SlideShare a Scribd company logo
Ghazi Brotha Hydro Power Project
Pakistan Water & Power Development Authority
Internship Report
Submitted to:
Mr. Feroz-ud-din
Chief Engineer
Ghazi Brotha Power Complex.
Submitted by:
Waleed Azhar.
11-ME-91
Department of Mechanical Engineering
University of Engineering & Technology (UET), Taxila.
Ghazi Brotha Hydro Power Project
2 | P a g e
Table of Contents
1. Power Plants........................................................................................................................5
1.1 Types of Power Plants...................................................................................................5
1.1.1 Significance of Hydel Power Plants .......................................................................5
1.1.2 Types of Hydel Power Plants .................................................................................6
2. Ghazi Brotha Hydro Power Project......................................................................................7
2.1 The Barrage ..................................................................................................................7
2.1.1 Standard Bays........................................................................................................8
2.1.2 Under Sluice Gates ................................................................................................8
2.1.3 Head Regulator Gates ............................................................................................8
2.2 The Power Channel.......................................................................................................8
2.3 The Power Complex......................................................................................................8
2.3.1 Tail Regulator........................................................................................................8
2.3.2 Fore Bay................................................................................................................9
2.3.3 South Head Pond ...................................................................................................9
2.3.4 North Head Pond .................................................................................................10
2.3.5 Intake...................................................................................................................10
2.3.6 Power House........................................................................................................10
2.3.7 Spill Way.............................................................................................................11
2.3.8 Tail Race .............................................................................................................11
3. The Main Power Plant .......................................................................................................11
3.1 Turbine .......................................................................................................................12
3.1.1 Penstock ..............................................................................................................13
3.1.2 Spiral Casing .......................................................................................................14
3.1.3 Wicket Gates .......................................................................................................14
3.1.4 Runner:................................................................................................................15
3.1.5 Blading ................................................................................................................15
3.1.6 Draft Tube ...........................................................................................................16
3.2 Governor.....................................................................................................................17
3.3 Bearings......................................................................................................................18
3.4 Lubrication and Cooling Systems................................................................................18
Ghazi Brotha Hydro Power Project
3 | P a g e
3.5 Braking System:..........................................................................................................20
3.6 Generator:...................................................................................................................21
3.7 Excitation Transformer ...............................................................................................23
3.8 Synchronization Circuit Breakers................................................................................23
3.9 Generator Transformer................................................................................................25
3.10 Auxiliary Supply .....................................................................................................25
3.11 HVAC:....................................................................................................................26
3.12 Control & Instrumentation (C&I) ............................................................................26
3.13 Protection & Instrumentation (P&I).........................................................................26
3.14 Switch Yard: ...........................................................................................................27
3.14.1 Power Transformers.............................................................................................28
3.14.2 Bus Bars ..............................................................................................................28
3.14.3 Breakers...............................................................................................................28
3.14.4 Isolators...............................................................................................................28
3.14.5 Lightning Arrestors..............................................................................................28
3.14.6 Wave Blockers.....................................................................................................28
3.14.7 Shunt Reactors.....................................................................................................28
3.14.8 CTs & PTs...........................................................................................................28
Ghazi Brotha Hydro Power Project
4 | P a g e
Acknowledgement
First of all I am grateful to Allah Who Gave me sound mind & sound health to accomplish my
summer placement. Then, I would like to thank my parents who have supported me in every
walk of life. The completion of the task gives me much pleasure. I would also like to thank my
lecturers, Mr. Zahid Sulaiman Butt & Dr. Shehryar, for giving me sufficient technical knowledge
about Fluid Mechanics.
Hereby I want to give my special thanks to “Mr. Feroz-ud-din” Chief Engineer Ghazi Barotha
Hydro Power Project. For giving me the opportunity to learn and get the real work experience.
In addition, I would also like to thank the authority of Ghazi Brotha Power House, for providing
me all the required information and details regarding the available equipment, and for increasing
my practical knowledge of engineering.
Regards.
Ghazi Brotha Hydro Power Project
5 | P a g e
1. Power Plants
A Power Station or Power Plant is an industrial facility for the generation of electric power. At
the center of nearly all power stations is a generator, a rotating machine that converts mechanical
power into electrical power by creating relative motion between a magnetic field and a
conductor. The energy source harnessed to turn the generator varies widely. It depends chiefly on
which fuels are easily available, cheap enough and on the types of technology that the power
company has access to.
1.1 Types of Power Plants
There are namely five major types of Power Plants that are currently working around the globe
for power generation. These are enlisted below:
 Hydel Power Plants.
 Thermal Power Plants.
 Wind Energy Power Plants.
 Solar Power Plants.
 Nuclear Power Plants.
Pakistan's basic power generation reliance is upon Thermal Power Generation, producing 70 %
of the total power generated, but many Hydel Power projects are also working to fulfill the
country's increasing energy needs.
1.1.1 Significance of Hydel Power Plants
Water is the most easily available and cheap energy source. It is our common observation that
water carries huge amount of energy under flowing condition and this flow energy can be further
amplified when it is allowed to flow from a certain height. This is the main idea used in Hydel
power plants. Water, which is stored in the reservoirs, is allowed to flow over the blades of a
water turbine, due to high pressure energy of water flowing from a high head the blades begin to
rotate. The shaft of the blades is coupled with a generator, which generates electricity. And the
water is then released into the tail race and is returned back into the river. So in this way, we get
energy output from a free source of nature.
Ghazi Brotha Hydro Power Project
6 | P a g e
1.1.2 Types of Hydel Power Plants
There are major five types of Hydel Power Plants, which are discussed briefly below:
 Conventional hydroelectric such as hydroelectric dams.
 Run-of-the-river hydroelectricity, which captures the kinetic energy in rivers or
streams, without the use of dams.
 Small hydro projects are 10 megawatts or less and often have no artificial reservoirs.
 Micro hydro projects provide a few kilowatts to a few hundred kilowatts to isolated
homes, villages, or small industries.
 Pumped-storage hydroelectricity stores water pumped during periods of low demand to
be released for generation when demand is high.
Ghazi Brotha Hydro Power Project
7 | P a g e
2. Ghazi Brotha Hydro Power Project
It was observed that a useful 74 meters head was available between Ghazi, the tailrace of
Tarbela, and Brotha village. So the idea of Ghazi Brotha Project was proposed and it was
basically designed as a running water power station, regulated by the tailrace of Tarbela Dam.
The project was completed in 2003 under the working of various companies such as:
 Voith Hydro, Germany.
 Toshiba, Japan.
 ABB, Germany.
 Alstom Power Generation, Germany.
 CMEC, China.
 HMC, Pakistan.
 OMG, Italy.
 VA Tech, Australia.
The total cost of the project was around 2.6 billion US dollars. The power station is capable of
producing 1450 MegaWatts with five Francis turbines each of 290 MW, among which four units
are designed for continuously generating power. During the months of May & June, when other
power station are at minimum generation due to low reservoir level, GBHP is designed to
generate maximum power during the same period, with a plant annual utilization factor of 52%.
The project comprises of three main parts:
 The Barrage.
 The Power Channel.
 The Power Complex.
2.1 The Barrage
The barrage located 7 km downstream of Tarbela Dam, provides at 71 million cubic meters
storage pond allowing for the re-regulation of the daily discharge from Tarbela by diverting the
flow into the power Channel. The bridge is able to pass the design flood of 18,700 cusecs,
equivalent to the flood of record, through the Standard bays and Under sluices at the normal
Ghazi Brotha Hydro Power Project
8 | P a g e
pond level of 340 meters. The fuse plug has been provided to pass the extreme floods up to the
capacity of Tarbela’s spillway and tunnel equating 46,200 cusecs.
2.1.1 Standard Bays
Twenty such gates are provided to remove excess water after diverting into the power channel.
2.1.2 Under Sluice Gates
This portion contains 8 gates. It is used for the removal of mud and other materials like stone etc.
These gates are at lower level then head regulator gates, so that to provide temporary filtered
water to power channel.
2.1.3 Head Regulator Gates
Head regulator gates are used to control the flow of water into power channel. It consists of eight
gates.
2.2 The Power Channel
The power channel is 52 km long and is concrete lined. It is 9 meters deep and can allow a flow
of 1600 cumecs of water. The average velocity of water in the channel is found to be 2.3 m/s,
which is approximately 9 kph. It is named as power channel because it is used for power
generation.
Two 11 kV lines on both side of the channel. Eight feeders are available to feed these lines. 25
kVA transformers step down 11 kV to 400 V to operate the pumps for maintain the channel
level.
2.3 The Power Complex
The power complex begins with fore bay and two head ponds with a combined live storage of 25
million cubic meters. The five generating units each of 290 MW in the powerhouse are each fed
by a steel linked penstock of 10.6m diameter, with a peak flow 460 cumecs. The power complex
consists of following main features which are enlisted and described below:
2.3.1 Tail Regulator
It is located at the end of power channel. It has four radial gates which are used to regulate the
flow. The major job of tail regulator is to keep the water level of the pond at 334 meters above
sea level. Depth of the tail regulator is 9 meters and width is 18.5m. The gates are opened
Ghazi Brotha Hydro Power Project
9 | P a g e
hydraulically and are closed with the help of gravity. Each gate is installed at a distance of 200
mm from each other. Tail regulator is provided with a control room from where the opening and
closing of gates is done manually
2.3.2 Fore Bay
A central pond with a water storage capacity of 1,450 Million cubic Meters between elevations
of 329.00m and 334.00m.
2.3.3 South Head Pond
An auxiliary pond connected with fore bay through south sill opening and with live storage
capacity of 5,932 Million Cubic Meters of water between Elevations 329.00m and 334.00 m.
Ghazi Brotha Hydro Power Project
10 | P a g e
2.3.4 North Head Pond
An auxiliary pond connected with fore bay through North sill opening with a live storage
capacity of 17,192 Million Cubic Meters of water between Elevation of 329.00 m and 334.00 m.
2.3.5 Intake
Intake is the sending point of fore bay. The water levels of fore bay are 334.34 meters. There are
five sets of power in take surviving the five hydraulic turbines and the control room.
Each intake is divided by a centre pier and contains two intakes gates. The intake gates are
connected with the power house through 10.6 meters diameters steel penstock.
2.3.6 Power House
Power House consists of Five Francis turbines with a capacity of 290 MW each and its control
room and its switchyard structure is connected with Power House via transmission lines.
Ghazi Brotha Hydro Power Project
11 | P a g e
2.3.7 Spill Way
The structure to release the excess water in the fore bay when the level reaches the elevation of
334.50. It is a siphon type with Eight discharge gates having capacity of 1600 cumecs.
2.3.8 Tail Race
A structure for conveying the discharge water from the units and the spill way to the Indus River.
It starts at the end of draft tubes from each turbine and all the cooling water outlets exit in the
Tail Race.
3. The Main Power Plant
Power plant is the area in which power is generated. The water flow downward from the intake,
sets the turbine into motion and exits. The turbine rotates the generator and electric power is
generated rate at 18 kV from each rotor, which is supplied to the power transformer. Power
transformer step up 18 kV to 500 kV to be transmitted to different cities.
Ghazi Brotha Hydro Power Project
12 | P a g e
3.1 Turbine
The power house is equipped by five Francis Turbines. The Francis turbines are Reaction
turbines as it utilizes pressure energy of water, and are used under low or medium heads. The
head at Ghazi Brotha is rated as medium head therefore Francis turbines were selected. The
turbine has its own accessories which included the Penstock and the Draft tube.
Ghazi Brotha Hydro Power Project
13 | P a g e
The turbine has the following technical specifications:
Turbine Name Francis
Turbine Type Reaction
Flow Types Radial at inlet & Axial at outlet
Manufacturer MS Voith Hydro, Germany
Normal Operating speed (N) 100rpm
Rated Turbine Discharge (Q) 460m3
/s
Max. Rated Output (P) 295 MW
Weight of Runner 122 tons
Diameter of Runner 6.7 m
Rated Net Head (H) 69 m
Max. Achievable Efficiency 98 %
Following are the key features of the turbine:
3.1.1 Penstock
It is the main inlet of the turbine. It is 10.6 meters in diameter and is made up of Steel to give
high mechanical strength. It allows the water to enter the turbine radially via spiral casing.
Ghazi Brotha Hydro Power Project
14 | P a g e
3.1.2 Spiral Casing
The spiral casing is provided at the end of each penstock, and it is the main outer housing of the
turbine. It increases the pressure head by gradual decrease in area of the casing. It is also
designed to avoid cavitation within the turbine. Water pipeline for cooling or other purposes is
taken from the spiral casing, which is at a pressure of 7 bar.
3.1.3 Wicket Gates
Each turbine is provided with 24 wicket gates which are operated hydraulically with the help of
two servomotors. These servomotors are controlled by governor according to the load
requirements. These gates allow water to enter radially into the turbine along the periphery of the
spiral casing.
Ghazi Brotha Hydro Power Project
15 | P a g e
3.1.4 Runner:
The runner is the main rotating body of the turbine. It is coupled with the rotor of generator via a
hollow steel shaft. The purpose of keeping the shaft hollow is that it also acts as a Surge Tank for
the turbine, and absorbs sudden rises of pressure, as well as to quickly provide extra water during
brief drop in pressure. The blades are pinned to the runner.
3.1.5 Blading
The material proposed for the blades is composes of 83% Stainless Steel, 13% Chromium and
4% Nickel. Chromium and Nickel are added as to give anti-corrosive properties to the runner.
The runner is provided with three sets of blades. The guide blades are used to direct the water
onto the moving blades, and they can be adjusted according to the running conditions of the
turbine. The stationary blades are provided which act as nozzles to accelerate the water flow.
Then comes the set of moving blades, they are pinned to a shaft which is coupled with the
generator rotor.
Ghazi Brotha Hydro Power Project
16 | P a g e
3.1.6 Draft Tube
Draft tube is provided with each unit to compensate the loss of head if the turbine is installed
above the tail race level, and to increase turbine's net efficiency. The draft tube installed here, is
slightly hook shaped as to avoid erosion at the exiting edge of draft tube. The tube is rectangular
in cross-section, while the exit is circular.
Ghazi Brotha Hydro Power Project
17 | P a g e
3.2 Governor
Governor is an auto decision making unit controlling which alter the opening of the wicket gates
according to the load requirements by operating the servomotors hydraulically. The governor
used at GBHP is of Digital type equipped with a microprocessor. The governor has two pumps
installed with it, which operate alternatively to pump the compressed oil at 65 bar into the
servomotors. The storage tank of oil has a mixed of oil and compressed air in it, to maintain the
internal pressure without any external source ideally. We have to set either of two parameters
power or frequency. We mostly set power, for example if we set power to 290 MW, the governor
will automatically open the wicket gates up to 79% allowing a flow of 479 m3
/s. Governor also
takes protection step i.e. if there is water leakage from the seals of the shaft at the axis of turbine,
the governor will automatically close all the wicket gates without any manual command.
Ghazi Brotha Hydro Power Project
18 | P a g e
3.3 Bearings
Bearing is a machine element that constrains relative motion between moving parts to only the
desired motion. Various bearings are provided with the turbine and generator to minimize
rotational friction. Most common are Guide bearings, which are installed about the shaft and
below to keep the shaft intact. Turbine bearing and Generator bearing are provided with the
upper side of turbine and the lower end of generator respectively. Thrust bearing is installed
with the lower end of the turbine to absorb the axial thrust of the runner. These bearing are
provided with cooling water systems for their cooling.
3.4 Lubrication and Cooling Systems
All the rotating parts in the power plant are provided with lubrication. The bearing are provided
with lubrication oils which are filtered and cooled gradually by water coolers, to prevent the
Ghazi Brotha Hydro Power Project
19 | P a g e
bearings from over-heating. The hot oil is cooled up to 10 Celsius. The lubricating oil used in
bearings is LHM46, while the hydraulic oil used in intake gates as well as in governing system is
T60. These oils are selected on the basis of different factors such as lubrication capacity, thermal
stability, viscosity, compressibility etc.
The cooling water used all over the power house is taken from the spiral casing of each turbine
housing. This water is approximately at 16° Celsius and at 7 bar, and reaches every part of the
power house without any pumping action. It is strained and filtered at its inlet to avoid any
blockage in the cooling pipeline. This water is used to cool the bearing, generator transformers
and governor oil pumping set.
Ghazi Brotha Hydro Power Project
20 | P a g e
3.5 Braking System:
For stopping any unit , braking systems are provided with the shaft of the turbine. These brakes
are pneumatically operated with the help of compressed air. Two central compressed air
cylinders are provided and also each unit has its own air storage cylinder. The air is kept at 10
bar pressure. The compressed air is released when the brakes are applied, which push the
graphite brake pads onto the shaft and stops it. A dust collector is also provided with it to
collecting the dust by creating a vacuum, produced by sliding of pads with the shaft. The brakes
are applied below 25 rpm otherwise it can cause heavy damage to the braking pads and cause
immense mechanical vibrations that can disturb the whole system. If brakes are applied at high
speeds then excessive amount of heat will also be generated , which will cause the CO2 to be
released. There are two banks of CO2. Primary bank has 58 cylinders, while the secondary bank
is kept as a backup having 30 cylinders.
Ghazi Brotha Hydro Power Project
21 | P a g e
3.6 Generator:
Five Self-exciting generators are installed with each turbine unit via a shaft. There are air ducts
with each generator which are installed as to remove air humidity from the inside casing of
generator. If there is, then it will cause corrosion. Units has to be synchronized with the system,
this is done by synchronoscope.
Ghazi Brotha Hydro Power Project
22 | P a g e
Following are the technical specifications of each generator:
Manufacturer Toshiba, Japan
No. Of Phase 3
Rated Output 322200 kVA.
Rated Voltage 18000 Volts
Rated Current 10335A
Power Factor 0.9 Lagging
No. Of Poles 60
Frequency 50Hz
Rated Speed 100 rpm
Rotation Direction Anti-Clockwise
Power Source Francis Turbine
Stator Coil Star Connection.
Stator Insulation Class F
Rotor Insulation Class F
Armature Connection Y
Armature Temp. Rise 78.5 K
Natural Point Transformer Grounding
Cooling Method Radial Ventilation Air
Cooling method
Excitation Method Thyrister exciting method
Exciting Current 2439A
Excitation voltage 400 V
Ghazi Brotha Hydro Power Project
23 | P a g e
3.7 Excitation Transformer
Excitation Transformer are used to provide D.C voltage to the rotor of generator. The 18 kV AC
line coming from the generator is tapped before entering the synchronizing breaker, and is given
to the excitation transformer where it is stepped down from 18kV to 400V. This 400V AC line is
then transferred to AVR unit where Bridge Rectifiers are used to convert it into 400V D.C. This
D.C line is then given to the rotor of the generator to magnetize its poles.
3.8 Synchronization Circuit Breakers
Circuit breakers are provided at 18 kV on each line coming from generator, they are also filled
with compressed air at 6 bar to avoid any contamination and ionization.
Ghazi Brotha Hydro Power Project
24 | P a g e
Technical specifications of the breakers are as under:
Type HEC 2
Rated Voltage 24
Rated frequency 50 Hz
Rated Normal Current 120000 A
Rated S C breaking current 100 kA
Rated peak withstand current 300 kA
Rated power frequency withstand voltage 60 kV / 70 kV
Rated lightning impulse withstand peak voltage 125 kV / 145 kV
Capacitor on generation side 130 nF
Capacitor on transformer side 260 nF
Total weight of the breaker system 5350 Kg
Control voltage for closing coil 220V D.C
Control voltage for tripped coil 220V D.C
Rated voltage for motor drive 220V D.C
Ghazi Brotha Hydro Power Project
25 | P a g e
3.9 Generator Transformer
Rated output of the three phase generator is 18 kV which is stepped up to 500 kV by the main
generator transformer. Each generator has Three Generator Transformers for the
different Phases. One for Blue phase, one for Red phase and one for Yellow phase. In total there
are fifteen Generator Transformers for five units located at the Transformer Deck.
3.10 Auxiliary Supply
Auxiliary supply to the power house, switch yard, tail regulator and intake are provided by 3 unit
transformers which convert 18 kV generated from turbines into 11 kV. Unit transformers are
only attached with unit 1, 3 & 5. In case, we run out of this supply then 220V DC battery rooms
are provided in each section of the power house for immediate power supply as power house
needs continuous voltage supply for safe operations. A pair of Caterpillar Diesel Generators is
also provided which can give 0.7 MW each to give a backup power supply to the power house.
Ghazi Brotha Hydro Power Project
26 | P a g e
3.11 HVAC:
HVAC stands for "Heating, Ventilation & Air conditioning". It is an important system for this
power plant as to avoid excessive heating of the machinery. It provides fresh air for breathing as
the power house is several stories underground. The air conditioning system maintains fresh and
healthy working environment for the workers. The air conditioners for this purpose are installed
which provide conditioned air centrally throughout the power house. These conditioners work on
the same principle as that of conventional air conditioners. The circulating air is ot used again
and again to avoid contamination. It is fixed with some fresh air in each cycle to decrease air
conditioners working load. The air conditioner sucks air from the environment and the
refrigerant extracts the heat from the air and cools it This air is then circulated around the power
house. The refrigerant is first compressed and is then condensed and then passed through an
expansion device, which causes cooling. It is then used to cool the air entering the air
conditioned space.
3.12 Control & Instrumentation (C&I)
The overall control of the Power complex is microprocessor based Distributed Control System
(DCS). The DCS is equipped with dual redundant processor and redundant data highway
network and related communication devices. The data highway uses fiber optic cable. Each
generating unit, tail regulator gates, high voltage switchgear , medium voltage switchboard and
low voltage switchboard has their own dedicated dual redundant processors.
3.13 Protection & Instrumentation (P&I)
The role of this department in the power house is to identify the problem by analyzing the date
given by C&I and solve it, and to assign the reason behind the problem, how the problem is
caused and what is the solution to that problem.
The whole power station is divided into two section. First section which comprises of the whole
power house to the intake, all comes under the control of C&I. While the second section,
consisting of few areas of power house and the switch yard are controlled by P&I. All the data
related to tripping of any transmission line is analyzed, debugged and solved by P&I.
Ghazi Brotha Hydro Power Project
27 | P a g e
3.14 Switch Yard:
The switch yard is the heart of all the transmission done from GBHP. It has two grid stations.
The main grid transmits six 500 kV lines to different cities which are Tarbela (I), Tarbela (II),
Gatti (I), Gatti (II), Rawat (I) & Rawat (II). The smaller grid transmits two 220 kV lines directly
to Peshawar.
Ghazi Brotha Hydro Power Project
28 | P a g e
Following are the common components to be discussed briefly installed at the switch yard:
3.14.1 Power Transformers
These transformers are used to step up 18 kV to 500 kV. These are insulated by SF6 gas, and are
also provided with cooling fans and radiators.
3.14.2 Bus Bars
Two bus bars are interconnected to each other. The 550 kV lines from transformers are
connected one bus bar and is transmitted to the next bus bar after transmitting through sets of
circuit breakers and isolators.
3.14.3 Breakers
Breakers are On load devices. There are T-shaped breakers connected to 3 phase lines. These are
auto closure breakers. The breaker prevents heavy currents from flowing along the bus bars by
opening the circuit.
3.14.4 Isolators
Isolators are off load devices. It can only be switched when there is no flow of current. They are
also known as disconnector, as they prevent the fault to be transmitted.
3.14.5 Lightning Arrestors
These are provided among all the high towers to protect from lightning. They are also known as
Surge Arrestors.
3.14.6 Wave Blockers
Wave blocker is a low pass capacitive circuit. which allows a limited frequency up to 50 Hz to
pass through them.
3.14.7 Shunt Reactors
These are provided at the transmission side that is at the second bus bar, to provide equivalent
inductance against the capacitance produced while transmitting high voltages. They are installed
both at the transmitting end as well as at the receiving end.
3.14.8 CTs & PTs
These are small transformers which are used to measure high currents and voltages respectively.
They when coupled can also give the value of real power transmitted and can act as a Wattmeter.

More Related Content

What's hot

Ppt on tehri dam by shubham dobhal
Ppt on tehri dam by shubham dobhalPpt on tehri dam by shubham dobhal
Ppt on tehri dam by shubham dobhal
Shubham Dobhal
 
Development of prototype turbine model for ultra-low head hydro power potenti...
Development of prototype turbine model for ultra-low head hydro power potenti...Development of prototype turbine model for ultra-low head hydro power potenti...
Development of prototype turbine model for ultra-low head hydro power potenti...
iosrjce
 
Presentation on two major hydro electric power plants in india
Presentation on two major hydro electric power plants in indiaPresentation on two major hydro electric power plants in india
Presentation on two major hydro electric power plants in india
Saikat Ghosh
 
Testa low dam project 3
Testa low dam project 3Testa low dam project 3
Testa low dam project 3
neeraj prasad
 
Hydroelectric power plant
Hydroelectric power plantHydroelectric power plant
Hydroelectric power plant
Suresh Rathore
 
Hydro Power Plant -Surya
Hydro Power Plant -SuryaHydro Power Plant -Surya
Hydro Power Plant -Surya
suryakant soni
 
Design and fabrication of hydro electric power
Design and fabrication of hydro electric powerDesign and fabrication of hydro electric power
Design and fabrication of hydro electric power
kannan42
 
Hydropower - power house
Hydropower - power houseHydropower - power house
Hydropower - power house
arullawrance90
 
Summer Training Presentation
Summer Training PresentationSummer Training Presentation
Summer Training Presentation
Nilesh Singh Bundela
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
SiraskarCom
 
Archimedes Screw as a Low Head Hydropower Generator
Archimedes Screw as a Low Head Hydropower GeneratorArchimedes Screw as a Low Head Hydropower Generator
Archimedes Screw as a Low Head Hydropower Generator
Christos Charisiadis
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
Yuri Melliza
 
Seabell Micro Hydropower Plant
Seabell Micro Hydropower PlantSeabell Micro Hydropower Plant
Seabell Micro Hydropower Plant
Martin Supancic
 
Naveen
NaveenNaveen
Naveen
vinayvickky
 
Hydro power plant
Hydro power plantHydro power plant
Hydro power plant
SuryaPrakash N
 
Hydro power-plant
Hydro power-plantHydro power-plant
Hydro power-plant
pranavn007
 
Homebuilt Micro Hydro Turbine
Homebuilt Micro Hydro TurbineHomebuilt Micro Hydro Turbine
Homebuilt Micro Hydro Turbine
Andrew Cannard
 
Classification of hydro power plant
Classification of hydro power plantClassification of hydro power plant
Classification of hydro power plant
Satish Taji
 
Hydro Electric Power Plant
Hydro Electric Power Plant Hydro Electric Power Plant
Hydro Electric Power Plant
Tanvir Amin
 
Run of River and Pumped Storage Plants
Run of River and Pumped Storage PlantsRun of River and Pumped Storage Plants
Run of River and Pumped Storage Plants
Satish Taji
 

What's hot (20)

Ppt on tehri dam by shubham dobhal
Ppt on tehri dam by shubham dobhalPpt on tehri dam by shubham dobhal
Ppt on tehri dam by shubham dobhal
 
Development of prototype turbine model for ultra-low head hydro power potenti...
Development of prototype turbine model for ultra-low head hydro power potenti...Development of prototype turbine model for ultra-low head hydro power potenti...
Development of prototype turbine model for ultra-low head hydro power potenti...
 
Presentation on two major hydro electric power plants in india
Presentation on two major hydro electric power plants in indiaPresentation on two major hydro electric power plants in india
Presentation on two major hydro electric power plants in india
 
Testa low dam project 3
Testa low dam project 3Testa low dam project 3
Testa low dam project 3
 
Hydroelectric power plant
Hydroelectric power plantHydroelectric power plant
Hydroelectric power plant
 
Hydro Power Plant -Surya
Hydro Power Plant -SuryaHydro Power Plant -Surya
Hydro Power Plant -Surya
 
Design and fabrication of hydro electric power
Design and fabrication of hydro electric powerDesign and fabrication of hydro electric power
Design and fabrication of hydro electric power
 
Hydropower - power house
Hydropower - power houseHydropower - power house
Hydropower - power house
 
Summer Training Presentation
Summer Training PresentationSummer Training Presentation
Summer Training Presentation
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
 
Archimedes Screw as a Low Head Hydropower Generator
Archimedes Screw as a Low Head Hydropower GeneratorArchimedes Screw as a Low Head Hydropower Generator
Archimedes Screw as a Low Head Hydropower Generator
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
 
Seabell Micro Hydropower Plant
Seabell Micro Hydropower PlantSeabell Micro Hydropower Plant
Seabell Micro Hydropower Plant
 
Naveen
NaveenNaveen
Naveen
 
Hydro power plant
Hydro power plantHydro power plant
Hydro power plant
 
Hydro power-plant
Hydro power-plantHydro power-plant
Hydro power-plant
 
Homebuilt Micro Hydro Turbine
Homebuilt Micro Hydro TurbineHomebuilt Micro Hydro Turbine
Homebuilt Micro Hydro Turbine
 
Classification of hydro power plant
Classification of hydro power plantClassification of hydro power plant
Classification of hydro power plant
 
Hydro Electric Power Plant
Hydro Electric Power Plant Hydro Electric Power Plant
Hydro Electric Power Plant
 
Run of River and Pumped Storage Plants
Run of River and Pumped Storage PlantsRun of River and Pumped Storage Plants
Run of River and Pumped Storage Plants
 

Viewers also liked

Baglihar hydro electric power plant
Baglihar hydro electric power plantBaglihar hydro electric power plant
Baglihar hydro electric power plant
Raja Katoch
 
Punjab 8.4.14 edt
Punjab 8.4.14 edtPunjab 8.4.14 edt
Punjab 8.4.14 edt
hydrologywebsite1
 
BPR CASE- PUNJAB STATE ELECTRICTY BOARD
BPR CASE- PUNJAB STATE ELECTRICTY BOARDBPR CASE- PUNJAB STATE ELECTRICTY BOARD
BPR CASE- PUNJAB STATE ELECTRICTY BOARD
Nisheeth Srivastava
 
Hydro power scenario in india 2013
Hydro power scenario in india 2013Hydro power scenario in india 2013
Hydro power scenario in india 2013
Vipul Kumar
 
Combined operation of power plants
Combined operation of power plantsCombined operation of power plants
Combined operation of power plants
Nishkam Dhiman
 
Hydro power plant
Hydro power plantHydro power plant
Hydro power plant
Pradeep Yadav
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
Nishkam Dhiman
 
Performance Evaluation of Small Hydro Power Plant
Performance Evaluation of Small Hydro Power PlantPerformance Evaluation of Small Hydro Power Plant
Performance Evaluation of Small Hydro Power Plant
Girish Gupta
 
Hydro power presentation
Hydro power presentationHydro power presentation
Hydro power presentation
Ashish Porwal Thapar University
 

Viewers also liked (9)

Baglihar hydro electric power plant
Baglihar hydro electric power plantBaglihar hydro electric power plant
Baglihar hydro electric power plant
 
Punjab 8.4.14 edt
Punjab 8.4.14 edtPunjab 8.4.14 edt
Punjab 8.4.14 edt
 
BPR CASE- PUNJAB STATE ELECTRICTY BOARD
BPR CASE- PUNJAB STATE ELECTRICTY BOARDBPR CASE- PUNJAB STATE ELECTRICTY BOARD
BPR CASE- PUNJAB STATE ELECTRICTY BOARD
 
Hydro power scenario in india 2013
Hydro power scenario in india 2013Hydro power scenario in india 2013
Hydro power scenario in india 2013
 
Combined operation of power plants
Combined operation of power plantsCombined operation of power plants
Combined operation of power plants
 
Hydro power plant
Hydro power plantHydro power plant
Hydro power plant
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
 
Performance Evaluation of Small Hydro Power Plant
Performance Evaluation of Small Hydro Power PlantPerformance Evaluation of Small Hydro Power Plant
Performance Evaluation of Small Hydro Power Plant
 
Hydro power presentation
Hydro power presentationHydro power presentation
Hydro power presentation
 

Similar to Final Report GBHP

Hydroelectric Power Plant (and Pumped Storage Power Plant)
Hydroelectric Power Plant (and Pumped Storage Power Plant)Hydroelectric Power Plant (and Pumped Storage Power Plant)
Hydroelectric Power Plant (and Pumped Storage Power Plant)
Ryan Triadhitama
 
Project Report Hydraulic Power Plant
Project Report Hydraulic Power PlantProject Report Hydraulic Power Plant
Project Report Hydraulic Power Plant
Sanjay Duttamukhya
 
Windmill
WindmillWindmill
Windmill
abhisek das
 
Introduction To Micro Hydro Power Plant
Introduction To Micro Hydro Power PlantIntroduction To Micro Hydro Power Plant
Introduction To Micro Hydro Power Plant
RanaWaqasMushtaq
 
H00140717_Energy_Dissertation.
H00140717_Energy_Dissertation.H00140717_Energy_Dissertation.
H00140717_Energy_Dissertation.
prasath krishnamoorthy
 
Portable Micro Hydro Electrical Generator
Portable Micro Hydro Electrical GeneratorPortable Micro Hydro Electrical Generator
Portable Micro Hydro Electrical Generator
IOSR Journals
 
Hydro electric power
Hydro electric powerHydro electric power
Hydro electric power
LEE-MALAK
 
Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...
Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...
Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...
ijtsrd
 
Thesis on Hydro Power Plant
Thesis on Hydro Power PlantThesis on Hydro Power Plant
Thesis on Hydro Power Plant
Sandip Kumar Sahoo
 
hydro-181014224840.pdf
hydro-181014224840.pdfhydro-181014224840.pdf
hydro-181014224840.pdf
lakshmanaraoJeeru1
 
IRJETMicro Hydro Power Generation from Small Water Channel Flow
IRJETMicro Hydro Power Generation from Small Water Channel FlowIRJETMicro Hydro Power Generation from Small Water Channel Flow
IRJETMicro Hydro Power Generation from Small Water Channel Flow
IRJET Journal
 
Wapda internship report
Wapda internship reportWapda internship report
Wapda internship report
Saboora Khatoon
 
IRJET- Analysis of Solar Turbine for Bhatsa Dam
IRJET- Analysis of Solar Turbine for Bhatsa DamIRJET- Analysis of Solar Turbine for Bhatsa Dam
IRJET- Analysis of Solar Turbine for Bhatsa Dam
IRJET Journal
 
Arun
ArunArun
Presentation on art203 for electrical engineers
Presentation on art203 for electrical engineersPresentation on art203 for electrical engineers
Presentation on art203 for electrical engineers
K. M. Shahrear Hyder
 
NHPC Training Report
NHPC Training ReportNHPC Training Report
NHPC Training Report
Deepak Chaudhary
 
Renewable Energy Based Floating Power Generator (Rivers and Canals)
Renewable Energy Based Floating Power Generator (Rivers and Canals)Renewable Energy Based Floating Power Generator (Rivers and Canals)
Renewable Energy Based Floating Power Generator (Rivers and Canals)
IJERA Editor
 
science project.pptx
science project.pptxscience project.pptx
science project.pptx
RohanSingh618650
 
Hydropower part -I.pptx
Hydropower part -I.pptxHydropower part -I.pptx
Hydropower part -I.pptx
MasreshaTenawDemamu
 
Hydro Energy Technology
Hydro Energy TechnologyHydro Energy Technology
Hydro Energy Technology
Ajay Bhatnagar
 

Similar to Final Report GBHP (20)

Hydroelectric Power Plant (and Pumped Storage Power Plant)
Hydroelectric Power Plant (and Pumped Storage Power Plant)Hydroelectric Power Plant (and Pumped Storage Power Plant)
Hydroelectric Power Plant (and Pumped Storage Power Plant)
 
Project Report Hydraulic Power Plant
Project Report Hydraulic Power PlantProject Report Hydraulic Power Plant
Project Report Hydraulic Power Plant
 
Windmill
WindmillWindmill
Windmill
 
Introduction To Micro Hydro Power Plant
Introduction To Micro Hydro Power PlantIntroduction To Micro Hydro Power Plant
Introduction To Micro Hydro Power Plant
 
H00140717_Energy_Dissertation.
H00140717_Energy_Dissertation.H00140717_Energy_Dissertation.
H00140717_Energy_Dissertation.
 
Portable Micro Hydro Electrical Generator
Portable Micro Hydro Electrical GeneratorPortable Micro Hydro Electrical Generator
Portable Micro Hydro Electrical Generator
 
Hydro electric power
Hydro electric powerHydro electric power
Hydro electric power
 
Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...
Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...
Design and Construction of Fuelless AC Generator Using Alternator Interfaced ...
 
Thesis on Hydro Power Plant
Thesis on Hydro Power PlantThesis on Hydro Power Plant
Thesis on Hydro Power Plant
 
hydro-181014224840.pdf
hydro-181014224840.pdfhydro-181014224840.pdf
hydro-181014224840.pdf
 
IRJETMicro Hydro Power Generation from Small Water Channel Flow
IRJETMicro Hydro Power Generation from Small Water Channel FlowIRJETMicro Hydro Power Generation from Small Water Channel Flow
IRJETMicro Hydro Power Generation from Small Water Channel Flow
 
Wapda internship report
Wapda internship reportWapda internship report
Wapda internship report
 
IRJET- Analysis of Solar Turbine for Bhatsa Dam
IRJET- Analysis of Solar Turbine for Bhatsa DamIRJET- Analysis of Solar Turbine for Bhatsa Dam
IRJET- Analysis of Solar Turbine for Bhatsa Dam
 
Arun
ArunArun
Arun
 
Presentation on art203 for electrical engineers
Presentation on art203 for electrical engineersPresentation on art203 for electrical engineers
Presentation on art203 for electrical engineers
 
NHPC Training Report
NHPC Training ReportNHPC Training Report
NHPC Training Report
 
Renewable Energy Based Floating Power Generator (Rivers and Canals)
Renewable Energy Based Floating Power Generator (Rivers and Canals)Renewable Energy Based Floating Power Generator (Rivers and Canals)
Renewable Energy Based Floating Power Generator (Rivers and Canals)
 
science project.pptx
science project.pptxscience project.pptx
science project.pptx
 
Hydropower part -I.pptx
Hydropower part -I.pptxHydropower part -I.pptx
Hydropower part -I.pptx
 
Hydro Energy Technology
Hydro Energy TechnologyHydro Energy Technology
Hydro Energy Technology
 

Final Report GBHP

  • 1. Ghazi Brotha Hydro Power Project Pakistan Water & Power Development Authority Internship Report Submitted to: Mr. Feroz-ud-din Chief Engineer Ghazi Brotha Power Complex. Submitted by: Waleed Azhar. 11-ME-91 Department of Mechanical Engineering University of Engineering & Technology (UET), Taxila.
  • 2. Ghazi Brotha Hydro Power Project 2 | P a g e Table of Contents 1. Power Plants........................................................................................................................5 1.1 Types of Power Plants...................................................................................................5 1.1.1 Significance of Hydel Power Plants .......................................................................5 1.1.2 Types of Hydel Power Plants .................................................................................6 2. Ghazi Brotha Hydro Power Project......................................................................................7 2.1 The Barrage ..................................................................................................................7 2.1.1 Standard Bays........................................................................................................8 2.1.2 Under Sluice Gates ................................................................................................8 2.1.3 Head Regulator Gates ............................................................................................8 2.2 The Power Channel.......................................................................................................8 2.3 The Power Complex......................................................................................................8 2.3.1 Tail Regulator........................................................................................................8 2.3.2 Fore Bay................................................................................................................9 2.3.3 South Head Pond ...................................................................................................9 2.3.4 North Head Pond .................................................................................................10 2.3.5 Intake...................................................................................................................10 2.3.6 Power House........................................................................................................10 2.3.7 Spill Way.............................................................................................................11 2.3.8 Tail Race .............................................................................................................11 3. The Main Power Plant .......................................................................................................11 3.1 Turbine .......................................................................................................................12 3.1.1 Penstock ..............................................................................................................13 3.1.2 Spiral Casing .......................................................................................................14 3.1.3 Wicket Gates .......................................................................................................14 3.1.4 Runner:................................................................................................................15 3.1.5 Blading ................................................................................................................15 3.1.6 Draft Tube ...........................................................................................................16 3.2 Governor.....................................................................................................................17 3.3 Bearings......................................................................................................................18 3.4 Lubrication and Cooling Systems................................................................................18
  • 3. Ghazi Brotha Hydro Power Project 3 | P a g e 3.5 Braking System:..........................................................................................................20 3.6 Generator:...................................................................................................................21 3.7 Excitation Transformer ...............................................................................................23 3.8 Synchronization Circuit Breakers................................................................................23 3.9 Generator Transformer................................................................................................25 3.10 Auxiliary Supply .....................................................................................................25 3.11 HVAC:....................................................................................................................26 3.12 Control & Instrumentation (C&I) ............................................................................26 3.13 Protection & Instrumentation (P&I).........................................................................26 3.14 Switch Yard: ...........................................................................................................27 3.14.1 Power Transformers.............................................................................................28 3.14.2 Bus Bars ..............................................................................................................28 3.14.3 Breakers...............................................................................................................28 3.14.4 Isolators...............................................................................................................28 3.14.5 Lightning Arrestors..............................................................................................28 3.14.6 Wave Blockers.....................................................................................................28 3.14.7 Shunt Reactors.....................................................................................................28 3.14.8 CTs & PTs...........................................................................................................28
  • 4. Ghazi Brotha Hydro Power Project 4 | P a g e Acknowledgement First of all I am grateful to Allah Who Gave me sound mind & sound health to accomplish my summer placement. Then, I would like to thank my parents who have supported me in every walk of life. The completion of the task gives me much pleasure. I would also like to thank my lecturers, Mr. Zahid Sulaiman Butt & Dr. Shehryar, for giving me sufficient technical knowledge about Fluid Mechanics. Hereby I want to give my special thanks to “Mr. Feroz-ud-din” Chief Engineer Ghazi Barotha Hydro Power Project. For giving me the opportunity to learn and get the real work experience. In addition, I would also like to thank the authority of Ghazi Brotha Power House, for providing me all the required information and details regarding the available equipment, and for increasing my practical knowledge of engineering. Regards.
  • 5. Ghazi Brotha Hydro Power Project 5 | P a g e 1. Power Plants A Power Station or Power Plant is an industrial facility for the generation of electric power. At the center of nearly all power stations is a generator, a rotating machine that converts mechanical power into electrical power by creating relative motion between a magnetic field and a conductor. The energy source harnessed to turn the generator varies widely. It depends chiefly on which fuels are easily available, cheap enough and on the types of technology that the power company has access to. 1.1 Types of Power Plants There are namely five major types of Power Plants that are currently working around the globe for power generation. These are enlisted below:  Hydel Power Plants.  Thermal Power Plants.  Wind Energy Power Plants.  Solar Power Plants.  Nuclear Power Plants. Pakistan's basic power generation reliance is upon Thermal Power Generation, producing 70 % of the total power generated, but many Hydel Power projects are also working to fulfill the country's increasing energy needs. 1.1.1 Significance of Hydel Power Plants Water is the most easily available and cheap energy source. It is our common observation that water carries huge amount of energy under flowing condition and this flow energy can be further amplified when it is allowed to flow from a certain height. This is the main idea used in Hydel power plants. Water, which is stored in the reservoirs, is allowed to flow over the blades of a water turbine, due to high pressure energy of water flowing from a high head the blades begin to rotate. The shaft of the blades is coupled with a generator, which generates electricity. And the water is then released into the tail race and is returned back into the river. So in this way, we get energy output from a free source of nature.
  • 6. Ghazi Brotha Hydro Power Project 6 | P a g e 1.1.2 Types of Hydel Power Plants There are major five types of Hydel Power Plants, which are discussed briefly below:  Conventional hydroelectric such as hydroelectric dams.  Run-of-the-river hydroelectricity, which captures the kinetic energy in rivers or streams, without the use of dams.  Small hydro projects are 10 megawatts or less and often have no artificial reservoirs.  Micro hydro projects provide a few kilowatts to a few hundred kilowatts to isolated homes, villages, or small industries.  Pumped-storage hydroelectricity stores water pumped during periods of low demand to be released for generation when demand is high.
  • 7. Ghazi Brotha Hydro Power Project 7 | P a g e 2. Ghazi Brotha Hydro Power Project It was observed that a useful 74 meters head was available between Ghazi, the tailrace of Tarbela, and Brotha village. So the idea of Ghazi Brotha Project was proposed and it was basically designed as a running water power station, regulated by the tailrace of Tarbela Dam. The project was completed in 2003 under the working of various companies such as:  Voith Hydro, Germany.  Toshiba, Japan.  ABB, Germany.  Alstom Power Generation, Germany.  CMEC, China.  HMC, Pakistan.  OMG, Italy.  VA Tech, Australia. The total cost of the project was around 2.6 billion US dollars. The power station is capable of producing 1450 MegaWatts with five Francis turbines each of 290 MW, among which four units are designed for continuously generating power. During the months of May & June, when other power station are at minimum generation due to low reservoir level, GBHP is designed to generate maximum power during the same period, with a plant annual utilization factor of 52%. The project comprises of three main parts:  The Barrage.  The Power Channel.  The Power Complex. 2.1 The Barrage The barrage located 7 km downstream of Tarbela Dam, provides at 71 million cubic meters storage pond allowing for the re-regulation of the daily discharge from Tarbela by diverting the flow into the power Channel. The bridge is able to pass the design flood of 18,700 cusecs, equivalent to the flood of record, through the Standard bays and Under sluices at the normal
  • 8. Ghazi Brotha Hydro Power Project 8 | P a g e pond level of 340 meters. The fuse plug has been provided to pass the extreme floods up to the capacity of Tarbela’s spillway and tunnel equating 46,200 cusecs. 2.1.1 Standard Bays Twenty such gates are provided to remove excess water after diverting into the power channel. 2.1.2 Under Sluice Gates This portion contains 8 gates. It is used for the removal of mud and other materials like stone etc. These gates are at lower level then head regulator gates, so that to provide temporary filtered water to power channel. 2.1.3 Head Regulator Gates Head regulator gates are used to control the flow of water into power channel. It consists of eight gates. 2.2 The Power Channel The power channel is 52 km long and is concrete lined. It is 9 meters deep and can allow a flow of 1600 cumecs of water. The average velocity of water in the channel is found to be 2.3 m/s, which is approximately 9 kph. It is named as power channel because it is used for power generation. Two 11 kV lines on both side of the channel. Eight feeders are available to feed these lines. 25 kVA transformers step down 11 kV to 400 V to operate the pumps for maintain the channel level. 2.3 The Power Complex The power complex begins with fore bay and two head ponds with a combined live storage of 25 million cubic meters. The five generating units each of 290 MW in the powerhouse are each fed by a steel linked penstock of 10.6m diameter, with a peak flow 460 cumecs. The power complex consists of following main features which are enlisted and described below: 2.3.1 Tail Regulator It is located at the end of power channel. It has four radial gates which are used to regulate the flow. The major job of tail regulator is to keep the water level of the pond at 334 meters above sea level. Depth of the tail regulator is 9 meters and width is 18.5m. The gates are opened
  • 9. Ghazi Brotha Hydro Power Project 9 | P a g e hydraulically and are closed with the help of gravity. Each gate is installed at a distance of 200 mm from each other. Tail regulator is provided with a control room from where the opening and closing of gates is done manually 2.3.2 Fore Bay A central pond with a water storage capacity of 1,450 Million cubic Meters between elevations of 329.00m and 334.00m. 2.3.3 South Head Pond An auxiliary pond connected with fore bay through south sill opening and with live storage capacity of 5,932 Million Cubic Meters of water between Elevations 329.00m and 334.00 m.
  • 10. Ghazi Brotha Hydro Power Project 10 | P a g e 2.3.4 North Head Pond An auxiliary pond connected with fore bay through North sill opening with a live storage capacity of 17,192 Million Cubic Meters of water between Elevation of 329.00 m and 334.00 m. 2.3.5 Intake Intake is the sending point of fore bay. The water levels of fore bay are 334.34 meters. There are five sets of power in take surviving the five hydraulic turbines and the control room. Each intake is divided by a centre pier and contains two intakes gates. The intake gates are connected with the power house through 10.6 meters diameters steel penstock. 2.3.6 Power House Power House consists of Five Francis turbines with a capacity of 290 MW each and its control room and its switchyard structure is connected with Power House via transmission lines.
  • 11. Ghazi Brotha Hydro Power Project 11 | P a g e 2.3.7 Spill Way The structure to release the excess water in the fore bay when the level reaches the elevation of 334.50. It is a siphon type with Eight discharge gates having capacity of 1600 cumecs. 2.3.8 Tail Race A structure for conveying the discharge water from the units and the spill way to the Indus River. It starts at the end of draft tubes from each turbine and all the cooling water outlets exit in the Tail Race. 3. The Main Power Plant Power plant is the area in which power is generated. The water flow downward from the intake, sets the turbine into motion and exits. The turbine rotates the generator and electric power is generated rate at 18 kV from each rotor, which is supplied to the power transformer. Power transformer step up 18 kV to 500 kV to be transmitted to different cities.
  • 12. Ghazi Brotha Hydro Power Project 12 | P a g e 3.1 Turbine The power house is equipped by five Francis Turbines. The Francis turbines are Reaction turbines as it utilizes pressure energy of water, and are used under low or medium heads. The head at Ghazi Brotha is rated as medium head therefore Francis turbines were selected. The turbine has its own accessories which included the Penstock and the Draft tube.
  • 13. Ghazi Brotha Hydro Power Project 13 | P a g e The turbine has the following technical specifications: Turbine Name Francis Turbine Type Reaction Flow Types Radial at inlet & Axial at outlet Manufacturer MS Voith Hydro, Germany Normal Operating speed (N) 100rpm Rated Turbine Discharge (Q) 460m3 /s Max. Rated Output (P) 295 MW Weight of Runner 122 tons Diameter of Runner 6.7 m Rated Net Head (H) 69 m Max. Achievable Efficiency 98 % Following are the key features of the turbine: 3.1.1 Penstock It is the main inlet of the turbine. It is 10.6 meters in diameter and is made up of Steel to give high mechanical strength. It allows the water to enter the turbine radially via spiral casing.
  • 14. Ghazi Brotha Hydro Power Project 14 | P a g e 3.1.2 Spiral Casing The spiral casing is provided at the end of each penstock, and it is the main outer housing of the turbine. It increases the pressure head by gradual decrease in area of the casing. It is also designed to avoid cavitation within the turbine. Water pipeline for cooling or other purposes is taken from the spiral casing, which is at a pressure of 7 bar. 3.1.3 Wicket Gates Each turbine is provided with 24 wicket gates which are operated hydraulically with the help of two servomotors. These servomotors are controlled by governor according to the load requirements. These gates allow water to enter radially into the turbine along the periphery of the spiral casing.
  • 15. Ghazi Brotha Hydro Power Project 15 | P a g e 3.1.4 Runner: The runner is the main rotating body of the turbine. It is coupled with the rotor of generator via a hollow steel shaft. The purpose of keeping the shaft hollow is that it also acts as a Surge Tank for the turbine, and absorbs sudden rises of pressure, as well as to quickly provide extra water during brief drop in pressure. The blades are pinned to the runner. 3.1.5 Blading The material proposed for the blades is composes of 83% Stainless Steel, 13% Chromium and 4% Nickel. Chromium and Nickel are added as to give anti-corrosive properties to the runner. The runner is provided with three sets of blades. The guide blades are used to direct the water onto the moving blades, and they can be adjusted according to the running conditions of the turbine. The stationary blades are provided which act as nozzles to accelerate the water flow. Then comes the set of moving blades, they are pinned to a shaft which is coupled with the generator rotor.
  • 16. Ghazi Brotha Hydro Power Project 16 | P a g e 3.1.6 Draft Tube Draft tube is provided with each unit to compensate the loss of head if the turbine is installed above the tail race level, and to increase turbine's net efficiency. The draft tube installed here, is slightly hook shaped as to avoid erosion at the exiting edge of draft tube. The tube is rectangular in cross-section, while the exit is circular.
  • 17. Ghazi Brotha Hydro Power Project 17 | P a g e 3.2 Governor Governor is an auto decision making unit controlling which alter the opening of the wicket gates according to the load requirements by operating the servomotors hydraulically. The governor used at GBHP is of Digital type equipped with a microprocessor. The governor has two pumps installed with it, which operate alternatively to pump the compressed oil at 65 bar into the servomotors. The storage tank of oil has a mixed of oil and compressed air in it, to maintain the internal pressure without any external source ideally. We have to set either of two parameters power or frequency. We mostly set power, for example if we set power to 290 MW, the governor will automatically open the wicket gates up to 79% allowing a flow of 479 m3 /s. Governor also takes protection step i.e. if there is water leakage from the seals of the shaft at the axis of turbine, the governor will automatically close all the wicket gates without any manual command.
  • 18. Ghazi Brotha Hydro Power Project 18 | P a g e 3.3 Bearings Bearing is a machine element that constrains relative motion between moving parts to only the desired motion. Various bearings are provided with the turbine and generator to minimize rotational friction. Most common are Guide bearings, which are installed about the shaft and below to keep the shaft intact. Turbine bearing and Generator bearing are provided with the upper side of turbine and the lower end of generator respectively. Thrust bearing is installed with the lower end of the turbine to absorb the axial thrust of the runner. These bearing are provided with cooling water systems for their cooling. 3.4 Lubrication and Cooling Systems All the rotating parts in the power plant are provided with lubrication. The bearing are provided with lubrication oils which are filtered and cooled gradually by water coolers, to prevent the
  • 19. Ghazi Brotha Hydro Power Project 19 | P a g e bearings from over-heating. The hot oil is cooled up to 10 Celsius. The lubricating oil used in bearings is LHM46, while the hydraulic oil used in intake gates as well as in governing system is T60. These oils are selected on the basis of different factors such as lubrication capacity, thermal stability, viscosity, compressibility etc. The cooling water used all over the power house is taken from the spiral casing of each turbine housing. This water is approximately at 16° Celsius and at 7 bar, and reaches every part of the power house without any pumping action. It is strained and filtered at its inlet to avoid any blockage in the cooling pipeline. This water is used to cool the bearing, generator transformers and governor oil pumping set.
  • 20. Ghazi Brotha Hydro Power Project 20 | P a g e 3.5 Braking System: For stopping any unit , braking systems are provided with the shaft of the turbine. These brakes are pneumatically operated with the help of compressed air. Two central compressed air cylinders are provided and also each unit has its own air storage cylinder. The air is kept at 10 bar pressure. The compressed air is released when the brakes are applied, which push the graphite brake pads onto the shaft and stops it. A dust collector is also provided with it to collecting the dust by creating a vacuum, produced by sliding of pads with the shaft. The brakes are applied below 25 rpm otherwise it can cause heavy damage to the braking pads and cause immense mechanical vibrations that can disturb the whole system. If brakes are applied at high speeds then excessive amount of heat will also be generated , which will cause the CO2 to be released. There are two banks of CO2. Primary bank has 58 cylinders, while the secondary bank is kept as a backup having 30 cylinders.
  • 21. Ghazi Brotha Hydro Power Project 21 | P a g e 3.6 Generator: Five Self-exciting generators are installed with each turbine unit via a shaft. There are air ducts with each generator which are installed as to remove air humidity from the inside casing of generator. If there is, then it will cause corrosion. Units has to be synchronized with the system, this is done by synchronoscope.
  • 22. Ghazi Brotha Hydro Power Project 22 | P a g e Following are the technical specifications of each generator: Manufacturer Toshiba, Japan No. Of Phase 3 Rated Output 322200 kVA. Rated Voltage 18000 Volts Rated Current 10335A Power Factor 0.9 Lagging No. Of Poles 60 Frequency 50Hz Rated Speed 100 rpm Rotation Direction Anti-Clockwise Power Source Francis Turbine Stator Coil Star Connection. Stator Insulation Class F Rotor Insulation Class F Armature Connection Y Armature Temp. Rise 78.5 K Natural Point Transformer Grounding Cooling Method Radial Ventilation Air Cooling method Excitation Method Thyrister exciting method Exciting Current 2439A Excitation voltage 400 V
  • 23. Ghazi Brotha Hydro Power Project 23 | P a g e 3.7 Excitation Transformer Excitation Transformer are used to provide D.C voltage to the rotor of generator. The 18 kV AC line coming from the generator is tapped before entering the synchronizing breaker, and is given to the excitation transformer where it is stepped down from 18kV to 400V. This 400V AC line is then transferred to AVR unit where Bridge Rectifiers are used to convert it into 400V D.C. This D.C line is then given to the rotor of the generator to magnetize its poles. 3.8 Synchronization Circuit Breakers Circuit breakers are provided at 18 kV on each line coming from generator, they are also filled with compressed air at 6 bar to avoid any contamination and ionization.
  • 24. Ghazi Brotha Hydro Power Project 24 | P a g e Technical specifications of the breakers are as under: Type HEC 2 Rated Voltage 24 Rated frequency 50 Hz Rated Normal Current 120000 A Rated S C breaking current 100 kA Rated peak withstand current 300 kA Rated power frequency withstand voltage 60 kV / 70 kV Rated lightning impulse withstand peak voltage 125 kV / 145 kV Capacitor on generation side 130 nF Capacitor on transformer side 260 nF Total weight of the breaker system 5350 Kg Control voltage for closing coil 220V D.C Control voltage for tripped coil 220V D.C Rated voltage for motor drive 220V D.C
  • 25. Ghazi Brotha Hydro Power Project 25 | P a g e 3.9 Generator Transformer Rated output of the three phase generator is 18 kV which is stepped up to 500 kV by the main generator transformer. Each generator has Three Generator Transformers for the different Phases. One for Blue phase, one for Red phase and one for Yellow phase. In total there are fifteen Generator Transformers for five units located at the Transformer Deck. 3.10 Auxiliary Supply Auxiliary supply to the power house, switch yard, tail regulator and intake are provided by 3 unit transformers which convert 18 kV generated from turbines into 11 kV. Unit transformers are only attached with unit 1, 3 & 5. In case, we run out of this supply then 220V DC battery rooms are provided in each section of the power house for immediate power supply as power house needs continuous voltage supply for safe operations. A pair of Caterpillar Diesel Generators is also provided which can give 0.7 MW each to give a backup power supply to the power house.
  • 26. Ghazi Brotha Hydro Power Project 26 | P a g e 3.11 HVAC: HVAC stands for "Heating, Ventilation & Air conditioning". It is an important system for this power plant as to avoid excessive heating of the machinery. It provides fresh air for breathing as the power house is several stories underground. The air conditioning system maintains fresh and healthy working environment for the workers. The air conditioners for this purpose are installed which provide conditioned air centrally throughout the power house. These conditioners work on the same principle as that of conventional air conditioners. The circulating air is ot used again and again to avoid contamination. It is fixed with some fresh air in each cycle to decrease air conditioners working load. The air conditioner sucks air from the environment and the refrigerant extracts the heat from the air and cools it This air is then circulated around the power house. The refrigerant is first compressed and is then condensed and then passed through an expansion device, which causes cooling. It is then used to cool the air entering the air conditioned space. 3.12 Control & Instrumentation (C&I) The overall control of the Power complex is microprocessor based Distributed Control System (DCS). The DCS is equipped with dual redundant processor and redundant data highway network and related communication devices. The data highway uses fiber optic cable. Each generating unit, tail regulator gates, high voltage switchgear , medium voltage switchboard and low voltage switchboard has their own dedicated dual redundant processors. 3.13 Protection & Instrumentation (P&I) The role of this department in the power house is to identify the problem by analyzing the date given by C&I and solve it, and to assign the reason behind the problem, how the problem is caused and what is the solution to that problem. The whole power station is divided into two section. First section which comprises of the whole power house to the intake, all comes under the control of C&I. While the second section, consisting of few areas of power house and the switch yard are controlled by P&I. All the data related to tripping of any transmission line is analyzed, debugged and solved by P&I.
  • 27. Ghazi Brotha Hydro Power Project 27 | P a g e 3.14 Switch Yard: The switch yard is the heart of all the transmission done from GBHP. It has two grid stations. The main grid transmits six 500 kV lines to different cities which are Tarbela (I), Tarbela (II), Gatti (I), Gatti (II), Rawat (I) & Rawat (II). The smaller grid transmits two 220 kV lines directly to Peshawar.
  • 28. Ghazi Brotha Hydro Power Project 28 | P a g e Following are the common components to be discussed briefly installed at the switch yard: 3.14.1 Power Transformers These transformers are used to step up 18 kV to 500 kV. These are insulated by SF6 gas, and are also provided with cooling fans and radiators. 3.14.2 Bus Bars Two bus bars are interconnected to each other. The 550 kV lines from transformers are connected one bus bar and is transmitted to the next bus bar after transmitting through sets of circuit breakers and isolators. 3.14.3 Breakers Breakers are On load devices. There are T-shaped breakers connected to 3 phase lines. These are auto closure breakers. The breaker prevents heavy currents from flowing along the bus bars by opening the circuit. 3.14.4 Isolators Isolators are off load devices. It can only be switched when there is no flow of current. They are also known as disconnector, as they prevent the fault to be transmitted. 3.14.5 Lightning Arrestors These are provided among all the high towers to protect from lightning. They are also known as Surge Arrestors. 3.14.6 Wave Blockers Wave blocker is a low pass capacitive circuit. which allows a limited frequency up to 50 Hz to pass through them. 3.14.7 Shunt Reactors These are provided at the transmission side that is at the second bus bar, to provide equivalent inductance against the capacitance produced while transmitting high voltages. They are installed both at the transmitting end as well as at the receiving end. 3.14.8 CTs & PTs These are small transformers which are used to measure high currents and voltages respectively. They when coupled can also give the value of real power transmitted and can act as a Wattmeter.