
  CNT	
  content	
  of	
  
0.15	
  mg,	
  and	
  measured	
  in	
  the	
  UV–Vis	
  spectrometer.	
  All	
  absorbance	
  intensities	
  are	
  used	
  after	
  
baseline	
   subtraction.	
   The	
   ethanol-­‐surfactant	
   solution	
   was	
   used	
   to	
   get	
   the	
   baseline	
   in	
  
corresponding	
  measurements.	
  For	
  each	
  test	
  3	
  samples	
  were	
  tested	
  and	
  the	
  average	
  of	
  results	
  
was	
  represented.	
  Scanning	
  electron	
  microscopy	
  (SEM)	
  morphology	
  was	
  studied	
  by	
  using	
  a	
  JEOL	
  
7001F	
  field	
  emission	
  SEM	
  operating	
  at	
  5	
  kV.	
  To	
  prepare	
  SEM	
  sample	
  a	
  drop	
  of	
  CNT	
  dispersed	
  in	
  
solution	
  was	
  deposited	
  on	
  a	
  silicon	
  substrate,	
  dried,	
  and	
  coated	
  with	
  1	
  nm	
  thickness	
  Pt.	
  
Experiment	
  1:	
  Results	
  and	
  discussion	
  
a. UV–vis	
  spectra	
  of	
  MWCNTs–BYK9076	
  solutions	
  
UV-­‐vis	
  spectroscopy	
  correlates	
  intensity	
  of	
  absorption	
  of	
  UV-­‐visible	
  radiation	
  to	
  the	
  amount	
  of	
  
substance	
  present	
  in	
  a	
  solution.	
  Individualized	
  CNTs	
  are	
  active	
  and	
  show	
  characteristics	
  bands	
  
in	
  the	
  UV	
  region.	
  Therefore	
  measured	
  absorbance	
  at	
  specific	
  wavelength	
  can	
  be	
  related	
  to	
  their	
  
degree	
   of	
   exfoliation(Grossiord,	
   Loos	
   et	
   al.	
   2007).	
   Bundled	
   CNTs	
   are	
   hardly	
   active	
   in	
   the	
  
wavelength	
   region	
   between	
   200	
   and	
   900	
   nm	
   which	
   is	
   most	
   probably	
   because	
   of	
   carrier	
   are	
  
tunnelling	
  between	
  the	
  nanotubes(Grossiord,	
  Loos	
  et	
  al.	
  2007).	
  Thus,	
  UV-­‐vis	
  is	
  an	
  ideal	
  method	
  
to	
   monitor	
   the	
   dispersion	
   of	
   CNT	
   in	
   the	
   organic	
   and	
   inorganic	
   solvent.	
   However,	
   this	
  
relationship	
  is	
  only	
  true	
  in	
  a	
  dilute	
  sample.	
  Dilution	
  decreases	
  the	
  concentration	
  of	
  CNT	
  so	
  that	
  
the	
  light	
  will	
  not	
  be	
  completely	
  blocked	
  off	
  by	
  the	
  suspension.	
  The	
  spectrophotometer	
  has	
  a	
  
light	
  source	
  emitting	
  light	
  covering	
  the	
  entire	
  visible	
  spectrum	
  and	
  the	
  near	
  ultraviolet,	
  covering	
  
a	
  range	
  of	
  200nm	
  to	
  800nm.	
  Monochromatic	
  light	
  is	
  passed	
  through	
  the	
  sample.	
  The	
  incident	
  
light	
   is	
   reduced	
   in	
   intensity	
   due	
   to	
   absorption,	
   reflection,	
   transmittance,	
   interference	
   and	
  
scattering	
  of	
  light.	
  
13	
  |	
  P a g e 	
  
	
  
Figure	
  8:	
  Normalized	
  UV-­‐vis	
  adsorption	
  spectrum	
  of	
  L-­‐4060	
  CNT	
  in	
  ethanol	
  (43	
  µg	
  ml-­‐1
)	
  at	
  power	
  
of	
  25	
  W.	
  
	
  
Figure	
   8	
   illustrates	
   a	
   normalized	
   UV-­‐vis	
   spectrum	
   of	
   L-­‐4060	
   CNT	
   in	
   ethanol	
   (43	
   µg	
   ml-­‐1)	
  
at	
  
continuous	
  power	
  of	
  25	
  W.	
  As	
  can	
  be	
  seen,	
  the	
  evaluation	
  of	
  the	
  degree	
  of	
  dispersion	
  of	
  CNTs	
  
in	
  ethanol	
  can	
  be	
  achieved	
  by	
  recording	
  the	
  UV-­‐vis	
  spectra	
  of	
  the	
  solution.	
  It	
  can	
  be	
  clearly	
  seen	
  
that	
   the	
   sample	
   shows	
   a	
   peak	
   at	
   about	
   260nm,	
   confirming	
   the	
   presence	
   of	
   successfully	
  
dispersed	
   CNTs.	
   At	
   this	
   point,	
   it	
   demonstrates	
   the	
   strong	
   absorption	
   by	
   dispersed	
   CNT.	
  	
  
Experiments	
   conducted	
   by	
   (Yu,	
   Grossiord	
   et	
   al.	
   2007)	
   also	
   reported	
   that	
   the	
   maximum	
  
absorbance	
  occurs	
  at	
  the	
  same	
  wavelength	
  of	
  260nm.	
  Absorbance	
  decreases	
  steadily	
  due	
  to	
  
scattering	
  in	
  the	
  lower	
  wavelength	
  range	
  after	
  peak	
  absorbance	
  at	
  about	
  260	
  nm.	
  In	
  this	
  case,	
  
Rayleigh	
   scattering	
   occurs	
   because	
   the	
   size	
   of	
   CNTs	
   is	
   small	
   compared	
   to	
   the	
   radiation	
  
wavelength.	
  	
  
It	
  is	
  worth	
  pointing	
  out	
  that	
  CNTs	
  can	
  be	
  effectively	
  dispersed	
  in	
  ethanol	
  solution	
  by	
  π-­‐stacking	
  
interaction.	
  The	
  ethanol	
  is	
  selected	
  over	
  many	
  other	
  solvents	
  to	
  homogeneously	
  disperse	
  the	
  
CNT	
  due	
  to	
  some	
  factors.	
  Mainly,	
  the	
  ethanol	
  solvent	
  does	
  not	
  interfere	
  with	
  the	
  absorption	
  
during	
  the	
  UV-­‐vis	
  test.	
  Moreover,	
  dispersion	
  can	
  be	
  attained	
  without	
  degrading	
  or	
  destroying	
  
the	
  CNTs,	
  unlike	
  acid	
  treatment.	
  
It	
  was	
  reported	
  in	
  the	
  literature	
  (Grossiord,	
  Loos	
  et	
  al.	
  2007;	
  Yu,	
  Grossiord	
  et	
  al.	
  2007)	
  that,	
  
during	
   the	
   sonication	
   process	
   the	
   relative	
   evolution	
   of	
   the	
   spectrum	
   	
   underneath	
   area	
   is	
  
proportional	
   to	
   the	
   relative	
   value	
   of	
   absorbance	
   at	
   a	
   specific	
   wavelength;	
   Therefore,	
   it	
   was	
  
decided	
  to	
  specify	
  the	
  absorbance	
  maximum	
  about	
  260	
  nm	
  and	
  to	
  plot	
  this	
  value	
  as	
  a	
  function	
  
of	
  the	
  total	
  sonication	
  energy	
  provided	
  to	
  disperse	
  CNT	
  in	
  solution.	
  	
  
14	
  |	
  P a g e 	
  
a. Effect	
  of	
  CNT	
  diameter	
  on	
  dispersion	
  
To	
  investigate	
  the	
  effect	
  of	
  CNT	
  diameter	
  on	
  quality	
  of	
  CNT	
  dispersion	
  in	
  media	
  three	
  CNTs	
  with	
  
different	
  diameter	
  were	
  tested.	
  CNTs	
  diameter	
  ranges	
  were	
  10-­‐20	
  nm,	
  20-­‐40	
  nm	
  and	
  40-­‐60	
  nm.	
  
All	
  CNTs	
  had	
  equal	
  length	
  range	
  of	
  5-­‐15	
  µm.	
  More	
  information	
  of	
  CNTs	
  is	
  tabulated	
  in	
  table	
  1.	
  
CNTs	
  were	
  dispersed	
  in	
  BYK9076-­‐ethanol	
  solution	
  as	
  explained	
  in	
  experimental	
  section	
  and	
  as	
  
prepared	
  solutions	
  were	
  used	
  for	
  UV-­‐vis	
  analysis.	
  
Figure	
  9	
  shows	
  that	
  the	
  smallest	
  CNT	
  diameter	
  of	
  10	
  to	
  20	
  nm	
  has	
  the	
  lowest	
  absorbance	
  which	
  
is	
  about	
  0.18.	
  However,	
  the	
  biggest	
  CNT	
  diameter	
  of	
  40	
  to	
  60	
  nm	
  has	
  the	
  highest	
  absorbance	
  of	
  
around	
  0.55	
  which	
  is	
  3-­‐fold	
  of	
  that	
  of	
  10	
  to	
  20	
  nm.	
  This	
  can	
  be	
  interpreted	
  as	
  a	
  CNT	
  with	
  small	
  
diameter	
  is	
  poorly	
  dispersed.	
  	
  Smaller	
  diameter	
  of	
  CNT	
  corresponds	
  to	
  a	
  large	
  surface	
  area.	
  This	
  
means	
  CNT	
  with	
  smaller	
  diameter	
  requires	
  more	
  surfactant	
  molecules	
  to	
  achieve	
  stable	
  
dispersion	
  compared	
  to	
  that	
  of	
  CNT	
  with	
  larger	
  diameter.	
  The	
  difficulty	
  in	
  dispersing	
  the	
  CNT	
  
with	
  small	
  diameter	
  arises	
  from	
  the	
  stronger	
  van	
  der	
  Waals	
  attraction.	
  In	
  addition,	
  more	
  energy	
  
is	
  necessary	
  to	
  overcome	
  the	
  CNT	
  interaction	
  energy	
  of	
  bundled	
  CNT	
  with	
  smaller	
  diameter	
  
compared	
  to	
  that	
  of	
  Sample	
  with	
  the	
  larger	
  diameter	
  in	
  this	
  experiment.	
  Therefore,	
  with	
  the	
  
constant	
  concentration	
  of	
  surfactant	
  and	
  energy	
  input	
  for	
  CNT	
  dispersion,	
  CNT	
  with	
  larger	
  
diameter	
  can	
  be	
  easily	
  dispersed	
  compared	
  to	
  CNT	
  with	
  smaller	
  diameter.	
  	
  
	
  
Figure	
  9:	
  Effect	
  of	
  CNT	
  diameter	
  on	
  CNT	
  dispersion	
  in	
  ethanol	
  solvent.	
  Normalized	
  height	
  of	
  the	
  UV-­‐vis	
  spectra	
  
peak	
  located	
  around	
  260	
  nm	
  wavelengths	
  for	
  3	
  different	
  examined	
  CNT	
  diameters,	
  bigger	
  the	
  diameter	
  better	
  the	
  
dispersion.	
  Top	
  left:	
  Evolution	
  of	
  the	
  colour	
  of	
  1%	
  wt	
  CNT	
  0.25%	
  wt	
  BYK9076	
  in	
  Ethanol	
  as	
  a	
  function	
  of	
  the	
  CNT	
  
diameter.	
  A:	
  10-­‐20	
  nm,	
  B:	
  20-­‐40	
  nm	
  and	
  C:	
  40-­‐60	
  nm	
  (solutions	
  are	
  diluted	
  by	
  a	
  factor	
  of	
  35).	
  
This	
  statement	
  is	
  in	
  agreement	
  with	
  visual	
  observation	
  of	
  dispersed	
  CNT	
  solution	
  in	
  top	
  left	
  
corner	
  of	
  Figure	
  3.	
  As	
  can	
  be	
  seen,	
  the	
  sample	
  A	
  which	
  is	
  10-­‐20	
  nm	
  CNT	
  solution	
  has	
  the	
  lightest	
  
colour	
  and	
  the	
  sample	
  C	
  with	
  40-­‐60	
  nm	
  CNT	
  has	
  the	
  darkest	
  colour.	
  It	
  means	
  that	
  40-­‐60	
  nm	
  
CNT	
  solution	
  has	
  more	
  suspended	
  CNT	
  nanoparticle	
  in	
  solution	
  compared	
  to	
  that	
  of	
  10-­‐20	
  nm	
  
solution.	
  
15	
  |	
  P a g e 	
  
b. Effect	
  of	
  CNT	
  length	
  on	
  CNT	
  dispersion	
  
The	
  influence	
  of	
  CNT	
  length	
  on	
  efficient	
  dispersion	
  of	
  CNT	
  has	
  been	
  investigated	
  in	
  this	
  section.	
  
To	
  do	
  this,	
  two	
  CNTs	
  with	
  different	
  lengths	
  but	
  the	
  same	
  diameter	
  were	
  chosen.	
  CNTs	
  were	
  S-­‐
1020	
  and	
  L-­‐1020	
  with	
  1-­‐2	
  µm	
  and	
  5-­‐15	
  µm	
  length	
  respectively	
  and	
  10-­‐20	
  nm	
  diameters.	
  More	
  
information	
  of	
  CNTs	
  is	
  provided	
  in	
  table	
  1.	
  Figure	
  4	
  illustrates	
  normalized	
  height	
  of	
  the	
  UV-­‐vis	
  
spectra	
   peak	
   located	
   around	
   260	
   nm	
   wavelength	
   for	
   2	
   different	
   examined	
   lengths,	
   and	
   also	
  
evolution	
  of	
  the	
  colour	
  of	
  1%	
  wt	
  CNT	
  0.25%	
  wt	
  BYK9076	
  in	
  Ethanol	
  as	
  a	
  function	
  of	
  the	
  CNT	
  
length.	
   As	
   can	
   be	
   seen,	
   both	
   1-­‐2	
   µm	
   and	
   5-­‐15	
   µm	
   length	
   CNTs	
   have	
   almost	
   the	
   same	
  
absorbance	
   value.	
   It	
   testifies	
   that	
   CNT	
   length	
   has	
   not	
   significant	
   effect	
   on	
   quality	
   of	
   CNT	
  
dispersion	
  in	
  matrix.	
  
	
  
Figure	
  10:	
  Effect	
  of	
  CNT	
  length	
  on	
  CNT	
  dispersion	
  in	
  ethanol	
  solvent.	
  Normalized	
  height	
  of	
  the	
  
UV-­‐vis	
  spectra	
  peak	
  located	
  around	
  260	
  nm	
  wavelength	
  for	
  2	
  different	
  examined	
  lengths,	
  Top	
  
right:	
  Evolution	
  of	
  the	
  colour	
  of	
  1%	
  wt	
  CNT	
  0.25%	
  wt	
  BYK9076	
  in	
  Ethanol	
  as	
  a	
  function	
  of	
  the	
  CNT	
  length.	
  Left:	
  1-­‐
2	
  µm,	
  right:	
  5-­‐15	
  µm	
  (solutions	
  are	
  diluted	
  by	
  a	
  factor	
  of	
  35).	
  	
  
Theoretically,	
  a	
  shorter	
  CNT	
  would	
  be	
  more	
  easily	
  dispersed	
  than	
  longer	
  CNT.	
  A	
  longer	
  CNT	
  will	
  
provide	
  a	
  larger	
  area	
  for	
  entanglement.	
  However,	
  the	
  dispersion	
  results	
  in	
  Figure	
  10	
  shows	
  that	
  
the	
  CNT	
  entanglement	
  is	
  negligible	
  and	
  the	
  surface	
  energy	
  is	
  dominant	
  obstacle	
  for	
  efficient	
  
dispersion.	
  CNT	
  length	
  has	
  a	
  negligible	
  influence	
  on	
  CNT	
  dispersion	
  compared	
  to	
  diameter.	
  It	
  is	
  
because;	
  the	
  total	
  Surface	
  area	
  to	
  volume	
  ratio	
  is	
  independent	
  from	
  CNT	
  length	
  but	
  proportion	
  
to	
   inverse	
   CNT	
   radius.	
   Therefore,	
   for	
   a	
   constant	
   CNT	
   content,	
   CNT	
   length	
   variation	
   has	
   not	
  
significant	
  effect	
  on	
  its	
  dispersion	
  efficiency.	
  	
  
Equivalent	
  amounts	
  of	
  short	
  or	
  long	
  CNT	
  with	
  the	
  same	
  diameter	
  have	
  equal	
  surface	
  area.	
  In	
  
the	
  other	
  hand,	
  the	
  equal	
  amounts	
  of	
  short	
  and	
  long	
  CNT	
  with	
  constant	
  diameter	
  have	
  the	
  
16	
  |	
  P a g e 	
  
same	
   interaction	
   energy	
   in	
   bundle.	
   Accordingly,	
   both	
   samples	
   need	
   the	
   same	
   value	
   of	
  
dispersion	
  energy	
  to	
  break	
  down	
  the	
  CNT	
  bundle.	
  Therefore,	
  as	
  Figure	
  10	
  demonstrate,	
  with	
  
the	
  same	
  provided	
  dispersion	
  energy	
  and	
  surfactant	
  short	
  and	
  long	
  CNT	
  have	
  almost	
  the	
  same	
  
quality	
  of	
  dispersion	
  in	
  solvent.	
  However,	
  the	
  point	
  here	
  is	
  that	
  although	
  CNT	
  length	
  has	
  not	
  
significant	
  effect	
  on	
  CNT	
  dispersion,	
  it	
  influences	
  the	
  aspect	
  ratio	
  of	
  CNT.	
  Since	
  CNT	
  aspect	
  ratio	
  
plays	
  a	
  key	
  role	
  on	
  reinforcement	
  role	
  of	
  CNT	
  in	
  CNT	
  nanocomposites	
  it	
  is	
  still	
  essential	
  to	
  use	
  
long	
  CNT	
  rather	
  than	
  short	
  CNT.	
  	
  
	
  
Experiment	
  2:	
  Procedure	
  
Three	
   additional	
   experiments	
   were	
   performed	
   to	
   investigate	
   the	
   factors	
   influencing	
   the	
  
strength	
  of	
  the	
  CNT-­‐epoxy	
  composite.	
  The	
  variables	
  to	
  be	
  investigated	
  are	
  the	
  effect	
  of	
  shear	
  
mixing,	
   ultrasonication	
   and	
   amount	
   of	
   CNT	
   (measured	
   in	
   terms	
   of	
   percent	
   mass)	
   on	
   the	
  
mechanical	
   properties.	
   These	
   mechanical	
   properties	
   include	
   Young’s	
   Modulus	
   and	
   tensile	
  
strength.	
  
Pure	
  epoxy	
  samples	
  (Epoxy:	
  Araldite	
  2011)	
  were	
  prepared	
  to	
  analyse	
  its	
  properties	
  as	
  a	
  resin.	
  
Since	
  the	
  weakness	
  of	
  a	
  composite	
  lies	
  in	
  its	
  adhesive	
  layer,	
  the	
  importance	
  of	
  investigating	
  the	
  
behavior	
  of	
  pure	
  epoxy	
  to	
  the	
  action	
  of	
  load	
  and	
  temperature	
  cannot	
  be	
  underestimated.	
  In	
  
addition,	
  MWCNTs	
  with	
  large	
  diameter	
  within	
  the	
  range	
  of	
  40	
  to	
  60	
  nm	
  are	
  embedded	
  in	
  the	
  
epoxy	
  matrix.	
  On	
  top	
  of	
  that,	
  the	
  scanning	
  electron	
  microscope	
  (SEM)	
  will	
  be	
  utilized	
  to	
  study	
  
the	
  fracture	
  surface.	
  	
  
Firstly,	
   either	
   pure	
   epoxy	
   or	
   CNT	
   composite	
   is	
   placed	
   into	
   a	
   mould	
   with	
   the	
   dimensions	
  
stipulated	
   in	
   Table	
   2	
   to	
   obtain	
   a	
   dog-­‐bone	
   shaped	
   sample.	
   This	
   is	
   in	
   conformance	
   with	
   the	
  
ASTM	
  International	
  Standards	
  and	
  the	
  dimensions	
  are	
  stated	
  in	
  Table	
  2.	
  Twenty-­‐four	
  similar	
  
samples	
   were	
   prepared	
   to	
   perform	
   several	
   tests	
   later.	
   The	
   samples	
   underwent	
   high	
   speed	
  
shear	
  mixer	
  and	
  ultrasonication	
  at	
  2000rpm	
  and	
  3500rpm	
  in	
  shear	
  mixer	
  as	
  well	
  as	
  15	
  and	
  30	
  
minutes	
  in	
  the	
  ultrasonicator	
  respectively.	
  	
  The	
  sample	
  was	
  left	
  to	
  cure.	
  Table	
  3	
  mentions	
  the	
  
type	
  of	
  CNT	
  fibre	
  used.	
  
	
  
Table	
  2	
  Dimension	
  of	
  sample	
  
Dimension	
   Length	
  (mm)	
  
Thickness	
   3	
  
Width	
   12.7	
  
Length	
   100	
  
Span	
   48-­‐50	
  
	
  	
  
17	
  |	
  P a g e 	
  
Table	
  3:	
  CNTs	
  data	
  provided	
  by	
  manufacturer	
  
S-1020 L-1020 L-2040 L-4060
Main rang of
diameter (nm)
10-20 10-20 20-40 40-60
Length (μm) 1-2 5-15 5-15 5-15
Purity (%) ≥ 95 ≥ 95 ≥ 95 ≥ 95
Ash (wt %) ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2
Special surface
area (m2
/g)
40-300 40-300 40-300 40-300
Amorphous
carbon (%)
< 3 < 3 < 3 < 3
Upon	
  completion	
  of	
  the	
  fabrication	
  process,	
  the	
  samples	
  are	
  ready	
  to	
  be	
  tested	
  to	
  failure,	
  also	
  
known	
   as	
   destructive	
   tests.	
   To	
   investigate	
   the	
   mechanical	
   properties	
   of	
   the	
   composite,	
   the	
  
tensile	
  is	
  performed	
  whereby	
  the	
  ASTM	
  D	
  638-­‐10	
  standard	
  will	
  be	
  used	
  as	
  a	
  guide.	
  The	
  Bluehill	
  
software	
  will	
  be	
  utilised	
  to	
  calibrate	
  the	
  strain	
  experienced	
  by	
  the	
  sample	
  when	
  it	
  is	
  loaded	
  to	
  
failure.	
  The	
  fracture	
  surface	
  is	
  then	
  observed	
  by	
  SEM	
  at	
  room	
  temperature	
  and	
  cold	
  freeze	
  by	
  
liquid	
  nitrogen.	
  
Experiment	
  2:	
  Results	
  and	
  discussion	
  
a.	
  High	
  speed	
  shear	
  mixing	
  
Fluid	
  undergoes	
  shear	
  when	
  one	
  area	
  of	
  fluid	
  travels	
  with	
  a	
  different	
  velocity	
  relative	
  to	
  an	
  
adjacent	
   area.	
   In	
   a	
   high	
   shear	
   mixer	
   the	
   tip	
   velocity,	
   or	
   speed	
   of	
   the	
   fluid	
   at	
   the	
   outside	
  
diameter	
  of	
  the	
  rotor,	
  will	
  be	
  higher	
  than	
  the	
  velocity	
  at	
  the	
  centre	
  of	
  the	
  rotor,	
  and	
  it	
  is	
  this	
  
velocity	
  difference	
  that	
  creates	
  shear.	
  This	
  shear	
  can	
  be	
  used	
  to	
  load	
  filler	
  such	
  as	
  nano	
  particle	
  
in	
  matrix.	
  Figures	
  5	
  to	
  7	
  show	
  the	
  comparison	
  between	
  stress-­‐strain	
  curves	
  of	
  pure	
  epoxy	
  with	
  
CNT-­‐epoxy	
  composite	
  using	
  high	
  shear	
  mixer.	
  
	
  
Figure	
  11	
  Tensile	
  stress-­‐strain	
  curve	
  of	
  CNT-­‐Epoxy	
  fabricated	
  by	
  shear	
  mixing	
  method	
  (left)	
  and	
  
Effect	
  of	
  tensile	
  speed	
  on	
  tensile	
  curve	
  (right)	
  
18	
  |	
  P a g e 	
  
This	
  method	
  couldn’t	
  produce	
  efficient	
  CNT-­‐Epoxy	
  composite	
  due	
  to	
  the	
  limitation	
  of	
  mixing	
  
speed.	
  The	
  pure	
  epoxy	
  demonstrates	
  a	
  ductile	
  behaviour	
  as	
  a	
  result	
  of	
  the	
  usage	
  of	
  an	
  overage	
  
hardener.	
  The	
  composite	
  has	
  a	
  marginally	
  higher	
  Young’s	
  Modulus	
  than	
  pure	
  epoxy	
  which	
  may	
  
be	
  the	
  direct	
  result	
  of	
  insufficient	
  mixing	
  speed.	
  Therefore,	
  shear	
  mixing	
  marginally	
  improves	
  
the	
  CNT	
  elastic	
  modulus	
  of	
  CNT.	
  	
  
	
  
b.	
  Ultrasonication:	
  
Ultrasonication	
  generates	
  alternating	
  low-­‐pressure	
  and	
  high-­‐pressure	
  waves	
  in	
  liquids,	
  enabling	
  
the	
   formation	
   and	
   violent	
   collapse	
   of	
   small	
   vacuum	
   bubbles.	
   The	
   cavitation	
   phenomenon	
  
causes	
   high	
   speed	
   impinging	
   liquid	
   jets	
   and	
   strong	
   hydrodynamic	
   shear-­‐forces.	
   The	
   induced	
  
effects	
   are	
   used	
   for	
   the	
   deagglomeration	
   and	
   milling	
   of	
   micrometre	
   and	
   nanometre-­‐size	
  
materials	
  in	
  matrix.	
  Figure	
  8	
  compares	
  the	
  stress-­‐strain	
  curves	
  of	
  pure	
  epoxy	
  with	
  CNT-­‐epoxy	
  
composite	
  using	
  ultrasonication.	
  
	
  
Figure	
  8:	
  Effect	
  of	
  sonication	
  energy	
  on	
  tensile	
  stress-­‐strain	
  curve	
  
Table	
  4	
  Effect	
  of	
  sonication	
  energy	
  on	
  mechanical	
  properties	
  of	
  CNT-­‐Epoxy	
  composite	
  
Dispersion	
  
Energy	
  (KJ)	
  
Tensile	
  Stress	
  Mean	
  
(Mpa)	
  
Ultimate	
  Strain	
  
Mean	
  (%)	
  
Elastic	
  Modulus	
  Mean	
  
(Mpa)	
  
60	
   37.91	
   13.52	
   1984.22	
  
90	
   39.33	
   10.86	
   2031.18	
  
120	
   38.17	
   11.26	
   1982.65	
  
180	
   35.35	
   7.87	
   1897.09	
  
	
  
Generally,	
  all	
  tensile	
  stress-­‐strain	
  curves	
  show	
  that	
  the	
  stress	
  increases	
  with	
  strain	
  till	
  a	
  peak	
  
value	
  is	
  reached	
  before	
  the	
  stress	
  decreases	
  slightly	
  until	
  it	
  reaches	
  a	
  plateau	
  as	
  the	
  load	
  is	
  
19	
  |	
  P a g e 	
  
continually	
   applied.	
   Similarly,	
   the	
   relationship	
   also	
   applies	
   to	
   the	
   dispersion	
   energy	
   versus	
  
elastic	
  modulus.	
  The	
  optimal	
  dispersion	
  energy	
  is	
  60	
  kJ	
  whereby	
  the	
  composite	
  elastic	
  modulus	
  
is	
   the	
   maximum.	
   At	
   this	
   stage,	
   energy	
   is	
   applied	
   mechanically	
   to	
   physically	
   disperse	
   the	
  
nanotubes	
   from	
   its	
   agglomerated	
   bundles.	
   In	
   other	
   words,	
   larger	
   dispersion	
   energy	
  
corresponds	
  to	
  a	
  higher	
  rate	
  of	
  dispersion.	
  However,	
  excessive	
  application	
  of	
  sonication	
  will	
  
result	
  in	
  damage	
  and	
  breakage	
  of	
  CNTs	
  into	
  smaller	
  lengths	
  (Rana,	
  Alagirusamy	
  et	
  al.	
  2009).	
  
Clearly,	
   degradation	
   in	
   tensile	
   stress	
   and	
   elastic	
   modulus	
   is	
   observed	
   when	
   the	
   dispersion	
  
energy	
  is	
  greater	
  than	
  60	
  kJ.	
  
c.	
  Amount	
  of	
  CNT	
  
The	
  tensile	
  test	
  is	
  performed	
  on	
  six	
  types	
  of	
  composite	
  with	
  varying	
  CNT	
  content	
  at	
  0,	
  0.1%,	
  
0.3%,	
  0.5%,	
  1%	
  and	
  1.5%.	
  The	
  stress-­‐strain	
  curves	
  of	
  all	
  six	
  cases	
  are	
  summarized	
  in	
  Figure	
  9	
  
while	
  their	
  corresponding	
  mechanical	
  property	
  values	
  are	
  stated	
  in	
  Table	
  4.	
  	
  
	
  
	
  
Figure	
  9:	
  Effect	
  of	
  CNT	
  percentage	
  on	
  tensile	
  stress-­‐strain	
  curve	
  
Table	
  4:	
  Effect	
  of	
  CNT	
  percentage	
  on	
  mechanical	
  properties	
  of	
  CNT-­‐Epoxy	
  composite	
  
CNT	
  percentage	
  
(%)	
  
Tensile	
  Stress	
  Mean	
  
(Mpa)	
  
Ultimate	
  Strain	
  Mean	
  
(%)	
  
Elastic	
  Modulus	
  
Mean	
  (Mpa)	
  
0.0	
   35.25	
   13.23	
   1737.66	
  
0.1	
   38.17	
   11.26	
   1982.65	
  
0.3	
   35.9	
   4.74	
   2001.67	
  
0.5	
   35.15	
   6.53	
   1853.66	
  
1.0	
   30.1	
   2.4	
   1734.21	
  
1.5	
   31.18	
   3.46	
   1878	
  
20	
  |	
  P a g e 	
  
The	
  mechanical	
  properties	
  of	
  the	
  composite	
  improve	
  as	
  the	
  amount	
  of	
  CNT	
  embedded	
  in	
  the	
  
matrix	
  increases.	
  The	
  optimal	
  percentage	
  of	
  CNT	
  is	
  0.3%	
  in	
  this	
  experiment	
  and	
  the	
  results	
  are	
  
supported	
  by	
  Yuanxin	
  et.	
  al.	
  (2007).	
  The	
  apparent	
  decrease	
  in	
  mechanical	
  properties	
  is	
  best	
  
described	
  in	
  terms	
  of	
  the	
  molecular	
  interactions	
  between	
  the	
  CNT.	
  The	
  weak	
  Van	
  der	
  Waals	
  
forces	
   of	
   attraction	
   between	
   the	
   carbon	
   nanotube	
   graphene	
   layers	
   will	
   deteriorate	
   the	
  
properties	
   and	
   ductility	
   of	
   the	
   matrix	
   (Bai	
   2003).	
   The	
   carbon	
   nanotube	
   reinforcement	
   has	
   a	
  
small	
  diameter	
  which	
  promotes	
  adhesion	
  with	
  the	
  epoxy	
  matrix	
  and	
  desirable	
  as	
  an	
  interface	
  
for	
  stress	
  transfer.	
  However,	
  the	
  downside	
  of	
  this	
  large	
  total	
  surface	
  area	
  is	
  strong	
  attractive	
  
forces	
  between	
  the	
  carbon	
  nanotube	
  fibres	
  are	
  induced	
  (Gojny,	
  Wichmann	
  et	
  al.	
  2005).	
  When	
  
the	
  amount	
  of	
  CNT	
  is	
  increased,	
  more	
  CNT	
  fibres	
  are	
  present	
  to	
  form	
  bundles	
  via	
  molecular	
  
attraction.	
  This	
  reagglomeration	
  scenario	
  is	
  not	
  ideal	
  as	
  the	
  CNT	
  can	
  experience	
  a	
  failure	
  mode	
  
called	
  pull-­‐out	
  of	
  fibres.	
  	
  Gojny	
  et.	
  al.	
  also	
  experienced	
  the	
  same	
  phenomenon	
  and	
  concluded	
  
that	
  the	
  discrepancy	
  is	
  a	
  result	
  of	
  the	
  variation	
  in	
  quality	
  of	
  dispersion	
  in	
  all	
  nanocomposite	
  
samples	
   after	
   performing	
   sonication	
   (2005).	
   The	
   upper	
   limit	
   to	
   the	
   addition	
   of	
   CNT	
   is	
   4%	
  
because	
  the	
  nanotube	
  content	
  would	
  be	
  saturated	
  and	
  this	
  leads	
  to	
  a	
  significant	
  increase	
  in	
  
viscosity	
  that	
  causes	
  void	
  defects	
  in	
  the	
  composite	
  (Zhu,	
  Peng	
  et	
  al.	
  2004).	
  
Conclusion	
  
In	
  the	
  beginning	
  of	
  the	
  year,	
  a	
  comprehensive	
  literature	
  review	
  and	
  experiments	
  were	
  conducted	
  to	
  
study	
   the	
   properties,	
   problems	
   and	
   potential	
   of	
   carbon	
   nanotubes	
   (CNT).	
   Despite	
   its	
   exceptional	
  
mechanical,	
   thermal	
   and	
   electrical	
   properties,	
   agglomeration	
   is	
   the	
   biggest	
   problem	
   that	
   limits	
   the	
  
mechanical	
   properties	
   of	
   CNT.	
   To	
   overcome	
   the	
   string	
   intermolecular	
   forces,	
   dispersion	
   during	
  
fabrication	
  is	
  necessary	
  to	
  enhance	
  the	
  mechanical	
  properties.	
  Experiments	
  using	
  chemical	
  and	
  physical	
  
dispersion	
  were	
  performed	
  to	
  achieve	
  this	
  goal.	
  Several	
  experiments	
  were	
  conducted	
  to	
  investigate	
  the	
  
possible	
  factors	
  that	
  may	
  improve	
  dispersion	
  in	
  CNT	
  and	
  ultimately	
  improve	
  its	
  mechanical	
  properties.	
  	
  
The	
  second	
  semester	
  is	
  focused	
  on	
  the	
  effect	
  of	
  CNT	
  geometry	
  on	
  efficiency	
  of	
  CNT	
  dispersion	
  in	
  media.	
  
Results	
   show	
   that	
   CNT	
   diameter	
   has	
   significant	
   influence	
   on	
   quality	
   of	
   CNT	
   dispersion	
   in	
   media,	
   the	
  
bigger	
  diameter	
  the	
  better	
  CNT	
  exfoliation	
  in	
  matrix.	
  In	
  contrast,	
  CNT	
  length	
  has	
  insignificant	
  influence	
  
on	
  quality	
  of	
  CNT	
  dispersion	
  in	
  matrix.	
  In	
  mathematical	
  terms,	
  the	
  total	
  Surface	
  area	
  to	
  volume	
  ratio	
  is	
  
independent	
   from	
   CNT	
   length	
   but	
   proportional	
   to	
   inverse	
   CNT	
   radius.	
   Therefore,	
   for	
   a	
   constant	
   CNT	
  
content,	
   CNT	
   length	
   variation	
   converse	
   to	
   radius	
   variation	
   has	
   no	
   significant	
   effect	
   on	
   its	
   dispersion	
  
efficiency.	
  
	
   	
  
21	
  |	
  P a g e 	
  
References	
  
1. Amal,	
  M.	
  K.,	
  Esawi	
  and	
  M.	
  Mahmoud,	
  Farag	
  (2007).	
  "Carbon	
  Nanotube	
  Reinforced	
  Composites:	
  
Potential	
  and	
  Current	
  Challenges."	
  Composites	
  Elsevier(28):	
  8.	
  
2. Bai,	
  J.	
  (2003).	
  "Evidence	
  of	
  the	
  reinforcement	
  role	
  of	
  chemical	
  vapour	
  deposition	
  multi-­‐walled	
  
carbon	
  nanotubes	
  in	
  a	
  polymer	
  matrix."	
  Carbon	
  41(6):	
  1325-­‐1328.	
  
3. Fukui,	
  N.,	
  A.	
  Taninaka,	
  et	
  al.	
  (2007).	
  "Placing	
  and	
  Imaging	
  Individual	
  Carbon	
  Nanotubes	
  on	
  Cu	
  
(111)	
  Clean	
  Surface	
  Using	
  In	
  Situ	
  Pulsed-­‐Jet	
  Deposition-­‐STM	
  Technique."	
  Journal	
  of	
  Nanoscience	
  
and	
  Nanotechnology	
  7(12):	
  4267-­‐4271.	
  
4. Gojny,	
  F.	
  H.,	
  M.	
  H.	
  G.	
  Wichmann,	
  et	
  al.	
  (2005).	
  "Influence	
  of	
  different	
  carbon	
  nanotubes	
  on	
  the	
  
mechanical	
  properties	
  of	
  epoxy	
  matrix	
  composites	
  -­‐	
  A	
  comparative	
  study."	
  Composites	
  Science	
  
and	
  Technology	
  65(15-­‐16	
  SPEC.	
  ISS.):	
  2300-­‐2313.	
  
5. Grossiord,	
  N.,	
  J.	
  Loos,	
  et	
  al.	
  (2007).	
  "Conductive	
  carbon-­‐nanotube/polymer	
  composites:	
  
Spectroscopic	
  monitoring	
  of	
  the	
  exfoliation	
  process	
  in	
  water."	
  Composites	
  Science	
  and	
  
Technology	
  67(5):	
  778-­‐782.	
  
6. Jin,	
  Z.,	
  G.	
  Qipeng,	
  et	
  al.	
  (2010).	
  "Thermal	
  and	
  Mechanical	
  Properties	
  of	
  a	
  Dendritic	
  Hydroxyl-­‐
Functional	
  Hyperbranched	
  Polymer	
  and	
  Tetrafunctional	
  Epoxy	
  Resin	
  Blends."	
  Journal	
  of	
  Polymer	
  
Science,	
  Part	
  B:	
  Polymer	
  Physics	
  48(4):	
  417-­‐424.	
  
7. Jones,	
  J.	
  M.,	
  Malcolm,	
  R.	
  P.,	
  Thoma,	
  K.	
  M.	
  and	
  Bottrell,	
  S.	
  H.,	
  (1996),	
  Anode	
  deposit	
  
formed	
  during	
  the	
  carbon-­‐arc	
  evaporation	
  of	
  graphite	
  for	
  the	
  synthesis	
  of	
  fullerenes	
  and	
  
carbon	
  nanotubes,	
  Vol.	
  34,	
  Pergamon	
  Press	
  Inc,	
  Tarrytown,	
  NY,	
  United	
  States	
  
8. Coll,	
  B.F.,	
  Sathrum,	
  P.,	
  Aharonov,	
  R.	
  and	
  Tamor,	
  M.A.,	
  (1992)	
  Diamond-­‐like	
  carbon	
  films	
  
synthesized	
  by	
  cathodic	
  arc	
  evaporation,	
  Thin	
  Solid	
  Films,	
  v	
  209,	
  n	
  2,	
  pp.	
  165-­‐173	
  
9. Nikolaev	
  P.,Bronikowski,	
  M.J.,Bradley	
  R.K.,	
  Fohmund	
  F.,Colbert	
  D.T.,Smith	
  K.A.	
  and	
  
Smalley,	
  R.E.,	
  (1999)	
  Gas-­‐phase	
  catalytic	
  growth	
  of	
  single-­‐walled	
  carbon	
  nanotubes	
  from	
  
carbon	
  monoxide,	
  Chemical	
  Physics	
  Letters,313(1-­‐2):91–7	
  
10. Ebbesen,	
  T.W.,	
  (1997),	
  Carbon	
  nanotubes	
  :	
  preparation	
  and	
  properties,	
  Boca	
  Raton	
  :	
  CRC	
  
Press,	
  pp.	
  225-­‐246	
  
11. Kim,	
  P.,	
  Shi,	
  L.,	
  Majumdar,	
  A.	
  and	
  McEuen,	
  P.L.,	
  (2001),	
  Thermal	
  transport	
  
measurements	
  of	
  individual	
  multiwalled	
  nanotubes.	
  Phys.	
  Rev.	
  Lett.,	
  8721	
  
12. Hone,	
  J.,	
  (2004)	
  Carbon	
  nanotube:	
  thermal	
  properties,	
  	
  Dekker	
  Encyclopedia	
  of	
  
Nanoscience	
  and	
  Nanotechnology	
  p	
  603	
  
13. Pipes	
  R.B.,	
  Frankland	
  S.J.,	
  Hubert	
  P.	
  and	
  Saether	
  E.,(2003),	
  Self-­‐consistent	
  properties	
  of	
  
the	
  SWCN	
  and	
  hexagonal	
  arrays	
  as	
  composite	
  reinforcements.	
  Compos	
  Sci	
  Technol,	
  
63(10):1349–58	
  
14. Makar,	
  J.M.	
  and	
  Beaudoin,	
  J.J.,	
  (2003),	
  Carbon	
  nanotubes	
  and	
  their	
  application	
  in	
  the	
  
construction	
  industr	
  y,	
  NRC-­‐CNC	
  
15. Harris,	
  P.J.,	
  2009,	
  Carbon	
  nanotube	
  science:	
  synthesis,	
  properties	
  and	
  applications,	
  
Cambridge,	
  pp.	
  108-­‐141	
  
16. Thostenson	
  E.	
  T.,	
  Ren	
  Z.F.	
  and	
  Chou,	
  T.W.,	
  (2001),	
  Advances	
  in	
  the	
  science	
  and	
  
technology	
  of	
  Carbon	
  nanotubes	
  and	
  their	
  composites:	
  a	
  review,	
  Composite	
  science	
  and	
  
technology,	
  pp.	
  1899-­‐1912	
  
22	
  |	
  P a g e 	
  
	
  
17. Loos,	
  M.	
  R.,	
  J.	
  Yang,	
  et	
  al.	
  (2012).	
  "Effect	
  of	
  block-­‐copolymer	
  dispersants	
  on	
  properties	
  of	
  carbon	
  
nanotube/epoxy	
  systems."	
  Composites	
  Science	
  and	
  Technology	
  72(4):	
  482-­‐488.	
  
18. Montazeri,	
  A.,	
  N.	
  Montazeri,	
  et	
  al.	
  (2011).	
  "Thermo-­‐mechanical	
  properties	
  of	
  multi-­‐walled	
  
carbon	
  nanotube	
  (mwcnt)/epoxy	
  composites."	
  International	
  Journal	
  of	
  Polymer	
  Analysis	
  and	
  
Characterization	
  16(3):	
  199-­‐210.	
  
19. Nho,	
  Y.	
  C.,	
  P.	
  H.	
  Kang,	
  et	
  al.	
  (2004).	
  The	
  characteristics	
  of	
  epoxy	
  resin	
  cured	
  by	
  -­‐ray	
  and	
  E-­‐beam,	
  
Elsevier	
  Ltd.	
  
20. Peng-­‐Cheng,	
  M.,	
  M.	
  Shan-­‐Yin,	
  et	
  al.	
  (2010).	
  "Dispersion,	
  Interfacial	
  Interaction	
  and	
  Re-­‐
agglomeration	
  of	
  Functionalized	
  Carbon	
  Nanotubes	
  in	
  Epoxy	
  Composites."	
  Composites	
  
Elsevier(48):	
  11.	
  
21. Rana,	
  S.,	
  R.	
  Alagirusamy,	
  et	
  al.	
  (2009).	
  "A	
  review	
  on	
  carbon	
  epoxy	
  nanocomposites."	
  Journal	
  of	
  
Reinforced	
  Plastics	
  and	
  Composites	
  28(4):	
  461-­‐487.	
  
22. S.	
  Iijima	
  (1991).	
  "Helical	
  microtubules	
  of	
  graphitic	
  carbon."	
  Nature	
  354(6348):	
  56-­‐58.	
  
23. Sun,	
  L.,	
  G.	
  Warren,	
  et	
  al.	
  (2008).	
  "Mechanical	
  properties	
  of	
  surface-­‐functionalized	
  SWCNT/epoxy	
  
composites."	
  Carbon	
  46(2):	
  320-­‐328.	
  
24. Sun,	
  Z.,	
  V.	
  Nicolosi,	
  et	
  al.	
  (2008).	
  "Quantitative	
  evaluation	
  of	
  surfactant-­‐stabilized	
  single-­‐walled	
  
carbon	
  nanotubes:	
  Dispersion	
  quality	
  and	
  its	
  correlation	
  with	
  zeta	
  potential."	
  Journal	
  of	
  Physical	
  
Chemistry	
  C	
  112(29):	
  10692-­‐10699.	
  
25. Sohel,	
  R.,	
  A.	
  R.,	
  and	
  J.	
  Mangala,	
  (2009).	
  A	
  Review	
  on	
  Carbon	
  Epoxy	
  Nanocomposites.	
  
Journal	
  of	
  Reinforced	
  Plastics	
  and	
  Composites.	
  
26. Bai,	
  (2003),	
  Evidence	
  of	
  the	
  reinforcement	
  role	
  of	
  chemical	
  vapour	
  deposition	
  multi-­‐
walled	
  carbon	
  nanotubes	
  in	
  a	
  polymer	
  matrix	
  
27. K.T.	
  Lau,	
  (2005)	
  Composites	
  Science	
  and	
  Technology	
  65	
  719–725	
  
28. F.H.	
  Gojny	
  et	
  al.	
  (2005),	
  Composites	
  Science	
  and	
  Technology	
  65	
  2300–2313	
  
29. Mechanical	
  and	
  Tribological	
  Properties	
  of	
  Epoxy-­‐CNT	
  Nanocomposite	
  Coatings	
  	
  
30. H.	
  R.	
  Le,	
  A.	
  Howson	
  and	
  M.	
  Ramanauskas	
  Mechanical	
  and	
  Tribological	
  Properties	
  of	
  
Epoxy-­‐CNT	
  Nanocomposite	
  Coatings	
  
31. John	
  Kathi,	
  Kyong-­‐Yop	
  Rhee,	
  Joong	
  Hee	
  Lee,	
  2009,	
  Effect	
  of	
  chemical	
  functionalization	
  of	
  
multi-­‐walled	
  carbon	
  nanotubes	
  with	
  3-­‐aminopropyltriethoxysilane	
  on	
  mechanical	
  and	
  
morphological	
  properties	
  of	
  epoxy	
  nanocomposites	
  
32. Lan-­‐Hui	
  Sun,	
  Zoub	
  eida	
  Ounaies,	
  Xin-­‐Lin	
  Gao,	
  Casey	
  A.	
  Whalen,	
  and	
  Zhen-­‐Guo	
  Yang	
  
(2011)	
  Prepar	
  at	
  ion,	
  Char	
  acter	
  i	
  zat	
  i	
  on,	
  a	
  nd	
  Mo	
  deling	
  of	
  C	
  ar	
  b	
  on	
  Nanofib	
  er/Ep	
  oxy	
  
Nanocomp	
  osite	
  s	
  
33. Philip,	
  M.	
  and	
  Bolton,	
  W,	
  2002,	
  “Technology	
  of	
  engineering	
  materials”,	
  Butterworth-­‐
Heinemann,	
  Great	
  Britain,	
  p.	
  296	
  
34. A.R.,	
  Jeefferie,	
  M.Y.	
  Yuhazri,	
  O.	
  NooririnahM.M.	
  Haidir,	
  Haeryip	
  Sihombing,	
  M.A.,	
  Mohd	
  
Salleh,	
  	
  N.A.,	
  Ibrahim,	
  	
  THERMOMECHANICAL	
  AND	
  MORPHOLOGICAL	
  
INTERRELATIONSHIP	
  OF	
  POLYPROPYLENE-­‐MUTIWALLED	
  CARBON	
  NANOTUBES	
  
(PP/MWCNTs)	
  NANOCOMPOSITES,	
  International	
  Journal	
  of	
  Basic	
  &	
  Applie	
  d	
  Sciences	
  
IJBAS-­‐IJENS	
  Vol:	
  10	
  No:04	
  
35. Vaisman,	
  L.,	
  H.	
  D.	
  Wagner,	
  et	
  al.	
  (2006).	
  "The	
  role	
  of	
  surfactants	
  in	
  dispersion	
  of	
  carbon	
  
nanotubes."	
  Advances	
  in	
  Colloid	
  and	
  Interface	
  Science	
  128-­‐130:	
  37-­‐46.	
  
23	
  |	
  P a g e 	
  
36. Wladyka-­‐Przybylak,	
  M.,	
  D.	
  Wesolek,	
  et	
  al.	
  (2011).	
  "Functionalization	
  effect	
  on	
  physico-­‐
mechanical	
  properties	
  of	
  multi-­‐walled	
  carbon	
  nanotubes/epoxy	
  composites."	
  Polymers	
  for	
  
Advanced	
  Technologies	
  22(1):	
  48-­‐59.	
  
37. Xiao-­‐Lin,	
  X.,	
  M.	
  Yiu-­‐Wing,	
  et	
  al.	
  (2005).	
  "Dispersion	
  and	
  alignment	
  of	
  carbon	
  nanotubes	
  in	
  
polymer	
  matrix:	
  A	
  review."	
  Materials	
  Science	
  and	
  Engineering	
  49:	
  24.	
  
38. Young	
  Seok,	
  S.	
  and	
  Y.	
  Jae	
  Ryoun	
  (2005).	
  "Influence	
  of	
  dispersion	
  states	
  of	
  carbon	
  nanotubes	
  on	
  
physical	
  properties	
  of	
  epoxy	
  nanocomposites."	
  Carbon	
  43(7):	
  1378-­‐1385.	
  
39. Yu,	
  J.,	
  N.	
  Grossiord,	
  et	
  al.	
  (2007).	
  "Controlling	
  the	
  dispersion	
  of	
  multi-­‐wall	
  carbon	
  nanotubes	
  in	
  
aqueous	
  surfactant	
  solution."	
  Carbon	
  45(3):	
  618-­‐623.	
  
40. Yuanxin,	
  Z.,	
  F.	
  Pervin,	
  et	
  al.	
  (2007).	
  "Experimental	
  study	
  on	
  the	
  thermal	
  and	
  mechanical	
  
properties	
  of	
  multi-­‐walled	
  carbon	
  nanotube-­‐reinforced	
  epoxy."	
  Materials	
  Science	
  &amp;	
  
Engineering	
  A	
  (Structural	
  Materials:	
  Properties,	
  Microstructure	
  and	
  Processing)	
  452-­‐453:	
  657-­‐
664.	
  
41. Zheng,	
  Y.,	
  A.	
  Zhang,	
  et	
  al.	
  (2006).	
  "Functionalized	
  effect	
  on	
  carbon	
  nanotube/epoxy	
  nano-­‐
composites."	
  Materials	
  Science	
  &amp;	
  Engineering	
  A	
  (Structural	
  Materials:	
  Properties,	
  
Microstructure	
  and	
  Processing)	
  435-­‐436:	
  145-­‐149.	
  
42. Zhu,	
  J.,	
  H.	
  Peng,	
  et	
  al.	
  (2004).	
  "Reinforcing	
  epoxy	
  polymer	
  composites	
  through	
  covalent	
  
integration	
  of	
  functionalized	
  nanotubes."	
  Advanced	
  Functional	
  Materials	
  14(7):	
  643-­‐648.	
  
43. Zhu,	
  J.,	
  H.	
  Peng,	
  et	
  al.	
  (2004).	
  "Reinforcing	
  epoxy	
  polymer	
  composites	
  through	
  covalent	
  
integration	
  of	
  functionalized	
  nanotubes."	
  Advanced	
  Functional	
  Materials	
  14(7):	
  643-­‐648.	
  
	
  
24	
  |	
  P a g e 	
  
Appendix	
  A:	
  Conference	
  Paper	
  
	
  
	
  
	
  
	
  
	
  
25	
  |	
  P a g e 	
  
Appendix	
  B:	
  Project	
  Management	
  Statement	
  
The	
  project	
  was	
  conducted	
  in	
  a	
  continuous	
  manner	
  beginning	
  from	
  the	
  first	
  week	
  of	
  the	
  first	
  semester	
  
until	
  the	
  end	
  of	
  September	
  whereby	
  the	
  conference	
  paper	
  was	
  completed.	
  This	
  was	
  managed	
  effectively	
  
by	
  prioritisation	
  of	
  tasks	
  with	
  the	
  guidance	
  of	
  the	
  lecturer,	
  Dr.	
  Wen	
  Hui	
  Duan.	
  	
  
	
  
The	
   literature	
   review	
   was	
   performed	
   individually	
   with	
   the	
   supervisor	
   providing	
   a	
   set	
   of	
   compulsory	
  
reading	
  materials	
  to	
  be	
  reported	
  on	
  a	
  weekly	
  basis.	
  Software	
  such	
  as	
  JabRef,	
  Lyx	
  and	
  CTex	
  were	
  used	
  to	
  
present	
  the	
  findings	
  in	
  a	
  systematic	
  and	
  organised	
  form.	
  On	
  the	
  other	
  hand,	
  I	
  assisted	
  the	
  supervisor	
  to	
  
perform	
  the	
  laboratory	
  experiments.	
  
	
  
In	
  the	
  first	
  semester,	
  the	
  first	
  two	
  weeks	
  were	
  utilised	
  to	
  familiarise	
  myself	
  with	
  the	
  topic	
  at	
  hand.	
  The	
  
next	
  3	
  weeks	
  (Week	
  3	
  to	
  week	
  6)	
  were	
  spent	
  at	
  the	
  laboratory	
  performing	
  experiments.	
  During	
  that	
  
time	
  period,	
  a	
  total	
  of	
  about	
  10	
  hours	
  were	
  spent	
  at	
  the	
  laboratory.	
  Tensile	
  tests	
  and	
  fabrication	
  of	
  CNT	
  
epoxy	
   specimens	
   were	
   carried	
   out.	
   A	
   poster	
   presentation	
   was	
   delivered	
   Week	
   4	
   to	
   understand	
   the	
  
requirements	
  of	
  the	
  task	
  and	
  begin	
  scoping	
  the	
  project.	
  In	
  addition,	
  the	
  literature	
  review	
  regarding	
  the	
  
general	
  topic	
  of	
  the	
  “Properties,	
  Problems	
  and	
  Potential	
  of	
  CNT”	
  took	
  place	
  in	
  a	
  continuous	
  manner	
  till	
  
the	
  end	
  of	
  the	
  semester.	
  At	
  the	
  end	
  of	
  the	
  semester	
  in	
  week	
  12,	
  a	
  preliminary	
  report	
  was	
  submitted	
  to	
  
monitor	
  the	
  progress.	
  
	
  
The	
  holidays	
  were	
  well-­‐spent	
  as	
  I	
  channelled	
  my	
  time	
  and	
  energy	
  on	
  the	
  final	
  year	
  project.	
  During	
  the	
  
mid-­‐semester	
  break,	
  duration	
  of	
  four	
  weeks	
  was	
  set	
  aside	
  to	
  identify	
  the	
  specific	
  topic	
  for	
  the	
  final	
  year	
  
project	
  and	
  conference	
  paper	
  submission.	
  	
  As	
  a	
  result,	
  the	
  topic	
  of	
  “Fabrication	
  and	
  Characterisation	
  of	
  
CNT	
  Epoxy	
  Nanocomposites:	
  Effect	
  of	
  the	
  Geometry	
  of	
  Carbon	
  Nanotubes”	
  was	
  selected.	
  As	
  shown	
  in	
  
Appendix	
  A	
  and	
  B,	
  the	
  mid-­‐term	
  break	
  was	
  used	
  to	
  present	
  the	
  findings	
  in	
  a	
  presentable	
  manner.	
  	
  
	
  
During	
  the	
  second	
  semester,	
  the	
  first	
  three	
  weeks	
  was	
  used	
  to	
  perform	
  experiments	
  at	
  the	
  laboratory	
  to	
  
investigate	
  the	
  effect	
  of	
  geometry	
  on	
  CNT.	
  About	
  12	
  hours	
  were	
  spent	
  at	
  the	
  laboratory	
  to	
  obtain	
  the	
  
results.	
  The	
  remaining	
  time	
  until	
  the	
  end	
  of	
  September	
  was	
  dedicated	
  to	
  write	
  a	
  conference	
  paper	
  as	
  
shown	
  in	
  Appendix	
  C.	
  Based	
  on	
  the	
  compiled	
  notes	
  gathered	
  throughout	
  the	
  semester,	
  the	
  literature	
  
review	
   findings	
   were	
   applied	
   as	
   background	
   knowledge	
   and	
   references	
   to	
   help	
   write	
   the	
   conference	
  
paper.	
  	
  
	
  
Overall,	
  the	
  unit	
  certainly	
  helped	
  me	
  to	
  juggle	
  and	
  manage	
  my	
  time	
  for	
  research	
  and	
  coursework.	
  In	
  
addition,	
  the	
  time	
  used	
  during	
  the	
  mid-­‐term	
  and	
  mid	
  semester	
  breaks	
  allowed	
  ne	
  to	
  use	
  my	
  time	
  in	
  a	
  
much	
   more	
   effective	
   manner.	
   As	
   a	
   result,	
   the	
   conference	
   paper	
   managed	
   to	
   be	
   produced	
   ahead	
   of	
  
schedule.	
  Moreover,	
  a	
  full	
  day	
  (11	
  hours)	
  per	
  week	
  was	
  set	
  aside	
  to	
  familiarise	
  myself	
  with	
  the	
  topic	
  by	
  
reading	
  the	
  conference	
  papers	
  in	
  the	
  database.	
  	
  
	
  

More Related Content

Viewers also liked

Nanoparticles for drug delivery by shreya
Nanoparticles for drug delivery by shreyaNanoparticles for drug delivery by shreya
Nanoparticles for drug delivery by shreya
Shreya Modi
 
Nanotechnology Based Drug Delivery
Nanotechnology Based Drug DeliveryNanotechnology Based Drug Delivery
Nanotechnology Based Drug Delivery
Prof. Dr. Basavaraj Nanjwade
 
Nanotechnology in Drug Delivery
Nanotechnology in Drug Delivery Nanotechnology in Drug Delivery
Nanotechnology in Drug Delivery
Jeffrey Funk
 
Carbon nanotube
Carbon nanotubeCarbon nanotube
Carbon nanotube
Zenblade 93
 
Newer drug delivery systems
Newer drug delivery systemsNewer drug delivery systems
Newer drug delivery systems
Dr. Ashutosh Tiwari
 
Nanocomposite
NanocompositeNanocomposite
Nanocomposite
krishslide
 
Targeted drug delivery system
Targeted drug delivery systemTargeted drug delivery system
Targeted drug delivery system
Strides Shasun pharmaceutical ltd
 
New drug delivery systems
New drug delivery systemsNew drug delivery systems
New drug delivery systems
Cristi Francis
 
Nanocomposites materials
Nanocomposites materials   Nanocomposites materials
Nanocomposites materials
Yahiya Kadaf Manea
 
The Minimum Loveable Product
The Minimum Loveable ProductThe Minimum Loveable Product
The Minimum Loveable Product
The Happy Startup School
 
Upworthy: 10 Ways To Win The Internets
Upworthy: 10 Ways To Win The InternetsUpworthy: 10 Ways To Win The Internets
Upworthy: 10 Ways To Win The Internets
Upworthy
 
How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)
How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)
How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)
Board of Innovation
 
Five Killer Ways to Design The Same Slide
Five Killer Ways to Design The Same SlideFive Killer Ways to Design The Same Slide
Five Killer Ways to Design The Same Slide
Crispy Presentations
 
Displaying Data
Displaying DataDisplaying Data
Displaying Data
Bipul Deb Nath
 
8 Tips for an Awesome Powerpoint Presentation
8 Tips for an Awesome Powerpoint Presentation8 Tips for an Awesome Powerpoint Presentation
8 Tips for an Awesome Powerpoint Presentation
Slides | Presentation Design Agency
 
The Seven Deadly Social Media Sins
The Seven Deadly Social Media SinsThe Seven Deadly Social Media Sins
The Seven Deadly Social Media Sins
XPLAIN
 
How People Really Hold and Touch (their Phones)
How People Really Hold and Touch (their Phones)How People Really Hold and Touch (their Phones)
How People Really Hold and Touch (their Phones)
Steven Hoober
 
What 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From FailureWhat 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From Failure
ReferralCandy
 
The History of SEO
The History of SEOThe History of SEO
The History of SEO
HubSpot
 

Viewers also liked (19)

Nanoparticles for drug delivery by shreya
Nanoparticles for drug delivery by shreyaNanoparticles for drug delivery by shreya
Nanoparticles for drug delivery by shreya
 
Nanotechnology Based Drug Delivery
Nanotechnology Based Drug DeliveryNanotechnology Based Drug Delivery
Nanotechnology Based Drug Delivery
 
Nanotechnology in Drug Delivery
Nanotechnology in Drug Delivery Nanotechnology in Drug Delivery
Nanotechnology in Drug Delivery
 
Carbon nanotube
Carbon nanotubeCarbon nanotube
Carbon nanotube
 
Newer drug delivery systems
Newer drug delivery systemsNewer drug delivery systems
Newer drug delivery systems
 
Nanocomposite
NanocompositeNanocomposite
Nanocomposite
 
Targeted drug delivery system
Targeted drug delivery systemTargeted drug delivery system
Targeted drug delivery system
 
New drug delivery systems
New drug delivery systemsNew drug delivery systems
New drug delivery systems
 
Nanocomposites materials
Nanocomposites materials   Nanocomposites materials
Nanocomposites materials
 
The Minimum Loveable Product
The Minimum Loveable ProductThe Minimum Loveable Product
The Minimum Loveable Product
 
Upworthy: 10 Ways To Win The Internets
Upworthy: 10 Ways To Win The InternetsUpworthy: 10 Ways To Win The Internets
Upworthy: 10 Ways To Win The Internets
 
How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)
How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)
How I got 2.5 Million views on Slideshare (by @nickdemey - Board of Innovation)
 
Five Killer Ways to Design The Same Slide
Five Killer Ways to Design The Same SlideFive Killer Ways to Design The Same Slide
Five Killer Ways to Design The Same Slide
 
Displaying Data
Displaying DataDisplaying Data
Displaying Data
 
8 Tips for an Awesome Powerpoint Presentation
8 Tips for an Awesome Powerpoint Presentation8 Tips for an Awesome Powerpoint Presentation
8 Tips for an Awesome Powerpoint Presentation
 
The Seven Deadly Social Media Sins
The Seven Deadly Social Media SinsThe Seven Deadly Social Media Sins
The Seven Deadly Social Media Sins
 
How People Really Hold and Touch (their Phones)
How People Really Hold and Touch (their Phones)How People Really Hold and Touch (their Phones)
How People Really Hold and Touch (their Phones)
 
What 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From FailureWhat 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From Failure
 
The History of SEO
The History of SEOThe History of SEO
The History of SEO
 

Similar to FYP FINAL REPORT

MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...
MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...
MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...
SheongWei NG
 
Effect of carbon nanotube on thermal behavior of epoxy resin composites
Effect of carbon nanotube on thermal behavior of epoxy resin compositesEffect of carbon nanotube on thermal behavior of epoxy resin composites
Effect of carbon nanotube on thermal behavior of epoxy resin composites
LidaN16
 
Growth of CNTs - Mihir Dass
Growth of CNTs - Mihir DassGrowth of CNTs - Mihir Dass
Growth of CNTs - Mihir Dass
Mihir Dass
 
Nanotechnology Carbon Nanotubes (CNTs) Research Paper
Nanotechnology Carbon Nanotubes (CNTs) Research PaperNanotechnology Carbon Nanotubes (CNTs) Research Paper
Nanotechnology Carbon Nanotubes (CNTs) Research Paper
Mohammed Aqeel
 
Presentation on nano technology
Presentation on nano technologyPresentation on nano technology
Presentation on nano technology
harshid panchal
 
Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...
Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...
Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...
IRJET Journal
 
SURA Final report PVDF-CNT
SURA Final report PVDF-CNTSURA Final report PVDF-CNT
SURA Final report PVDF-CNT
Mohit Rajput
 
PRESENTATION
PRESENTATIONPRESENTATION
PRESENTATION
Ashutosh Singh
 
Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...
Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...
Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...
IRJET Journal
 
Carbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibilityCarbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibility
Jeffrey Funk
 
Carbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibilityCarbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibility
Jeffrey Funk
 
Nano carbontubes
Nano carbontubesNano carbontubes
Nano carbontubes
Darshan Sheshadri
 
Micro Fabrication of CNT based fibers
Micro Fabrication of CNT based fibersMicro Fabrication of CNT based fibers
Micro Fabrication of CNT based fibers
ijiert bestjournal
 
Carbon Nano-tubes in Civil Engineering
Carbon Nano-tubes in Civil EngineeringCarbon Nano-tubes in Civil Engineering
Carbon Nano-tubes in Civil Engineering
Ankit Chandan
 
Study on Carbon Nanotube Based Flexible Electronics.pptx
Study on Carbon Nanotube Based Flexible Electronics.pptxStudy on Carbon Nanotube Based Flexible Electronics.pptx
Study on Carbon Nanotube Based Flexible Electronics.pptx
esfar1
 
Seminar on Carbon Nanotubes
Seminar on Carbon NanotubesSeminar on Carbon Nanotubes
Seminar on Carbon Nanotubes
Amrita Guha
 
Carbon Nanotubes Synthesis
Carbon Nanotubes SynthesisCarbon Nanotubes Synthesis
Carbon Nanotubes Synthesis
Steevan Sequeira
 
A critical review on thermal conductivity enhancement of graphene based nanof...
A critical review on thermal conductivity enhancement of graphene based nanof...A critical review on thermal conductivity enhancement of graphene based nanof...
A critical review on thermal conductivity enhancement of graphene based nanof...
JosJaimeTahaTijerina
 
IRJET-Experimental Study on Concrete Properties using Pet in Tension Zone
IRJET-Experimental Study on Concrete Properties using Pet in Tension ZoneIRJET-Experimental Study on Concrete Properties using Pet in Tension Zone
IRJET-Experimental Study on Concrete Properties using Pet in Tension Zone
IRJET Journal
 
Seminar report on CNTs 2017
Seminar  report  on CNTs 2017Seminar  report  on CNTs 2017
Seminar report on CNTs 2017
Saurabh Bansod
 

Similar to FYP FINAL REPORT (20)

MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...
MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...
MPA_Review of Carbon Nanotube Applications, Synthesis Methods and Processes f...
 
Effect of carbon nanotube on thermal behavior of epoxy resin composites
Effect of carbon nanotube on thermal behavior of epoxy resin compositesEffect of carbon nanotube on thermal behavior of epoxy resin composites
Effect of carbon nanotube on thermal behavior of epoxy resin composites
 
Growth of CNTs - Mihir Dass
Growth of CNTs - Mihir DassGrowth of CNTs - Mihir Dass
Growth of CNTs - Mihir Dass
 
Nanotechnology Carbon Nanotubes (CNTs) Research Paper
Nanotechnology Carbon Nanotubes (CNTs) Research PaperNanotechnology Carbon Nanotubes (CNTs) Research Paper
Nanotechnology Carbon Nanotubes (CNTs) Research Paper
 
Presentation on nano technology
Presentation on nano technologyPresentation on nano technology
Presentation on nano technology
 
Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...
Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...
Synthesis Of Various Forms Of Carbon Nanotubes by ARC Discharge Methods – Com...
 
SURA Final report PVDF-CNT
SURA Final report PVDF-CNTSURA Final report PVDF-CNT
SURA Final report PVDF-CNT
 
PRESENTATION
PRESENTATIONPRESENTATION
PRESENTATION
 
Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...
Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...
Analyzing the Microstructural Properties of Nanomaterial in OPC by SEM, TEM, ...
 
Carbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibilityCarbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibility
 
Carbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibilityCarbon nanotubes and their economic feasibility
Carbon nanotubes and their economic feasibility
 
Nano carbontubes
Nano carbontubesNano carbontubes
Nano carbontubes
 
Micro Fabrication of CNT based fibers
Micro Fabrication of CNT based fibersMicro Fabrication of CNT based fibers
Micro Fabrication of CNT based fibers
 
Carbon Nano-tubes in Civil Engineering
Carbon Nano-tubes in Civil EngineeringCarbon Nano-tubes in Civil Engineering
Carbon Nano-tubes in Civil Engineering
 
Study on Carbon Nanotube Based Flexible Electronics.pptx
Study on Carbon Nanotube Based Flexible Electronics.pptxStudy on Carbon Nanotube Based Flexible Electronics.pptx
Study on Carbon Nanotube Based Flexible Electronics.pptx
 
Seminar on Carbon Nanotubes
Seminar on Carbon NanotubesSeminar on Carbon Nanotubes
Seminar on Carbon Nanotubes
 
Carbon Nanotubes Synthesis
Carbon Nanotubes SynthesisCarbon Nanotubes Synthesis
Carbon Nanotubes Synthesis
 
A critical review on thermal conductivity enhancement of graphene based nanof...
A critical review on thermal conductivity enhancement of graphene based nanof...A critical review on thermal conductivity enhancement of graphene based nanof...
A critical review on thermal conductivity enhancement of graphene based nanof...
 
IRJET-Experimental Study on Concrete Properties using Pet in Tension Zone
IRJET-Experimental Study on Concrete Properties using Pet in Tension ZoneIRJET-Experimental Study on Concrete Properties using Pet in Tension Zone
IRJET-Experimental Study on Concrete Properties using Pet in Tension Zone
 
Seminar report on CNTs 2017
Seminar  report  on CNTs 2017Seminar  report  on CNTs 2017
Seminar report on CNTs 2017
 

More from Samuel Chuah

Investigation on the dispersion of carbon nanotubes in solvent media effect o...
Investigation on the dispersion of carbon nanotubes in solvent media effect o...Investigation on the dispersion of carbon nanotubes in solvent media effect o...
Investigation on the dispersion of carbon nanotubes in solvent media effect o...
Samuel Chuah
 
FYP Poster
FYP PosterFYP Poster
FYP Poster
Samuel Chuah
 
FYP presentation
FYP presentationFYP presentation
FYP presentation
Samuel Chuah
 
Mental health first aid
Mental health first aidMental health first aid
Mental health first aidSamuel Chuah
 
Intern report
Intern reportIntern report
Intern report
Samuel Chuah
 
FTACertificateofcompletion
FTACertificateofcompletionFTACertificateofcompletion
FTACertificateofcompletion
Samuel Chuah
 

More from Samuel Chuah (6)

Investigation on the dispersion of carbon nanotubes in solvent media effect o...
Investigation on the dispersion of carbon nanotubes in solvent media effect o...Investigation on the dispersion of carbon nanotubes in solvent media effect o...
Investigation on the dispersion of carbon nanotubes in solvent media effect o...
 
FYP Poster
FYP PosterFYP Poster
FYP Poster
 
FYP presentation
FYP presentationFYP presentation
FYP presentation
 
Mental health first aid
Mental health first aidMental health first aid
Mental health first aid
 
Intern report
Intern reportIntern report
Intern report
 
FTACertificateofcompletion
FTACertificateofcompletionFTACertificateofcompletion
FTACertificateofcompletion
 

FYP FINAL REPORT

  • 1. Error! Unknown document property name.         Author:     Samuel  Chuah  21642303                   CIV  4210:  Final  Year  Project       Fabrication  and  Characterization  of  Carbon  Nanotube   Epoxy  Nanocomposites:     Effect  of  the  Geometry  of  Carbon  Nanotubes  
  • 2. ii  |  P a g e   Executive  Summary   The   final   year   project   encompasses   two   fundamental   components   in   research.   Literature   review   and   experiments   were   conducted   to   study   the   properties,   problems   and   potential   of   carbon   nanotubes   (CNT).  A  lot  of  interest  is  generated  in  this  material  because  it  displays  exceptional  mechanical,  thermal   and   electrical   properties.   However,   agglomeration   is   the   biggest   problem   that   limits   the   mechanical   properties   of   CNT.   To   overcome   the   string   intermolecular   forces,   dispersion   during   fabrication   is   necessary  to  enhance  the  mechanical  properties.  Chemical  and  physical  dispersion  can  be  performed  to   achieve  this  goal.     The  conference  paper  was  produced  to  investigate  the  effect  of  carbon  nanotube  (CNT)  geometry  on   quality  of  CNT  dispersion  in  solvent  media.  Results  show  that  the  CNT  diameter  has  a  significant  effect   on  quality  of  its  dispersion  in  matrix.  It  demonstrates  that,  Bigger  the  CNT  diameter,  better  the  CNT   dispersion  in  media.  It  is  because,  the  bigger  diameter  leads  to  less  interaction  energy  in  CNT  bundle  and   make  it  easier  to  exfoliate  CNT  from  bundle.  In  contrast,  CNT  length  has  not  significant  influence  on   quality  of  CNT  dispersion  in  matrix.  It  is  because,  although  long  CNTs  entangle  each  other  more  than   short   CNTs,   entanglement   is   not   dominant   reason   and   with   constant   diameter   and   weight   quantity,   short   or   long   CNT   bundle   have   the   same   interaction   energy   in   bundle.   Accordingly,   with   constant   dispersion  energy  both  of  them  have  almost  equal  dispersion  quality  in  matrix.  We  hope  that  this  study   will  provide  insight  into  further  understanding  of  the  intricacies  of  dispersing  CNTs  in  media.             Acknowledgements   I  would  like  to  thank  my  supervisor,  Asghar  who  taught  me  a  lot  on  CNTs  as  well  as  my  lecturer,   Dr.  Wen  Hui  Duan  who  patiently  guided  me  throughout  the  year.  I  would  also  like  to  take  this   opportunity  to  thank  my  family  for  their  unending  support.      
  • 3. iii  |  P a g e   Table  of  Contents   Executive  Summary  ......................................................................................................................................  ii   Acknowledgements  ......................................................................................................................................  ii   Introduction  .................................................................................................................................................  1   Problem  Statement  .................................................................................................................................  1   Aim  ...........................................................................................................................................................  2   Outline  .....................................................................................................................................................  2   Literature  review  ..........................................................................................................................................  3   General  ....................................................................................................................................................  3   a.   Synthesis  of  carbon  nanotube  ......................................................................................................  3   b.   Properties  of  carbon  nanotube  ....................................................................................................  3   c.   Mechanics  of  carbon  nanotube  ...................................................................................................  4   d.   Characteristics  of  epoxy  ...............................................................................................................  5   e.   Epoxy-­‐Carbon  Nanotube  Composite  Characteristics  ...................................................................  5   f.   Mechanical  Properties  .................................................................................................................  5   g.   Themo  mechanical  Properties  .....................................................................................................  8   Specific  Topic:  Dispersion  ........................................................................................................................  9   a.   Fabrication  methods  ....................................................................................................................  9   b.   Polymers  to  disperse  CNT  ..........................................................................................................  10   c.   Uv-­‐Vis  to  monitor  dispersion  of  CNT  ..........................................................................................  10   Experimental  ..............................................................................................................................................  11   Experiment  1:  Procedure  .......................................................................................................................  11   Experiment  1:  Results  and  discussion  ....................................................................................................  12   a.   UV–vis  spectra  of  MWCNTs–BYK9076  solutions  ........................................................................  12   a.   Effect  of  CNT  diameter  on  dispersion  ........................................................................................  14   b.   Effect  of  CNT  length  on  CNT  dispersion  .....................................................................................  15   Experiment  2:  Procedure  .......................................................................................................................  16   Experiment  2:  Results  and  discussion  ....................................................................................................  17   a.  High  speed  shear  mixing  ................................................................................................................  17   b.  Ultrasonication:  ..............................................................................................................................  18   c.  Amount  of  CNT  ...............................................................................................................................  19    
  • 4. 1  |  P a g e   Introduction   Carbon  nanotube,  which  is  also  known  as  CNT  is  referred  to  the  small,  nano-­‐sized  cylindrical   tubes  composed  of  sheets  of  carbon  atoms  which  was  discovered  by  Iijima  in  1991  (S.  Iijima   1991).   At   present,   CNTs   are   hailed   as   the   building   blocks   of   nanotechnology   with   possible   applications  in  the  near  future.  This  bold  statement  arises  from  the  exceptional  mechanical,   thermal  and  electrical  properties  which  generate  interest  among  researchers  and  the  society   alike   (Montazeri,   Montazeri   et   al.   2011).   CNT   holds   the   promise   of   delivering   superior   composite   materials(Sun,   Warren   et   al.   2008),   electronic   appliances(Zhu,   Peng   et   al.   2004),   lightweight  products  in  the  sports  and  transportation  industries(Yuanxin,  Pervin  et  al.  2007).  In   relation  to  the  potential  application  in  the  construction  industry,  CNT  mechanical  properties   such  as  the  high  elastic  modulus,  tensile  strength,  flexural  strength  and  hardness  are  the  focus   of  attention  because  of  its  immense  potential  as  a  reinforcement  (Young  Seok  and  Jae  Ryoun   2005;  Zheng,  Zhang  et  al.  2006).     Problem  Statement   These  rolled  graphite  sheets  face  a  major  obstacle,  namely  the  tendency  to  agglomerate  and   entangle.   Factors   contributing   to   this   agglomeration   phenomenon   include   the   atomically   smooth  surfaces,  flexible  CNT  and  the  high  aspect  ratio  (Fukui,  Taninaka  et  al.  2007).  Moreover,   CNTs  have  small  diameters  that  tend  to  form  bundle  structures  due  to  their  substantial  van  der   Waals  interaction.  There  is  significant  dependence  of  the  thermal,  rheological,  and  mechanical   properties   of   the   CNT   nanocomposites   on   the   concentration   and   dispersion   state   of   CNT.   Literature   shows   CNT-­‐epoxy   nanocomposites   have   either   weaker   or   just   a   little   bit   higher   mechanical  properties  compare  to  that  of  pure  epoxy  (Wladyka-­‐Przybylak,  Wesolek  et  al.  2011;   Loos,   Yang   et   al.   2012).   CNT   poor   dispersion   and   weak   CNT-­‐matrix   interaction   are   being   generally  described  as  the  cause  for  this  lack  of  enhancement.  Therefore,  good  dispersion  is   necessary  to  realize  the  full  potential  of  the  CNT  mechanical  properties.  Different  methods  have   been  investigated  to  efficiently  disperse  the  CNT  such  as  high  speed  shear  mixing,  calendaring,   ultrasonication,   use   of   solvent   and   surfactant   (Rana,   Alagirusamy   et   al.   2009).   If   CNT   well   dispersed,   the   potential   filler-­‐matrix   interface   area   is   huge,   and   a   perfect   control   of   the   interfacial  interaction  is  crucial  for  obtaining  optimal  properties  (Vaisman,  Wagner  et  al.  2006).          
  • 5. 2  |  P a g e   Aim   The  goals  of  the  final  year  project  are  listed  as  follows:   1. Study  the  characteristics  of  CNT  to  realize  its  full  potential   2. Understand  the  role  of  carbon  nanotube  geometry  on  efficient  dispersion   3. Harnessing  the  superior  properties  of  nanocarbon  in  the  construction  industry   The  experiment  was  performed  to  investigate  the  effects  of  CNT  diameter  and  length  on  CNT   dispersion  and  understand  the  role  of  carbon  nanotube  geometry  on  efficient  dispersion.       Outline   This   report   provides   a   holistic   literature   review   concerning   the   synthesis,   fabrication   and   properties  of  carbon  nanotube  to  gain  in-­‐depth  background  knowledge  on  the  research  topic.   The   specific   topic   for   the   conference   paper   is   titled   “Carbon   nanotube   dispersion   in   solvent   media:   Effect   of   carbon   nanotube   geometry”.     The   next   section   describes   the   experiment   conducted   during   this   semester   with   corresponding   results   and   discussion.   The   findings   are   then  compiled  into  a  conference  paper.        
  • 6. 3  |  P a g e   Literature  review   The  literature  review  covers  two  aspects,  namely  a  general  knowledge  on  CNT  followed  by  a   literature  review  on  the  specific  topic  of  CNT  dispersion.   General   a. Synthesis  of  carbon  nanotube   During  the  early  90s,  carbon  nanotubes  were  first  synthesised  by  arc-­‐evaporation.  Similar  to   electrolysis,  the  process  requires  two  pure  graphite  electrodes  and  a  power  supply  but  there  is   no   electrolyte.   Instead,   the   chamber   is   filled   with   inert   gas   such   as   argon   or   helium   as   the   graphite  anode  is  vapourised  and  deposited  on  the  cathode.  The  carbon  vapour  condenses  on   the  cathode  to  form  deposits  of  nanotubes  (Jones,  et.  al.,  1996).  The  set-­‐up  is  in  Figure  1.     Figure  1  Schematic  diagram  of  the  modified  arc  evaporation  apparatus  (Coll,  et.  al.,  1992)     Nevertheless,   other   methods   can   be   employed   to   obtain   carbon   nanotubes.   Those   methods   include  laser  ablation,  gas  phase  catalytic  growth  from  carbon  monoxide  and  chemical  vapour   deposition  form  hydrocarbons  (Nikolaev  et.  al.,  1999).         b. Properties  of  carbon  nanotube   Carbon   nanotube   is   touted   as   the   construction   material   of   the   future   because   of   their   high   strength-­‐to-­‐weight  ratio.    Pipes  et.  al  investigated  the  relationship  between  chiral  integers  and   density,  while  establishing  the  density  of  carbon  nanotube  at  1.4g/cm3  for  single-­‐walled  carbon   nanotube   and   a   maximum   of   2.1   g/cm3   (2003).   As   a   comparison,   steel   has   a   density   of   7.84g/cm3 ,  making  carbon  nanotube  an  interesting  proposition  especially  in  terms  of  material   mobility  at  site.        
  • 7. 4  |  P a g e   The  strength  and  stiffness  of  carbon  nanotube  are  best  described  by  their  high  tensile  strength   and  elastic  modulus  respectively.  A  background  in  quantum  chemistry  is  required  to  explain  the   unique   mechanical   property   of   carbon   nanotube.     The   chemical   bonding   within   nanotubes   consists  of  sp2  bonds,  similar  to  those  of  graphite.  These  bonds  or  rehybridisations,  which  are   stronger  than  the  sp3  bonds  found  in  alkanes  enable  nanotubes  to  possess  superior  strength   (Ebbesen,  1997).     In  addition,  carbon  nanotubes  are  good  thermal  conductors.  Kim,  et.  al.  demonstrated  that  the   room-­‐temperature   thermal   conductivity   over   200   W/m   K   for   bulk   samples   of   single-­‐walled   nanotubes     whereas   3000   W/m   K   for   individual   multiwalled   nanotubes   (2001).   Additions   of   nanotubes  to  epoxy  resin  can  double  the  thermal  conductivity  for  a  loading  of  only  1%,  showing   that  nanotube  composite  materials  may  be  useful  for  thermal  management  applications  (Hone,   2004).       c. Mechanics  of  carbon  nanotube   The  behaviour  of  carbon  nanotube  in  response  to  loading  is  the  next  focus  of  this  study.  This   section  also  demonstrates  the  two  varieties  of  atomic  structure  which  differ  in  vector  notation   as   shown   in   Figure   2.   Chirality   is   a   vector   that   describes   the   non-­‐identical   plane.   This   characteristic  dictates  the  electrical  conductivity  and  torsional  resistance  of  the  specific  shell  of   the  carbon  nanotube.       Figure  2  Illustrations  of  the  atomic  structure  of  (a)  an  arm  chair,  (b)  a  ziz-­‐zag  nanotube  and  (c)   Chiral  vector.  (Makar  &  Beaudoin,  2003)     Generally,   carbon   nanotubes   can   be   synthesised   as   single   walled   (SWNT)   or   multi   walled   nanotubes  (MWNT).  The  defects  in  SWNTs  can  be  a  point  of  weakness  while  MWNTs  contains   many  layers  that  can  compensate  defects  present  at  any  given  layer  (Harris,  2009).  Moreover,  
  • 8. 5  |  P a g e   SWNTs  are  susceptible  to  elastic  bucking  under  high  pressure  whereas  MWNTs  have  weak  van   der  Waals  forces  but  negligible  contribution  to  both  the  tensile  and  shear  stiffness  (Thostenson   et.  al.,  2001).   d. Characteristics  of  epoxy         Epoxy   is   a   thermosetting   polymer   resulting   from   the   chemical   reaction   when   the   resin   and   hardener  are  mixed  in  equal  proportions.  Unlike  thermoplastic  materials,  epoxy  is  hard,  rigid   but  brittle.  In  the  epoxy-­‐carbon  nanotube  composite  specifically,  the  epoxy  plays  a  dual  role  of   being  an  adhesive  resin  and  a  structural  matrix.   The   physical   appearance   is   always   best   described   in   terms   of   the   chemistry   and   molecular   interactions.  An  epoxide  group  is  mixed  with  bisphenol  to  produce  an  epoxy  resin.  The  amine   groups  react  with  the  epoxide  group  to  form  a  covalent  bond  reinforced  with  dense  cross-­‐links   arising   from   the   reaction   of   the   NH   group   and   epoxide   group.   Subsequently,   the   resulting   polymer  is  a  thermoset  exhibiting  high  rigidity  and  strength  (Jin,  Qipeng  et  al.  2010).   e. Epoxy-­‐Carbon  Nanotube  Composite  Characteristics   Nanocomposites  are  engineering  materials  made  up  of  carbon  nanotube  core  embedded  in  an   epoxy  resin.  Composites  are  vital  engineering  materials  because  the  composite  utilises  the  high   strength   of   the   carbon   fibre   while   the   epoxy   matrix   serves   to   protect   the   reinforcement   in   order  to  produce  a  composite  with  better  properties  better  than  its  individual  materials  (Philip   &  Bolton,  2002).  However,  the  strength  of  the  new  material  depends  on  the  direction  of  the   load  due  to  material  anisotropy.     The  application  of  epoxy  matrix  reinforced  with  carbon  nanotube  into  the  construction  industry   is  still  premature  at  this  stage  due  to  several  shortcomings.  These  challenges  include  poorly   dispersed  multiwalled  carbon  nanotube,  aligment  problems  and  weak  interfacial  bonding  in  the   epoxy  matrix  (Kathi  et.  al.,  2009).  These  problems  are  a  direct  result  of  the  chemically  inert   nature  of  the  carbon  nanotube.  Inevitably,  carbon  nanotubes  are  supplied  as  heavily  entangled   bundles  which  results  in  agglomeration  issues.   Therefore,  several  techniques  are  available  to  produce  a  successful  composite.  The  experiments   performed   involve   manipulating   the   temperature   by   pre-­‐heating   and   the   application   of   sonication  whereby  the  samples  are  prepared  during  the  fabrication  phase.     f. Mechanical  Properties   Firstly,   the   density   and   hardness   of   the   nanocomposite   can   be   measured   easily   to   obtain   a   general  idea  of  the  mechanical  properties.  According  to  Le,  et.  al.,  the  Vickers  hardness  is  8.5  at   an  optimum  CNT  content  of  1.5-­‐2%  weight  (undated).  Zheng  et.al.  measured  the  density  of  the   MWNT  which  lies  around  1.26kg/m3 .  The  bending  strength  is  recorded  within  a  range  of  30  to   70   MPa   depending   on   the   method   of   treatment.   Meanwhile,   the   flexural   modulus   is  
  • 9. 6  |  P a g e   significantly  higher  at  1500  to  2400  MPa.  Figures  1  to  3  provides  a  graphical  representation  of   the  mechanical  properties  based  on  Zheng  et.  al.’s  experiments  (2005).         Figure  3  Correlation  between  MWNT  content  with  density       Figure  4  Correlation  between  MWNT  content  with  bending  strength    
  • 10. 7  |  P a g e     Figure  5  Correlation  between  MWNT  content  with  bending  modulus     The   Young’s   modulus   is   the   main   mechanical   characteristic   of   interest   since   it   is   related   to   stiffness  as  well  as  describing  the  correlation  between  stress  and  strain  of  the  nanocomposite.   Experimental  results  suggest  the  elastic  modulus  is  1  GPa  and  capable  of  reaching  up  to  1.29   GPa  as  the  carbon  nanotibe  fibre  is  added  to  2%  by  weight  (Sun,  et.  al.,  2011).  Certainly,  carbon   nanotubes   embedded   in   an   epoxy   matrix   displays   superior   properties   provided   several   problems  are  mitiated.   Composite   structural   properties   rely   on   the   characteristics   of   the   individual   components.   Besides   the   compatibility   of   its   component   materials,   the   interfacial   adhesion   between   the   carbon  nanotube  and  the  matrix  dictates  the  mechanical  properties  of  the  composite.  Effective   load  transfer  between  the  carbon  nanotube  reinforcement  and  the  epoxy  matrix  is  crucial  in   producing  a  strong  and  superior  composite.  Otherwise,  the  composite  mechanical  properties   will   only   be   slightly   stronger   than   an   ordinary   weak   pure   epoxy.   Research   by   Lau   et.   al.   suggested   that   the   mechanical   properties   of   the   composite   is   inferior   to   pure   epoxy   when   excessive  di-­‐methylformamide  is  used  in  treating  the  carbon  nanotube  (2005).  In  addition,  the   pull  out  of  carbon  nanotube  reinforcement  phenomenon  is  associated  to  the  weak  interface   between  the  two  materials.   Another  major  problem  is  the  dispersion  of  carbon  nanotube  in  the  matrix.  The  weak  Van  der   Waals  forces  of  attraction  between  the  carbon  nanotube  graphene  layers  will  deteriorate  the   properties  and  ductility  of  the  matrix  (Bai,  2003).  The  carbon  nanotube  reinforcement  has  a   small  diameter  which  promotes  adhesion  with  the  epoxy  matrix  and  desirable  as  an  interface   for  stress  transfer.  However,  the  downside  of  this  large  total  surface  area  is  strong  attractive   forces  between  the  carbon  nanotube  fibres  are  induced  (Gojny,  et.  al.,  2005).        
  • 11. 8  |  P a g e   g. Themo  mechanical  Properties   Temperature   plays   a   significant   role   in   influencing   the   mechanical   properties   of   the   nanocomposite.   The   inclusion   of   carbon   nanotube   fibres   will   enhance   the   glass   transition,   melting  and  thermal  decomposition  temperatures  of  the  composite.  For  instance,  the  addition   of  1%  by  weight  of  carbon  nanotube  raises  the  glass  transition  temperature  from  63  to  88⁰C.   On  top  of  that,  the  thermal  conductivity  is  improved  by  70%  (Xiao-­‐Lin,  Yiu-­‐Wing  et  al.  2005).   The  storage  modulus  G’  and  tanδ  curves  of  the  CNT/epoxy  nanocomposite  are  plotted  based  on   the  results  of  the  DMA  analysis  carried  out  by  Yan,  Ming  et.al.  in  figure  4  (2008).  Tanδ  behaves   as  an  indicator  if  the  relative  importance  of  both  viscous  and  elastic  behaviours  of  materials   such  that  tanδ  <  1  tends  to  possess  elastic  behaviour  and  acts  like  a  solid  whereas  tanδ  >  1   shows  viscosity  and  liquid-­‐like  (Jeefferie,  et.al.,  undated).  In  simpler  terms,  the  glass  transition   temperatures  can  be  estimated  from  the  peaks  of  the  tanδ  curve  versus  CNT  content.         Figure  6  Storage  Modulus  and  tanδ  as  a  function  of  temperature.   The  epoxy  based  nanocomposites  are  popular  and  attractive  research  topic  but  the  dilemma   lies  in  the  dispersion  of  CNTs  and  interfacial  bond  between  CNTs  and  epoxy.  There  are  multiple   ways  to  counteract  those  problems.  The  solution  is  to  add  functionalised  group  to  the  surface   of  CNTS.  The  use  of  a  nonionic  surfactant  is  proposed  to  treat  CNT  surface  for  nanocomposite   fabrication,  which  can  act  as  a  bridge  between  CNTs  and  epoxy  matrix  without  disturbing  CNT   structure   or   introducing   defects.   Another   method   to   improve   interfacial   adhesion   is   by   mechanical  means  such  as  using  vibratory  methods  such  as  sonication.  Once  the  CNTs  are  will   dispersed,   those   epoxy   based   composites   will   fulfill   its   potential   of   exhibiting   excellent   mechanical,  electrical  and  thermal  properties.  
  • 12. 9  |  P a g e   Specific  Topic:  Dispersion   a. Fabrication  methods   Regarding  the  original  prediction,  the  carbon  nanotube  and  epoxy  composite  should  possess   excellent   mechanical   properties   and   thermal   resistance   to   apply   as   an   effective   structural   member.   The   application   of   epoxy   matrix   reinforced   with   carbon   nanotube   into   the   construction   industry   is   still   premature   at   this   stage   due   to   several   shortcomings.   These   challenges  that  are  well  documented  laments  the  unexpected  result  of  an  ineffective  composite   as  a  result  of  poorly  dispersed  multiwalled  carbon  nanotube  and  weak  interfacial  bonding  in  the   epoxy  matrix  (Amal  and  Mahmoud  2007).     Despite  the  aforementioned  shortcomings,  there  are  several  available  techniques  to  amend  the   properties  of  epoxy  resin.  The  rule  of  thumb  centres  on  a  homogenous  distribution  of  epoxy   resin   and   increase   the   interfacial   friction   with   epoxy   matrix.   The   first   method   is   the   direct   dispersion,   commonly   known   as   mechanical   method.   Since   the   composite   is   in   nano   scale,   devices   like   the   ultrasonicator   in   a   bath   or   probe   sonicator,   high   shear   mixing   in   a   solvent,   calendaring  and  ball  milling  can  be  used  as  a  combination  in  series  or  parallel.  These  tools  are   able   to   disentangle   CNTs   from   each   other   by   means   of   vibratory   energy   or   shear   force.   Although  this  technique  successfully  separate  the  fibres  from  each  other,  a  substantial  amount   of   energy   input   is   required   besides   resulting   in   damage   and   breakage   of   CNTs   into   smaller   lengths  (Sohel  and  Mangala,  2009).   Chemical   methods   create   surface   functionalities   in   CNTs   to   promote   the   intermolecular   dispersion  by  improving  the  chemical  compatibility  or  interactions  with  a  polymer  or  solvent.   Functionalities   refer   to   the   creation   of   functional   group   on   the   CNT   surface   to   encourage   interfacial  interactions  (Young  Seok  and  Jae  Ryoun  2005).  Two  pertinent  issues  to  worry  about   when   chemical   methods   are   used   is   the   aggressive   nature   of   treatment   and   unexpected   interfacial  bonding  results.  The  most  effective  chemical  method  requires  concentrated  acids  in   the  oxidation  process.  Then  again,  the  corrosiveness  of  acids  generates  structural  defects  by   deteriorating  the  intrinsic  properties  of  CNTs,  creating  defects  and  reduces  the  aspect  ratios  of   CNT   which   result   in   degraded   mechanical   properties.   Replacing   acids   with   milder   functionalisation  processes  such  as  UV/ozone  treatment  or  plasmas  followed  by  amine,  silane   or  fluorine  treatments  limits  the  active  sites  on  the  CNT  surface,  leading  to  a  low  efficiency  of   functionalisation.  Milder  treatment  also  means  the  dispersibility  of  CNTs  in  the  composite  is   marginally  altered.     Recently,  amino  functionalisation  is  devised  to  improve  the  dispersion  and  interfacial  adhesion   of   CNTs   with   polymer   resins.   Demonstrations   suggest   strong   correlations   between   amino-­‐ functionalisation,  dispersion,  wettability,  interfacial  interaction  and  re-­‐agglomeration  behaviour   of   CNTs   and   the   corresponding   mechanical   and   thermo-­‐mechanical   properties   of  
  • 13. 10  |  P a g e   nanocomposites  (Peng-­‐Cheng,  Shan-­‐Yin  et  al.  2010).  To  sum  up,  several  targets  can  be  met  by   the  synthesis  of  amino  functionalisation.  The  uniform  dispersion  of  agglomerated  CNTs  in  the   epoxy  resin  are  stabilised  and  dispersed  CNTs  under  high  temperature  applied  for  curing  can  be   achieved  to  prevent  re-­‐agglomeration.     Application  of  surfactants  and  polymer  coatings  provides  an  interesting  prospect  to  disperse   the  CNT  fibres.  Surfactant  treatment  is  widely  considered  as  the  best  choice  of  CNT  dispersion   because  the  physical  adsorption  seldom  damages  the  CNT  structure,  nor  disrupts  the  π-­‐bond  of   CNTs  and  thus,  the  electrical  properties  are  not  perturbed  (Sun,  Nicolosi  et  al.  2008).  Other   novel   method   in   progress   worth   mentioning   to   cure   the   epoxy   is   by   exposing   the   epoxy   to   gamma  radiation  and  electron  beam  in  order  to  improve  the  thermal  stability  and  yield  strength   (Nho,   Kang   et   al.   2004).   In   essence,   continuous   efforts   are   required   to   explore   various   treatment  methods  besides  improving  the  current  treatment  practices  to  make  the  CNT  and   epoxy  a  successful  composite.   b. Polymers  to  disperse  CNT   The   literature   review   was   conducted   during   the   mid-­‐semester   break.   The   findings   of   the   literature  review  were  presented  in  point  form  in  a  presentable  manner.  Refer  to  Appendix  A   for  the  information  obtained.   c. Uv-­‐Vis  to  monitor  dispersion  of  CNT   The  literature  review  was  conducted  during  the  beginning  of  semester  2.  The  findings  of  the   literature  review  were  presented  in  point  form  in  a  presentable  manner.  Refer  to  Appendix  B   for  the  information  obtained.      
  • 14. 11  |  P a g e   Experimental   Several   experiments   were   performed   throughout   the   year.   However,   out   of   the   four   experiments  performed,  only  one  is  selected  to  be  presented  in  a  conference  paper.  The  first   experiment,   Experiment   1   describes   the   effect   of   carbon   nanotube   geometry   on   dispersion.   Meanwhile,   Experiment   2   explains   the   effect   of   ultrasonication   and   amount   of   CNT   on   the   composite  mechanical  properties.     Experiment  1:  Procedure   Experiment  1  investigates  the  effect  of  CNT  geometry  on  dispersion.  In  this  study,  the  multi   walled  carbon  nanotubes  (MWCNT)  used  was  supplied  by  NTP  Company.  Properties  of  used   CNTs  are  tabulated  in  Table  1  and  SEM  images  of  CNTs  are  illustrated  in  Figure  7.  Dispersing   agent  was  BYK9076,  an  Alkylammonium  salt  of  a  high  molecular  weight  copolymer  which  was   kindly  offered  by  Nuplex  Resins  Company.  The  solvent  was  ethanol  with  99%  purity  from  Grale   Scientific.   Table  1:  CNTs  data  provided  by  manufacturer   S-1020 L-1020 L-2040 L-4060 Main rang of diameter (nm) 10-20 10-20 20-40 40-60 Length (μm) 1-2 5-15 5-15 5-15 Purity (%) ≥ 95 ≥ 95 ≥ 95 ≥ 95 Ash (wt %) ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2 Special surface area (m2 /g) 40-300 40-300 40-300 40-300 Amorphous carbon (%) < 3 < 3 < 3 < 3     Figure  7:  SEM  image  of  used  MWCNT  in  this  research  A:  S1020,  B:  L1020,  C:  L2040,  D:  L4060  
  • 15. 12  |  P a g e   All  solutions  were  prepared  by  mixing  315.8  mg  CNT  with  40  ml  ethanol  and  79  mg  surfactant  in   a  beaker.  Thereafter  the  resulting  solution  was  sonicated  about  1  hour  by  100  KJs  dispersion   energy.   All   sonication   processes   were   carried   out   with   a   horn   sonicator   (VCX 500W)   with   a   cylindrical   tip   (19   mm   end   cap   diameter).   The   output   power   was   fixed   at   around   25W.   To   prevent  rising  the  mixture  temperature  the  beaker  of  solution  was  placed  in  a  water-­‐ice  bath   during  sonication.   UV–vis  measurements  were  carried  out  on  a  DR  5000  Spectrophotometer  with  a  wavelength  range   of  190  to  1100  nm  and  Wavelength  accuracy  of  ±  1  nm  in  Wavelength  Range  200–900  nm.  Samples   were  taken  after  the  sonication  process,  diluted  by  a  factor  of  35,  resulting  in  a  CNT  content  of   0.15  mg,  and  measured  in  the  UV–Vis  spectrometer.  All  absorbance  intensities  are  used  after   baseline   subtraction.   The   ethanol-­‐surfactant   solution   was   used   to   get   the   baseline   in   corresponding  measurements.  For  each  test  3  samples  were  tested  and  the  average  of  results   was  represented.  Scanning  electron  microscopy  (SEM)  morphology  was  studied  by  using  a  JEOL   7001F  field  emission  SEM  operating  at  5  kV.  To  prepare  SEM  sample  a  drop  of  CNT  dispersed  in   solution  was  deposited  on  a  silicon  substrate,  dried,  and  coated  with  1  nm  thickness  Pt.   Experiment  1:  Results  and  discussion   a. UV–vis  spectra  of  MWCNTs–BYK9076  solutions   UV-­‐vis  spectroscopy  correlates  intensity  of  absorption  of  UV-­‐visible  radiation  to  the  amount  of   substance  present  in  a  solution.  Individualized  CNTs  are  active  and  show  characteristics  bands   in  the  UV  region.  Therefore  measured  absorbance  at  specific  wavelength  can  be  related  to  their   degree   of   exfoliation(Grossiord,   Loos   et   al.   2007).   Bundled   CNTs   are   hardly   active   in   the   wavelength   region   between   200   and   900   nm   which   is   most   probably   because   of   carrier   are   tunnelling  between  the  nanotubes(Grossiord,  Loos  et  al.  2007).  Thus,  UV-­‐vis  is  an  ideal  method   to   monitor   the   dispersion   of   CNT   in   the   organic   and   inorganic   solvent.   However,   this   relationship  is  only  true  in  a  dilute  sample.  Dilution  decreases  the  concentration  of  CNT  so  that   the  light  will  not  be  completely  blocked  off  by  the  suspension.  The  spectrophotometer  has  a   light  source  emitting  light  covering  the  entire  visible  spectrum  and  the  near  ultraviolet,  covering   a  range  of  200nm  to  800nm.  Monochromatic  light  is  passed  through  the  sample.  The  incident   light   is   reduced   in   intensity   due   to   absorption,   reflection,   transmittance,   interference   and   scattering  of  light.  
  • 16. 13  |  P a g e     Figure  8:  Normalized  UV-­‐vis  adsorption  spectrum  of  L-­‐4060  CNT  in  ethanol  (43  µg  ml-­‐1 )  at  power   of  25  W.     Figure   8   illustrates   a   normalized   UV-­‐vis   spectrum   of   L-­‐4060   CNT   in   ethanol   (43   µg   ml-­‐1)   at   continuous  power  of  25  W.  As  can  be  seen,  the  evaluation  of  the  degree  of  dispersion  of  CNTs   in  ethanol  can  be  achieved  by  recording  the  UV-­‐vis  spectra  of  the  solution.  It  can  be  clearly  seen   that   the   sample   shows   a   peak   at   about   260nm,   confirming   the   presence   of   successfully   dispersed   CNTs.   At   this   point,   it   demonstrates   the   strong   absorption   by   dispersed   CNT.     Experiments   conducted   by   (Yu,   Grossiord   et   al.   2007)   also   reported   that   the   maximum   absorbance  occurs  at  the  same  wavelength  of  260nm.  Absorbance  decreases  steadily  due  to   scattering  in  the  lower  wavelength  range  after  peak  absorbance  at  about  260  nm.  In  this  case,   Rayleigh   scattering   occurs   because   the   size   of   CNTs   is   small   compared   to   the   radiation   wavelength.     It  is  worth  pointing  out  that  CNTs  can  be  effectively  dispersed  in  ethanol  solution  by  π-­‐stacking   interaction.  The  ethanol  is  selected  over  many  other  solvents  to  homogeneously  disperse  the   CNT  due  to  some  factors.  Mainly,  the  ethanol  solvent  does  not  interfere  with  the  absorption   during  the  UV-­‐vis  test.  Moreover,  dispersion  can  be  attained  without  degrading  or  destroying   the  CNTs,  unlike  acid  treatment.   It  was  reported  in  the  literature  (Grossiord,  Loos  et  al.  2007;  Yu,  Grossiord  et  al.  2007)  that,   during   the   sonication   process   the   relative   evolution   of   the   spectrum     underneath   area   is   proportional   to   the   relative   value   of   absorbance   at   a   specific   wavelength;   Therefore,   it   was   decided  to  specify  the  absorbance  maximum  about  260  nm  and  to  plot  this  value  as  a  function   of  the  total  sonication  energy  provided  to  disperse  CNT  in  solution.    
  • 17. 14  |  P a g e   a. Effect  of  CNT  diameter  on  dispersion   To  investigate  the  effect  of  CNT  diameter  on  quality  of  CNT  dispersion  in  media  three  CNTs  with   different  diameter  were  tested.  CNTs  diameter  ranges  were  10-­‐20  nm,  20-­‐40  nm  and  40-­‐60  nm.   All  CNTs  had  equal  length  range  of  5-­‐15  µm.  More  information  of  CNTs  is  tabulated  in  table  1.   CNTs  were  dispersed  in  BYK9076-­‐ethanol  solution  as  explained  in  experimental  section  and  as   prepared  solutions  were  used  for  UV-­‐vis  analysis.   Figure  9  shows  that  the  smallest  CNT  diameter  of  10  to  20  nm  has  the  lowest  absorbance  which   is  about  0.18.  However,  the  biggest  CNT  diameter  of  40  to  60  nm  has  the  highest  absorbance  of   around  0.55  which  is  3-­‐fold  of  that  of  10  to  20  nm.  This  can  be  interpreted  as  a  CNT  with  small   diameter  is  poorly  dispersed.    Smaller  diameter  of  CNT  corresponds  to  a  large  surface  area.  This   means  CNT  with  smaller  diameter  requires  more  surfactant  molecules  to  achieve  stable   dispersion  compared  to  that  of  CNT  with  larger  diameter.  The  difficulty  in  dispersing  the  CNT   with  small  diameter  arises  from  the  stronger  van  der  Waals  attraction.  In  addition,  more  energy   is  necessary  to  overcome  the  CNT  interaction  energy  of  bundled  CNT  with  smaller  diameter   compared  to  that  of  Sample  with  the  larger  diameter  in  this  experiment.  Therefore,  with  the   constant  concentration  of  surfactant  and  energy  input  for  CNT  dispersion,  CNT  with  larger   diameter  can  be  easily  dispersed  compared  to  CNT  with  smaller  diameter.       Figure  9:  Effect  of  CNT  diameter  on  CNT  dispersion  in  ethanol  solvent.  Normalized  height  of  the  UV-­‐vis  spectra   peak  located  around  260  nm  wavelengths  for  3  different  examined  CNT  diameters,  bigger  the  diameter  better  the   dispersion.  Top  left:  Evolution  of  the  colour  of  1%  wt  CNT  0.25%  wt  BYK9076  in  Ethanol  as  a  function  of  the  CNT   diameter.  A:  10-­‐20  nm,  B:  20-­‐40  nm  and  C:  40-­‐60  nm  (solutions  are  diluted  by  a  factor  of  35).   This  statement  is  in  agreement  with  visual  observation  of  dispersed  CNT  solution  in  top  left   corner  of  Figure  3.  As  can  be  seen,  the  sample  A  which  is  10-­‐20  nm  CNT  solution  has  the  lightest   colour  and  the  sample  C  with  40-­‐60  nm  CNT  has  the  darkest  colour.  It  means  that  40-­‐60  nm   CNT  solution  has  more  suspended  CNT  nanoparticle  in  solution  compared  to  that  of  10-­‐20  nm   solution.  
  • 18. 15  |  P a g e   b. Effect  of  CNT  length  on  CNT  dispersion   The  influence  of  CNT  length  on  efficient  dispersion  of  CNT  has  been  investigated  in  this  section.   To  do  this,  two  CNTs  with  different  lengths  but  the  same  diameter  were  chosen.  CNTs  were  S-­‐ 1020  and  L-­‐1020  with  1-­‐2  µm  and  5-­‐15  µm  length  respectively  and  10-­‐20  nm  diameters.  More   information  of  CNTs  is  provided  in  table  1.  Figure  4  illustrates  normalized  height  of  the  UV-­‐vis   spectra   peak   located   around   260   nm   wavelength   for   2   different   examined   lengths,   and   also   evolution  of  the  colour  of  1%  wt  CNT  0.25%  wt  BYK9076  in  Ethanol  as  a  function  of  the  CNT   length.   As   can   be   seen,   both   1-­‐2   µm   and   5-­‐15   µm   length   CNTs   have   almost   the   same   absorbance   value.   It   testifies   that   CNT   length   has   not   significant   effect   on   quality   of   CNT   dispersion  in  matrix.     Figure  10:  Effect  of  CNT  length  on  CNT  dispersion  in  ethanol  solvent.  Normalized  height  of  the   UV-­‐vis  spectra  peak  located  around  260  nm  wavelength  for  2  different  examined  lengths,  Top   right:  Evolution  of  the  colour  of  1%  wt  CNT  0.25%  wt  BYK9076  in  Ethanol  as  a  function  of  the  CNT  length.  Left:  1-­‐ 2  µm,  right:  5-­‐15  µm  (solutions  are  diluted  by  a  factor  of  35).     Theoretically,  a  shorter  CNT  would  be  more  easily  dispersed  than  longer  CNT.  A  longer  CNT  will   provide  a  larger  area  for  entanglement.  However,  the  dispersion  results  in  Figure  10  shows  that   the  CNT  entanglement  is  negligible  and  the  surface  energy  is  dominant  obstacle  for  efficient   dispersion.  CNT  length  has  a  negligible  influence  on  CNT  dispersion  compared  to  diameter.  It  is   because;  the  total  Surface  area  to  volume  ratio  is  independent  from  CNT  length  but  proportion   to   inverse   CNT   radius.   Therefore,   for   a   constant   CNT   content,   CNT   length   variation   has   not   significant  effect  on  its  dispersion  efficiency.     Equivalent  amounts  of  short  or  long  CNT  with  the  same  diameter  have  equal  surface  area.  In   the  other  hand,  the  equal  amounts  of  short  and  long  CNT  with  constant  diameter  have  the  
  • 19. 16  |  P a g e   same   interaction   energy   in   bundle.   Accordingly,   both   samples   need   the   same   value   of   dispersion  energy  to  break  down  the  CNT  bundle.  Therefore,  as  Figure  10  demonstrate,  with   the  same  provided  dispersion  energy  and  surfactant  short  and  long  CNT  have  almost  the  same   quality  of  dispersion  in  solvent.  However,  the  point  here  is  that  although  CNT  length  has  not   significant  effect  on  CNT  dispersion,  it  influences  the  aspect  ratio  of  CNT.  Since  CNT  aspect  ratio   plays  a  key  role  on  reinforcement  role  of  CNT  in  CNT  nanocomposites  it  is  still  essential  to  use   long  CNT  rather  than  short  CNT.       Experiment  2:  Procedure   Three   additional   experiments   were   performed   to   investigate   the   factors   influencing   the   strength  of  the  CNT-­‐epoxy  composite.  The  variables  to  be  investigated  are  the  effect  of  shear   mixing,   ultrasonication   and   amount   of   CNT   (measured   in   terms   of   percent   mass)   on   the   mechanical   properties.   These   mechanical   properties   include   Young’s   Modulus   and   tensile   strength.   Pure  epoxy  samples  (Epoxy:  Araldite  2011)  were  prepared  to  analyse  its  properties  as  a  resin.   Since  the  weakness  of  a  composite  lies  in  its  adhesive  layer,  the  importance  of  investigating  the   behavior  of  pure  epoxy  to  the  action  of  load  and  temperature  cannot  be  underestimated.  In   addition,  MWCNTs  with  large  diameter  within  the  range  of  40  to  60  nm  are  embedded  in  the   epoxy  matrix.  On  top  of  that,  the  scanning  electron  microscope  (SEM)  will  be  utilized  to  study   the  fracture  surface.     Firstly,   either   pure   epoxy   or   CNT   composite   is   placed   into   a   mould   with   the   dimensions   stipulated   in   Table   2   to   obtain   a   dog-­‐bone   shaped   sample.   This   is   in   conformance   with   the   ASTM  International  Standards  and  the  dimensions  are  stated  in  Table  2.  Twenty-­‐four  similar   samples   were   prepared   to   perform   several   tests   later.   The   samples   underwent   high   speed   shear  mixer  and  ultrasonication  at  2000rpm  and  3500rpm  in  shear  mixer  as  well  as  15  and  30   minutes  in  the  ultrasonicator  respectively.    The  sample  was  left  to  cure.  Table  3  mentions  the   type  of  CNT  fibre  used.     Table  2  Dimension  of  sample   Dimension   Length  (mm)   Thickness   3   Width   12.7   Length   100   Span   48-­‐50      
  • 20. 17  |  P a g e   Table  3:  CNTs  data  provided  by  manufacturer   S-1020 L-1020 L-2040 L-4060 Main rang of diameter (nm) 10-20 10-20 20-40 40-60 Length (μm) 1-2 5-15 5-15 5-15 Purity (%) ≥ 95 ≥ 95 ≥ 95 ≥ 95 Ash (wt %) ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2 Special surface area (m2 /g) 40-300 40-300 40-300 40-300 Amorphous carbon (%) < 3 < 3 < 3 < 3 Upon  completion  of  the  fabrication  process,  the  samples  are  ready  to  be  tested  to  failure,  also   known   as   destructive   tests.   To   investigate   the   mechanical   properties   of   the   composite,   the   tensile  is  performed  whereby  the  ASTM  D  638-­‐10  standard  will  be  used  as  a  guide.  The  Bluehill   software  will  be  utilised  to  calibrate  the  strain  experienced  by  the  sample  when  it  is  loaded  to   failure.  The  fracture  surface  is  then  observed  by  SEM  at  room  temperature  and  cold  freeze  by   liquid  nitrogen.   Experiment  2:  Results  and  discussion   a.  High  speed  shear  mixing   Fluid  undergoes  shear  when  one  area  of  fluid  travels  with  a  different  velocity  relative  to  an   adjacent   area.   In   a   high   shear   mixer   the   tip   velocity,   or   speed   of   the   fluid   at   the   outside   diameter  of  the  rotor,  will  be  higher  than  the  velocity  at  the  centre  of  the  rotor,  and  it  is  this   velocity  difference  that  creates  shear.  This  shear  can  be  used  to  load  filler  such  as  nano  particle   in  matrix.  Figures  5  to  7  show  the  comparison  between  stress-­‐strain  curves  of  pure  epoxy  with   CNT-­‐epoxy  composite  using  high  shear  mixer.     Figure  11  Tensile  stress-­‐strain  curve  of  CNT-­‐Epoxy  fabricated  by  shear  mixing  method  (left)  and   Effect  of  tensile  speed  on  tensile  curve  (right)  
  • 21. 18  |  P a g e   This  method  couldn’t  produce  efficient  CNT-­‐Epoxy  composite  due  to  the  limitation  of  mixing   speed.  The  pure  epoxy  demonstrates  a  ductile  behaviour  as  a  result  of  the  usage  of  an  overage   hardener.  The  composite  has  a  marginally  higher  Young’s  Modulus  than  pure  epoxy  which  may   be  the  direct  result  of  insufficient  mixing  speed.  Therefore,  shear  mixing  marginally  improves   the  CNT  elastic  modulus  of  CNT.       b.  Ultrasonication:   Ultrasonication  generates  alternating  low-­‐pressure  and  high-­‐pressure  waves  in  liquids,  enabling   the   formation   and   violent   collapse   of   small   vacuum   bubbles.   The   cavitation   phenomenon   causes   high   speed   impinging   liquid   jets   and   strong   hydrodynamic   shear-­‐forces.   The   induced   effects   are   used   for   the   deagglomeration   and   milling   of   micrometre   and   nanometre-­‐size   materials  in  matrix.  Figure  8  compares  the  stress-­‐strain  curves  of  pure  epoxy  with  CNT-­‐epoxy   composite  using  ultrasonication.     Figure  8:  Effect  of  sonication  energy  on  tensile  stress-­‐strain  curve   Table  4  Effect  of  sonication  energy  on  mechanical  properties  of  CNT-­‐Epoxy  composite   Dispersion   Energy  (KJ)   Tensile  Stress  Mean   (Mpa)   Ultimate  Strain   Mean  (%)   Elastic  Modulus  Mean   (Mpa)   60   37.91   13.52   1984.22   90   39.33   10.86   2031.18   120   38.17   11.26   1982.65   180   35.35   7.87   1897.09     Generally,  all  tensile  stress-­‐strain  curves  show  that  the  stress  increases  with  strain  till  a  peak   value  is  reached  before  the  stress  decreases  slightly  until  it  reaches  a  plateau  as  the  load  is  
  • 22. 19  |  P a g e   continually   applied.   Similarly,   the   relationship   also   applies   to   the   dispersion   energy   versus   elastic  modulus.  The  optimal  dispersion  energy  is  60  kJ  whereby  the  composite  elastic  modulus   is   the   maximum.   At   this   stage,   energy   is   applied   mechanically   to   physically   disperse   the   nanotubes   from   its   agglomerated   bundles.   In   other   words,   larger   dispersion   energy   corresponds  to  a  higher  rate  of  dispersion.  However,  excessive  application  of  sonication  will   result  in  damage  and  breakage  of  CNTs  into  smaller  lengths  (Rana,  Alagirusamy  et  al.  2009).   Clearly,   degradation   in   tensile   stress   and   elastic   modulus   is   observed   when   the   dispersion   energy  is  greater  than  60  kJ.   c.  Amount  of  CNT   The  tensile  test  is  performed  on  six  types  of  composite  with  varying  CNT  content  at  0,  0.1%,   0.3%,  0.5%,  1%  and  1.5%.  The  stress-­‐strain  curves  of  all  six  cases  are  summarized  in  Figure  9   while  their  corresponding  mechanical  property  values  are  stated  in  Table  4.         Figure  9:  Effect  of  CNT  percentage  on  tensile  stress-­‐strain  curve   Table  4:  Effect  of  CNT  percentage  on  mechanical  properties  of  CNT-­‐Epoxy  composite   CNT  percentage   (%)   Tensile  Stress  Mean   (Mpa)   Ultimate  Strain  Mean   (%)   Elastic  Modulus   Mean  (Mpa)   0.0   35.25   13.23   1737.66   0.1   38.17   11.26   1982.65   0.3   35.9   4.74   2001.67   0.5   35.15   6.53   1853.66   1.0   30.1   2.4   1734.21   1.5   31.18   3.46   1878  
  • 23. 20  |  P a g e   The  mechanical  properties  of  the  composite  improve  as  the  amount  of  CNT  embedded  in  the   matrix  increases.  The  optimal  percentage  of  CNT  is  0.3%  in  this  experiment  and  the  results  are   supported  by  Yuanxin  et.  al.  (2007).  The  apparent  decrease  in  mechanical  properties  is  best   described  in  terms  of  the  molecular  interactions  between  the  CNT.  The  weak  Van  der  Waals   forces   of   attraction   between   the   carbon   nanotube   graphene   layers   will   deteriorate   the   properties   and   ductility   of   the   matrix   (Bai   2003).   The   carbon   nanotube   reinforcement   has   a   small  diameter  which  promotes  adhesion  with  the  epoxy  matrix  and  desirable  as  an  interface   for  stress  transfer.  However,  the  downside  of  this  large  total  surface  area  is  strong  attractive   forces  between  the  carbon  nanotube  fibres  are  induced  (Gojny,  Wichmann  et  al.  2005).  When   the  amount  of  CNT  is  increased,  more  CNT  fibres  are  present  to  form  bundles  via  molecular   attraction.  This  reagglomeration  scenario  is  not  ideal  as  the  CNT  can  experience  a  failure  mode   called  pull-­‐out  of  fibres.    Gojny  et.  al.  also  experienced  the  same  phenomenon  and  concluded   that  the  discrepancy  is  a  result  of  the  variation  in  quality  of  dispersion  in  all  nanocomposite   samples   after   performing   sonication   (2005).   The   upper   limit   to   the   addition   of   CNT   is   4%   because  the  nanotube  content  would  be  saturated  and  this  leads  to  a  significant  increase  in   viscosity  that  causes  void  defects  in  the  composite  (Zhu,  Peng  et  al.  2004).   Conclusion   In  the  beginning  of  the  year,  a  comprehensive  literature  review  and  experiments  were  conducted  to   study   the   properties,   problems   and   potential   of   carbon   nanotubes   (CNT).   Despite   its   exceptional   mechanical,   thermal   and   electrical   properties,   agglomeration   is   the   biggest   problem   that   limits   the   mechanical   properties   of   CNT.   To   overcome   the   string   intermolecular   forces,   dispersion   during   fabrication  is  necessary  to  enhance  the  mechanical  properties.  Experiments  using  chemical  and  physical   dispersion  were  performed  to  achieve  this  goal.  Several  experiments  were  conducted  to  investigate  the   possible  factors  that  may  improve  dispersion  in  CNT  and  ultimately  improve  its  mechanical  properties.     The  second  semester  is  focused  on  the  effect  of  CNT  geometry  on  efficiency  of  CNT  dispersion  in  media.   Results   show   that   CNT   diameter   has   significant   influence   on   quality   of   CNT   dispersion   in   media,   the   bigger  diameter  the  better  CNT  exfoliation  in  matrix.  In  contrast,  CNT  length  has  insignificant  influence   on  quality  of  CNT  dispersion  in  matrix.  In  mathematical  terms,  the  total  Surface  area  to  volume  ratio  is   independent   from   CNT   length   but   proportional   to   inverse   CNT   radius.   Therefore,   for   a   constant   CNT   content,   CNT   length   variation   converse   to   radius   variation   has   no   significant   effect   on   its   dispersion   efficiency.      
  • 24. 21  |  P a g e   References   1. Amal,  M.  K.,  Esawi  and  M.  Mahmoud,  Farag  (2007).  "Carbon  Nanotube  Reinforced  Composites:   Potential  and  Current  Challenges."  Composites  Elsevier(28):  8.   2. Bai,  J.  (2003).  "Evidence  of  the  reinforcement  role  of  chemical  vapour  deposition  multi-­‐walled   carbon  nanotubes  in  a  polymer  matrix."  Carbon  41(6):  1325-­‐1328.   3. Fukui,  N.,  A.  Taninaka,  et  al.  (2007).  "Placing  and  Imaging  Individual  Carbon  Nanotubes  on  Cu   (111)  Clean  Surface  Using  In  Situ  Pulsed-­‐Jet  Deposition-­‐STM  Technique."  Journal  of  Nanoscience   and  Nanotechnology  7(12):  4267-­‐4271.   4. Gojny,  F.  H.,  M.  H.  G.  Wichmann,  et  al.  (2005).  "Influence  of  different  carbon  nanotubes  on  the   mechanical  properties  of  epoxy  matrix  composites  -­‐  A  comparative  study."  Composites  Science   and  Technology  65(15-­‐16  SPEC.  ISS.):  2300-­‐2313.   5. Grossiord,  N.,  J.  Loos,  et  al.  (2007).  "Conductive  carbon-­‐nanotube/polymer  composites:   Spectroscopic  monitoring  of  the  exfoliation  process  in  water."  Composites  Science  and   Technology  67(5):  778-­‐782.   6. Jin,  Z.,  G.  Qipeng,  et  al.  (2010).  "Thermal  and  Mechanical  Properties  of  a  Dendritic  Hydroxyl-­‐ Functional  Hyperbranched  Polymer  and  Tetrafunctional  Epoxy  Resin  Blends."  Journal  of  Polymer   Science,  Part  B:  Polymer  Physics  48(4):  417-­‐424.   7. Jones,  J.  M.,  Malcolm,  R.  P.,  Thoma,  K.  M.  and  Bottrell,  S.  H.,  (1996),  Anode  deposit   formed  during  the  carbon-­‐arc  evaporation  of  graphite  for  the  synthesis  of  fullerenes  and   carbon  nanotubes,  Vol.  34,  Pergamon  Press  Inc,  Tarrytown,  NY,  United  States   8. Coll,  B.F.,  Sathrum,  P.,  Aharonov,  R.  and  Tamor,  M.A.,  (1992)  Diamond-­‐like  carbon  films   synthesized  by  cathodic  arc  evaporation,  Thin  Solid  Films,  v  209,  n  2,  pp.  165-­‐173   9. Nikolaev  P.,Bronikowski,  M.J.,Bradley  R.K.,  Fohmund  F.,Colbert  D.T.,Smith  K.A.  and   Smalley,  R.E.,  (1999)  Gas-­‐phase  catalytic  growth  of  single-­‐walled  carbon  nanotubes  from   carbon  monoxide,  Chemical  Physics  Letters,313(1-­‐2):91–7   10. Ebbesen,  T.W.,  (1997),  Carbon  nanotubes  :  preparation  and  properties,  Boca  Raton  :  CRC   Press,  pp.  225-­‐246   11. Kim,  P.,  Shi,  L.,  Majumdar,  A.  and  McEuen,  P.L.,  (2001),  Thermal  transport   measurements  of  individual  multiwalled  nanotubes.  Phys.  Rev.  Lett.,  8721   12. Hone,  J.,  (2004)  Carbon  nanotube:  thermal  properties,    Dekker  Encyclopedia  of   Nanoscience  and  Nanotechnology  p  603   13. Pipes  R.B.,  Frankland  S.J.,  Hubert  P.  and  Saether  E.,(2003),  Self-­‐consistent  properties  of   the  SWCN  and  hexagonal  arrays  as  composite  reinforcements.  Compos  Sci  Technol,   63(10):1349–58   14. Makar,  J.M.  and  Beaudoin,  J.J.,  (2003),  Carbon  nanotubes  and  their  application  in  the   construction  industr  y,  NRC-­‐CNC   15. Harris,  P.J.,  2009,  Carbon  nanotube  science:  synthesis,  properties  and  applications,   Cambridge,  pp.  108-­‐141   16. Thostenson  E.  T.,  Ren  Z.F.  and  Chou,  T.W.,  (2001),  Advances  in  the  science  and   technology  of  Carbon  nanotubes  and  their  composites:  a  review,  Composite  science  and   technology,  pp.  1899-­‐1912  
  • 25. 22  |  P a g e     17. Loos,  M.  R.,  J.  Yang,  et  al.  (2012).  "Effect  of  block-­‐copolymer  dispersants  on  properties  of  carbon   nanotube/epoxy  systems."  Composites  Science  and  Technology  72(4):  482-­‐488.   18. Montazeri,  A.,  N.  Montazeri,  et  al.  (2011).  "Thermo-­‐mechanical  properties  of  multi-­‐walled   carbon  nanotube  (mwcnt)/epoxy  composites."  International  Journal  of  Polymer  Analysis  and   Characterization  16(3):  199-­‐210.   19. Nho,  Y.  C.,  P.  H.  Kang,  et  al.  (2004).  The  characteristics  of  epoxy  resin  cured  by  -­‐ray  and  E-­‐beam,   Elsevier  Ltd.   20. Peng-­‐Cheng,  M.,  M.  Shan-­‐Yin,  et  al.  (2010).  "Dispersion,  Interfacial  Interaction  and  Re-­‐ agglomeration  of  Functionalized  Carbon  Nanotubes  in  Epoxy  Composites."  Composites   Elsevier(48):  11.   21. Rana,  S.,  R.  Alagirusamy,  et  al.  (2009).  "A  review  on  carbon  epoxy  nanocomposites."  Journal  of   Reinforced  Plastics  and  Composites  28(4):  461-­‐487.   22. S.  Iijima  (1991).  "Helical  microtubules  of  graphitic  carbon."  Nature  354(6348):  56-­‐58.   23. Sun,  L.,  G.  Warren,  et  al.  (2008).  "Mechanical  properties  of  surface-­‐functionalized  SWCNT/epoxy   composites."  Carbon  46(2):  320-­‐328.   24. Sun,  Z.,  V.  Nicolosi,  et  al.  (2008).  "Quantitative  evaluation  of  surfactant-­‐stabilized  single-­‐walled   carbon  nanotubes:  Dispersion  quality  and  its  correlation  with  zeta  potential."  Journal  of  Physical   Chemistry  C  112(29):  10692-­‐10699.   25. Sohel,  R.,  A.  R.,  and  J.  Mangala,  (2009).  A  Review  on  Carbon  Epoxy  Nanocomposites.   Journal  of  Reinforced  Plastics  and  Composites.   26. Bai,  (2003),  Evidence  of  the  reinforcement  role  of  chemical  vapour  deposition  multi-­‐ walled  carbon  nanotubes  in  a  polymer  matrix   27. K.T.  Lau,  (2005)  Composites  Science  and  Technology  65  719–725   28. F.H.  Gojny  et  al.  (2005),  Composites  Science  and  Technology  65  2300–2313   29. Mechanical  and  Tribological  Properties  of  Epoxy-­‐CNT  Nanocomposite  Coatings     30. H.  R.  Le,  A.  Howson  and  M.  Ramanauskas  Mechanical  and  Tribological  Properties  of   Epoxy-­‐CNT  Nanocomposite  Coatings   31. John  Kathi,  Kyong-­‐Yop  Rhee,  Joong  Hee  Lee,  2009,  Effect  of  chemical  functionalization  of   multi-­‐walled  carbon  nanotubes  with  3-­‐aminopropyltriethoxysilane  on  mechanical  and   morphological  properties  of  epoxy  nanocomposites   32. Lan-­‐Hui  Sun,  Zoub  eida  Ounaies,  Xin-­‐Lin  Gao,  Casey  A.  Whalen,  and  Zhen-­‐Guo  Yang   (2011)  Prepar  at  ion,  Char  acter  i  zat  i  on,  a  nd  Mo  deling  of  C  ar  b  on  Nanofib  er/Ep  oxy   Nanocomp  osite  s   33. Philip,  M.  and  Bolton,  W,  2002,  “Technology  of  engineering  materials”,  Butterworth-­‐ Heinemann,  Great  Britain,  p.  296   34. A.R.,  Jeefferie,  M.Y.  Yuhazri,  O.  NooririnahM.M.  Haidir,  Haeryip  Sihombing,  M.A.,  Mohd   Salleh,    N.A.,  Ibrahim,    THERMOMECHANICAL  AND  MORPHOLOGICAL   INTERRELATIONSHIP  OF  POLYPROPYLENE-­‐MUTIWALLED  CARBON  NANOTUBES   (PP/MWCNTs)  NANOCOMPOSITES,  International  Journal  of  Basic  &  Applie  d  Sciences   IJBAS-­‐IJENS  Vol:  10  No:04   35. Vaisman,  L.,  H.  D.  Wagner,  et  al.  (2006).  "The  role  of  surfactants  in  dispersion  of  carbon   nanotubes."  Advances  in  Colloid  and  Interface  Science  128-­‐130:  37-­‐46.  
  • 26. 23  |  P a g e   36. Wladyka-­‐Przybylak,  M.,  D.  Wesolek,  et  al.  (2011).  "Functionalization  effect  on  physico-­‐ mechanical  properties  of  multi-­‐walled  carbon  nanotubes/epoxy  composites."  Polymers  for   Advanced  Technologies  22(1):  48-­‐59.   37. Xiao-­‐Lin,  X.,  M.  Yiu-­‐Wing,  et  al.  (2005).  "Dispersion  and  alignment  of  carbon  nanotubes  in   polymer  matrix:  A  review."  Materials  Science  and  Engineering  49:  24.   38. Young  Seok,  S.  and  Y.  Jae  Ryoun  (2005).  "Influence  of  dispersion  states  of  carbon  nanotubes  on   physical  properties  of  epoxy  nanocomposites."  Carbon  43(7):  1378-­‐1385.   39. Yu,  J.,  N.  Grossiord,  et  al.  (2007).  "Controlling  the  dispersion  of  multi-­‐wall  carbon  nanotubes  in   aqueous  surfactant  solution."  Carbon  45(3):  618-­‐623.   40. Yuanxin,  Z.,  F.  Pervin,  et  al.  (2007).  "Experimental  study  on  the  thermal  and  mechanical   properties  of  multi-­‐walled  carbon  nanotube-­‐reinforced  epoxy."  Materials  Science  &amp;   Engineering  A  (Structural  Materials:  Properties,  Microstructure  and  Processing)  452-­‐453:  657-­‐ 664.   41. Zheng,  Y.,  A.  Zhang,  et  al.  (2006).  "Functionalized  effect  on  carbon  nanotube/epoxy  nano-­‐ composites."  Materials  Science  &amp;  Engineering  A  (Structural  Materials:  Properties,   Microstructure  and  Processing)  435-­‐436:  145-­‐149.   42. Zhu,  J.,  H.  Peng,  et  al.  (2004).  "Reinforcing  epoxy  polymer  composites  through  covalent   integration  of  functionalized  nanotubes."  Advanced  Functional  Materials  14(7):  643-­‐648.   43. Zhu,  J.,  H.  Peng,  et  al.  (2004).  "Reinforcing  epoxy  polymer  composites  through  covalent   integration  of  functionalized  nanotubes."  Advanced  Functional  Materials  14(7):  643-­‐648.    
  • 27. 24  |  P a g e   Appendix  A:  Conference  Paper            
  • 28. 25  |  P a g e   Appendix  B:  Project  Management  Statement   The  project  was  conducted  in  a  continuous  manner  beginning  from  the  first  week  of  the  first  semester   until  the  end  of  September  whereby  the  conference  paper  was  completed.  This  was  managed  effectively   by  prioritisation  of  tasks  with  the  guidance  of  the  lecturer,  Dr.  Wen  Hui  Duan.       The   literature   review   was   performed   individually   with   the   supervisor   providing   a   set   of   compulsory   reading  materials  to  be  reported  on  a  weekly  basis.  Software  such  as  JabRef,  Lyx  and  CTex  were  used  to   present  the  findings  in  a  systematic  and  organised  form.  On  the  other  hand,  I  assisted  the  supervisor  to   perform  the  laboratory  experiments.     In  the  first  semester,  the  first  two  weeks  were  utilised  to  familiarise  myself  with  the  topic  at  hand.  The   next  3  weeks  (Week  3  to  week  6)  were  spent  at  the  laboratory  performing  experiments.  During  that   time  period,  a  total  of  about  10  hours  were  spent  at  the  laboratory.  Tensile  tests  and  fabrication  of  CNT   epoxy   specimens   were   carried   out.   A   poster   presentation   was   delivered   Week   4   to   understand   the   requirements  of  the  task  and  begin  scoping  the  project.  In  addition,  the  literature  review  regarding  the   general  topic  of  the  “Properties,  Problems  and  Potential  of  CNT”  took  place  in  a  continuous  manner  till   the  end  of  the  semester.  At  the  end  of  the  semester  in  week  12,  a  preliminary  report  was  submitted  to   monitor  the  progress.     The  holidays  were  well-­‐spent  as  I  channelled  my  time  and  energy  on  the  final  year  project.  During  the   mid-­‐semester  break,  duration  of  four  weeks  was  set  aside  to  identify  the  specific  topic  for  the  final  year   project  and  conference  paper  submission.    As  a  result,  the  topic  of  “Fabrication  and  Characterisation  of   CNT  Epoxy  Nanocomposites:  Effect  of  the  Geometry  of  Carbon  Nanotubes”  was  selected.  As  shown  in   Appendix  A  and  B,  the  mid-­‐term  break  was  used  to  present  the  findings  in  a  presentable  manner.       During  the  second  semester,  the  first  three  weeks  was  used  to  perform  experiments  at  the  laboratory  to   investigate  the  effect  of  geometry  on  CNT.  About  12  hours  were  spent  at  the  laboratory  to  obtain  the   results.  The  remaining  time  until  the  end  of  September  was  dedicated  to  write  a  conference  paper  as   shown  in  Appendix  C.  Based  on  the  compiled  notes  gathered  throughout  the  semester,  the  literature   review   findings   were   applied   as   background   knowledge   and   references   to   help   write   the   conference   paper.       Overall,  the  unit  certainly  helped  me  to  juggle  and  manage  my  time  for  research  and  coursework.  In   addition,  the  time  used  during  the  mid-­‐term  and  mid  semester  breaks  allowed  ne  to  use  my  time  in  a   much   more   effective   manner.   As   a   result,   the   conference   paper   managed   to   be   produced   ahead   of   schedule.  Moreover,  a  full  day  (11  hours)  per  week  was  set  aside  to  familiarise  myself  with  the  topic  by   reading  the  conference  papers  in  the  database.