Exercise #15
Trigonometric Identities II


When LHS = RHS, the identity has been proved. Some common operations when
proving identities are:

       1. Adding/Subtracting rational expressions

                  1     1
          Ex.         2
                cos  sin 
                   2




       2. Multiplying/Dividing rational expressions

               1  1 
          Ex.         2 
               cos   sin  
                   2




       3. Factoring

          Ex. sin   sin  cos 
                 3             2




       4. Multiplying by the conjugate

                    1
          Ex.
                1  sin 
Examples
Prove each of the following:

           tan   cot 
      1.                  2sin 2   1
           tan   cot 




      2. cos   tan  sin   sec
3. sin  cos sec csc  1




   1  tan 2 
4.              csc2 
     tan 
         2

Exercise #15 notes

  • 1.
    Exercise #15 Trigonometric IdentitiesII When LHS = RHS, the identity has been proved. Some common operations when proving identities are: 1. Adding/Subtracting rational expressions 1 1 Ex.  2 cos  sin  2 2. Multiplying/Dividing rational expressions  1  1  Ex.   2   cos   sin   2 3. Factoring Ex. sin   sin  cos  3 2 4. Multiplying by the conjugate 1 Ex. 1  sin 
  • 2.
    Examples Prove each ofthe following: tan   cot  1.  2sin 2   1 tan   cot  2. cos   tan  sin   sec
  • 3.
    3. sin cos sec csc  1 1  tan 2  4.  csc2  tan  2