SlideShare a Scribd company logo
1 of 8
Download to read offline
Executive Summary  
 
The subject of my internship was to design a mechanical apparatus that holds ultrasound                           
probes with existing resolution phantoms, in order to measure ultrasound imaging resolution                       
in a precise and reproducible manner. The designed apparatus needs to follow a list of                             
requirements such as: 
The ultrasound scanning plan could be perpendicular to the phantom surface 
It should intersect the reflecting objects in an optimal manner.  
Also the probe should be easy to install and firmly attached to the holder and its                               
repositioning should be repeatable. 
 
Before I started to design the holder,I studied the basics of ultrasound imaging and of                             
ultrasound phantoms. First of all I read about the resolution of an image. There are three                               
kinds of resolution , the spatial resolution which is divided to axial and lateral resolution, the                               
contrast resolution and the temporal resolution. Also I read about how the resolution                         
measurement tests are performed and what are the parameters that affect the image quality,                           
like the transducer design,the frequency, the focusing etc , and the reproducibility of the                           
measurements (for instance the temperature, the angle of the probe etc.)  
 
Furthermore i make a study about the ultrasound phantoms and the different sort of them                             
like phantoms for training and demonstration, for general purpose and the QA phantoms.                         
There are a various shapes and sizes of phantoms, with different types of targets( wires,                             
cylindrical and spherical anthropomorphic objects, channels) designed for specific                 
transducers.  
 
In addition I learned how to use the Aixplorer and made measurements for the B mode                               
imaging. With the use of the CIRS model 040GSE phantom and the XC6­1 probe i did                               
measurements for the imaging distance accuracy. In other words I measured the distance                         
between the most left and most right wire target. Also I measured the image penetration with                               
the CIRS model 040 S/N E1188­2 and with the XC6­1 transducer. The above measurements                           
was done once a day, for a week with the existing probe holder. The purpose was to see if                                     
there are reproducible. As a result the measurements weren’t reproducible (Report 1). 
 
An important part of my work was to build the first version of the apparatus​.First, I found all                                   
the dimensions for the probe and the phantom, such as the height, the diameter of the wire                                 
etc, and I design the holder on a paper. I presented my idea on the ultrasound staff and I                                     
started to build the prototype. 
 
The mechanical apparatus consist of square aluminum tubes with two different sizes b(25 
mm and 20 mm with 2mm thickness). 
The base is fixed in a plane(450 x 295 mm) in order to be more stable and to have a uniform 
level for positioning the phantom tissue. All the tubes of the base has diameter of 25mm. In 
front of the horizontal tube is fixed on the plane a second one with the same dimensions in 
order to establish the desired place of the probe. 
Left and right of the horizontal tube of the base are placed two smallest tubes(20 mm) which 
can move inside out so they can change the length (50 mm + 70 mm). The phantom can be 
placed inside in the desired position and remains stable. To stop the movement of the tubes 
two screws were used. 
The vertical tube of the base has 200mm height and inside of it is placed another tube which 
can move inside out so that it can change the height in order to be easier the placement of 
the probe. 
The second tube has length 250mm and diameter of 20mm which only the 100mm can go 
inside the first tube. At the 100mm is placed a vertical tube(40 mm) with a box in the end of 
it. Inside the box is a probe mold made by silicon for the specific probe. The box can open 
and close easier. As the most important probe is the XC6­1 I made a silicon for this specific 
probe, but you can used it also for the SL10­2. 
In the same tube is placed vertical again in a distance of 150 mm away from the first one, a 
second tube(60 mm) which is purpose is to hold the cable of the probe. It consists of two 
parts which when combined are form a box with a hole in the center(diameter 8.52mm). The 
1​st​
 part is stable in the tube and the 2​nd​
 part can open and close with the use of screws. 
 
 
 
 
 
 
 
 
 
 
 
 
The next step was to make a protocol to describe how the prototype works so everyone can                                 
to measurements with it and to describe how you can find the axial and the lateral resolution                                 
(Protocol for the prototype). 
 
To check the efficiency of the prototype, I ask people in the company to do a resolution                                 
measurement test, with and without the probe holder at the third group of 10.5 cm depth. 
As a result the measurements with the use of the holder were reproducible, which was one                               
of the goals and the axial resolution was the best that can be achieved. Without the holder                                 
the measurements weren’t reproducible(Report 3). The time that requires to do the                       
measurement was approximately 4 minutes for the both. However the prototype had some                         
technical problems that occurred due to assembly, such as the vertical tube wasn’t well                           
controlled and the right arm of the holder was hard to slide. Also the cable holder wasn’t                                 
easy to set up and the probe repositioning wasn’t repeatable.  
 
To eliminate these problems a new apparatus was builded with more stable and easy to                             
assembly materials. The second design idea is consist of optical rails that can be used for                               
quick and repeatable alignment. The base is an optical rail with metric and english scale. An                               
optical rail carrier, is used to carry the vertical tube above the base. On the vertical tube                                 
there also an optical rail carrier which carry the probe holder. The apparatus is fixed on a big                                   
plate, for more stability. Likewise I made a protocol, to explain how the new holder is working                                 
and how you can performed the measurements( New Protocol).  
 
 
 
 
 
List of the bill of materials/goods  
 
1.Newport, Optical Rail, 3.0 in. Width,12in. Length,Model:9731, 
(​http://search.newport.com/?q=*&x2=sku&q2=9731​)  
 
 
2.Newport, ​76.2 mm Optical Rail Carrier, for 9731/9732 Optical Rails, M4 & M6, 
Model:9742­M, (​http://search.newport.com/?q=*&x2=sku&q2=9742­M​)  
 
 
 
 
3.Newport, Aluminum Optical Rail, 1000 mm Length, M4 Threads, X48 Series, Model: 
X48­1, (​http://search.newport.com/?q=*&x2=sku&q2=X48­1​)  
 
 
 
 
4.Newport, X48 Rail Carrier, 80 mm Length, M3, M4, and M6 Thread, Model: M­CXL48­80, 
(​http://search.newport.com/?q=*&x2=sku&q2=M­CXL48­80​)  
 
 
 
5.Newport, Table Clamp, For 9731/9732 Quick Release Optical Rail , Model: 9739, 
(​http://search.newport.com/?q=*&x2=sku&q2=9739​)  
 
 
 
6. Metal Plate (295x450x10) 
To check again the efficiency of the apparatus, I asked people in the company to do the                                 
resolution measurement test. First I asked them to do the resolution measurement test in the                             
third target group at 10.5cm depth so I could compare the results with the prototype and                               
after at the second target group of 6.5 cm depth. As a result the resolution in the third group                                     
was the same for the both holders, but the test was faster. Also the holder was more stable                                   
and easy to use and the probe repositioning was repeatable (Report 3).  
The final project was to process the images which are taken from the aixplorer. With the use                                 
of matlab a program was made to give a reproducible results for the axial and lateral                               
resolution. The program read the image, convert it in grayscale and compute the pixel                           
dimension.It finds the center point of the image, which are there where the vertical and the                               
horizontal wire targets are intersect. It zooms in the desired area, either the 6.5 cm depth                               
target group or the 10.5 cm target group and it put in every target a cross. It makes pairs                                     
between the neighbor targets and it draw a yellow line for the axial resolution pairs and blue                                 
line for the lateral resolution pairs. For each pair it measure the brightness. If the brightness                               
is zero then the targets can not be distinguished and the pair is marked with red line. When                                   
all the computes finish it gives to the user the axial and the lateral resolution as given in the                                     
phantom user guide. 
To check the program, I took images with different gains, zoom, depths and combination of                             
them with the use of the holder and with the XC6­1 and SL10­2 probe and without the probe                                   
holder. I ran these images in the program in order to find out if axial and lateral resolution                                   
vary, if you change the default conditions(Report 2). The images without the probe holder                           
weren’t able to run in the program because of the rotation. 
 
List of the primary objectives 
 
Design a mechanical apparatus that hold the ultrasound probe with the existing resolution 
phantoms, in order to measure the ultrasound imaging resolution in a precise and 
reproducible manner.  
 
The probe holder must satisfy the follow requirements: 
➢ The ultrasound scanning plan must be perpendicular to the phantom surface 
➢ The ultrasound scanning plan must intersect the reflecting objects in an optimal 
manner. 
➢ The probe must be easy to install on the holder 
➢ The probe repositioning must be repeatable 
 
 
Results  
 
Some requirements were efficiently accomplished and some others require further 
improvement 
 
➢ The apparatus can used with XC6­1, SC6­1, SL15­4, SL10­2 and with all the kind of 
phantoms that need the probe to be perpendicular on it.  
➢ The apparatus consist of optical rails that can be used for quick and repeatable 
alignment, so the placement of the holder can be precise and the measurements can 
be reproducible.  
➢ The use of the apparatus is very easy and the probe can install readily. 
➢ The ultrasound scanning plan is not perfectly perpendicular to the phantom surface 
 
 
 
List of possible improvements and recommendations 
 
 
➢ The apparatus could be lighter. 
➢ The probe holder could fix on the optical rail carrier with another way, in order to be 
perfectly perpendicular. 
 
 
 
 
 
 
 
 
 
 

More Related Content

What's hot

Computed tomography by jay&jay
Computed tomography by jay&jayComputed tomography by jay&jay
Computed tomography by jay&jayPatel Jay
 
Computed Tomography and Spiral Computed Tomography
Computed Tomography and Spiral Computed Tomography Computed Tomography and Spiral Computed Tomography
Computed Tomography and Spiral Computed Tomography JAMES JACKY
 
Computed Tomography (ct),CT scan NDT
Computed Tomography (ct),CT scan NDTComputed Tomography (ct),CT scan NDT
Computed Tomography (ct),CT scan NDTharsh soni
 
CT Scan Image reconstruction
CT Scan Image reconstructionCT Scan Image reconstruction
CT Scan Image reconstructionGunjan Patel
 
AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...
AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...
AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...IJCSEIT Journal
 
Basics of ct lecture 1
Basics of ct  lecture 1Basics of ct  lecture 1
Basics of ct lecture 1Gamal Mahdaly
 
Image Quality, Artifacts and it's Remedies in CT-Avinesh Shrestha
Image Quality, Artifacts and it's Remedies in CT-Avinesh ShresthaImage Quality, Artifacts and it's Remedies in CT-Avinesh Shrestha
Image Quality, Artifacts and it's Remedies in CT-Avinesh ShresthaAvinesh Shrestha
 
QC of CT using Catphan 600
QC of CT using Catphan 600QC of CT using Catphan 600
QC of CT using Catphan 600Asim Gilani
 
compiter radiography and digital radiography
compiter radiography and digital radiography compiter radiography and digital radiography
compiter radiography and digital radiography Unaiz Musthafa
 
Image reconstrsuction in ct pdf
Image reconstrsuction in ct pdfImage reconstrsuction in ct pdf
Image reconstrsuction in ct pdfmitians
 
Camera Calibration for Video Surveillance
Camera Calibration for Video SurveillanceCamera Calibration for Video Surveillance
Camera Calibration for Video SurveillanceShengzhe Li
 
Computer Tomography (CT Scan)
Computer Tomography (CT Scan)Computer Tomography (CT Scan)
Computer Tomography (CT Scan)Likan Patra
 
Camera Calibration Market
Camera Calibration MarketCamera Calibration Market
Camera Calibration MarketGuy Martin
 
Intro to CT scan machine
Intro to CT scan machineIntro to CT scan machine
Intro to CT scan machineSyed Jamal
 

What's hot (20)

Computed tomography by jay&jay
Computed tomography by jay&jayComputed tomography by jay&jay
Computed tomography by jay&jay
 
Computed Tomography and Spiral Computed Tomography
Computed Tomography and Spiral Computed Tomography Computed Tomography and Spiral Computed Tomography
Computed Tomography and Spiral Computed Tomography
 
Computed Tomography (ct),CT scan NDT
Computed Tomography (ct),CT scan NDTComputed Tomography (ct),CT scan NDT
Computed Tomography (ct),CT scan NDT
 
CT Scan Image reconstruction
CT Scan Image reconstructionCT Scan Image reconstruction
CT Scan Image reconstruction
 
AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...
AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...
AN OPTIMAL SOLUTION FOR IMAGE EDGE DETECTION PROBLEM USING SIMPLIFIED GABOR W...
 
Computed tomography
Computed tomographyComputed tomography
Computed tomography
 
Basics of ct lecture 1
Basics of ct  lecture 1Basics of ct  lecture 1
Basics of ct lecture 1
 
Image Quality, Artifacts and it's Remedies in CT-Avinesh Shrestha
Image Quality, Artifacts and it's Remedies in CT-Avinesh ShresthaImage Quality, Artifacts and it's Remedies in CT-Avinesh Shrestha
Image Quality, Artifacts and it's Remedies in CT-Avinesh Shrestha
 
QC of CT using Catphan 600
QC of CT using Catphan 600QC of CT using Catphan 600
QC of CT using Catphan 600
 
compiter radiography and digital radiography
compiter radiography and digital radiography compiter radiography and digital radiography
compiter radiography and digital radiography
 
Ct ppt 2
Ct ppt 2Ct ppt 2
Ct ppt 2
 
Image reconstrsuction in ct pdf
Image reconstrsuction in ct pdfImage reconstrsuction in ct pdf
Image reconstrsuction in ct pdf
 
Camera Calibration for Video Surveillance
Camera Calibration for Video SurveillanceCamera Calibration for Video Surveillance
Camera Calibration for Video Surveillance
 
computed tomography
computed tomographycomputed tomography
computed tomography
 
Computer Tomography (CT Scan)
Computer Tomography (CT Scan)Computer Tomography (CT Scan)
Computer Tomography (CT Scan)
 
Camera Calibration Market
Camera Calibration MarketCamera Calibration Market
Camera Calibration Market
 
Intro to CT scan machine
Intro to CT scan machineIntro to CT scan machine
Intro to CT scan machine
 
CT History
CT HistoryCT History
CT History
 
Basics in ct
Basics in ctBasics in ct
Basics in ct
 
31075
3107531075
31075
 

Viewers also liked

Viewers also liked (16)

Abstract (1)
Abstract (1)Abstract (1)
Abstract (1)
 
MLS Control Costs and Retain HGP Strategy
MLS Control Costs and Retain HGP StrategyMLS Control Costs and Retain HGP Strategy
MLS Control Costs and Retain HGP Strategy
 
Palmarés v concurso ornitológico el aviario de ubeda
Palmarés v concurso ornitológico el aviario de ubedaPalmarés v concurso ornitológico el aviario de ubeda
Palmarés v concurso ornitológico el aviario de ubeda
 
Resume-Satish Chand New(Al Rakha)
Resume-Satish Chand New(Al Rakha)Resume-Satish Chand New(Al Rakha)
Resume-Satish Chand New(Al Rakha)
 
Кейс по таргетированной рекламе хитрый прием
Кейс  по таргетированной рекламе хитрый приемКейс  по таргетированной рекламе хитрый прием
Кейс по таргетированной рекламе хитрый прием
 
Web 2.0
Web 2.0Web 2.0
Web 2.0
 
Asset basedsf
Asset basedsfAsset basedsf
Asset basedsf
 
Hr flyer 2015
Hr flyer 2015Hr flyer 2015
Hr flyer 2015
 
Materials development
Materials developmentMaterials development
Materials development
 
spring bed napollu
spring bed napolluspring bed napollu
spring bed napollu
 
Week ten visual arguments
Week ten  visual argumentsWeek ten  visual arguments
Week ten visual arguments
 
Tema 2: la integración curricular de las TIC
Tema 2: la integración curricular de las TIC Tema 2: la integración curricular de las TIC
Tema 2: la integración curricular de las TIC
 
Presentación Alan Turing mellorada- PAULA R
Presentación Alan Turing mellorada- PAULA RPresentación Alan Turing mellorada- PAULA R
Presentación Alan Turing mellorada- PAULA R
 
Tang 07 vsepr
Tang 07   vseprTang 07   vsepr
Tang 07 vsepr
 
Deep web
Deep webDeep web
Deep web
 
Reapproaching Divestment
Reapproaching DivestmentReapproaching Divestment
Reapproaching Divestment
 

Similar to Executive Summary of my work

Similar to Executive Summary of my work (20)

Computed tomography / dental implant courses
Computed tomography / dental implant coursesComputed tomography / dental implant courses
Computed tomography / dental implant courses
 
Computed tomography
Computed tomographyComputed tomography
Computed tomography
 
Ct Generations
Ct  GenerationsCt  Generations
Ct Generations
 
CT scanner
CT scannerCT scanner
CT scanner
 
Basics of CT & MRI
Basics of CT & MRIBasics of CT & MRI
Basics of CT & MRI
 
Basics and Generations of computed tomography.pptx
Basics and Generations of computed tomography.pptxBasics and Generations of computed tomography.pptx
Basics and Generations of computed tomography.pptx
 
LCU RDG 402 PRINCIPLES OF COMPUTED TOMOGRAPHY.pptx
LCU RDG 402  PRINCIPLES OF COMPUTED TOMOGRAPHY.pptxLCU RDG 402  PRINCIPLES OF COMPUTED TOMOGRAPHY.pptx
LCU RDG 402 PRINCIPLES OF COMPUTED TOMOGRAPHY.pptx
 
CBCT IN ORTHODONTICS
CBCT IN ORTHODONTICSCBCT IN ORTHODONTICS
CBCT IN ORTHODONTICS
 
Q04605101105
Q04605101105Q04605101105
Q04605101105
 
Ct Basics
Ct BasicsCt Basics
Ct Basics
 
Principles of beam direction and use of simulators
Principles of beam direction and use of simulators Principles of beam direction and use of simulators
Principles of beam direction and use of simulators
 
Ct instrumentation and types of detector configuration
Ct instrumentation and types of detector configurationCt instrumentation and types of detector configuration
Ct instrumentation and types of detector configuration
 
Robotics in orthodontics
Robotics in orthodontics Robotics in orthodontics
Robotics in orthodontics
 
7200 35328
7200 353287200 35328
7200 35328
 
computedtomography-170122041110.pdf
computedtomography-170122041110.pdfcomputedtomography-170122041110.pdf
computedtomography-170122041110.pdf
 
Computed tomography
Computed tomographyComputed tomography
Computed tomography
 
CT GENERATION.pptx
CT GENERATION.pptxCT GENERATION.pptx
CT GENERATION.pptx
 
MM-UNIT-V.pptx
MM-UNIT-V.pptxMM-UNIT-V.pptx
MM-UNIT-V.pptx
 
Internship Presentation
Internship Presentation Internship Presentation
Internship Presentation
 
11
1111
11
 

Executive Summary of my work

  • 1. Executive Summary     The subject of my internship was to design a mechanical apparatus that holds ultrasound                            probes with existing resolution phantoms, in order to measure ultrasound imaging resolution                        in a precise and reproducible manner. The designed apparatus needs to follow a list of                              requirements such as:  The ultrasound scanning plan could be perpendicular to the phantom surface  It should intersect the reflecting objects in an optimal manner.   Also the probe should be easy to install and firmly attached to the holder and its                                repositioning should be repeatable.    Before I started to design the holder,I studied the basics of ultrasound imaging and of                              ultrasound phantoms. First of all I read about the resolution of an image. There are three                                kinds of resolution , the spatial resolution which is divided to axial and lateral resolution, the                                contrast resolution and the temporal resolution. Also I read about how the resolution                          measurement tests are performed and what are the parameters that affect the image quality,                            like the transducer design,the frequency, the focusing etc , and the reproducibility of the                            measurements (for instance the temperature, the angle of the probe etc.)     Furthermore i make a study about the ultrasound phantoms and the different sort of them                              like phantoms for training and demonstration, for general purpose and the QA phantoms.                          There are a various shapes and sizes of phantoms, with different types of targets( wires,                              cylindrical and spherical anthropomorphic objects, channels) designed for specific                  transducers.     In addition I learned how to use the Aixplorer and made measurements for the B mode                                imaging. With the use of the CIRS model 040GSE phantom and the XC6­1 probe i did                                measurements for the imaging distance accuracy. In other words I measured the distance                          between the most left and most right wire target. Also I measured the image penetration with                                the CIRS model 040 S/N E1188­2 and with the XC6­1 transducer. The above measurements                            was done once a day, for a week with the existing probe holder. The purpose was to see if                                      there are reproducible. As a result the measurements weren’t reproducible (Report 1).    An important part of my work was to build the first version of the apparatus​.First, I found all                                    the dimensions for the probe and the phantom, such as the height, the diameter of the wire                                  etc, and I design the holder on a paper. I presented my idea on the ultrasound staff and I                                      started to build the prototype.    The mechanical apparatus consist of square aluminum tubes with two different sizes b(25  mm and 20 mm with 2mm thickness).  The base is fixed in a plane(450 x 295 mm) in order to be more stable and to have a uniform  level for positioning the phantom tissue. All the tubes of the base has diameter of 25mm. In  front of the horizontal tube is fixed on the plane a second one with the same dimensions in  order to establish the desired place of the probe.  Left and right of the horizontal tube of the base are placed two smallest tubes(20 mm) which  can move inside out so they can change the length (50 mm + 70 mm). The phantom can be  placed inside in the desired position and remains stable. To stop the movement of the tubes  two screws were used.  The vertical tube of the base has 200mm height and inside of it is placed another tube which  can move inside out so that it can change the height in order to be easier the placement of  the probe. 
  • 2. The second tube has length 250mm and diameter of 20mm which only the 100mm can go  inside the first tube. At the 100mm is placed a vertical tube(40 mm) with a box in the end of  it. Inside the box is a probe mold made by silicon for the specific probe. The box can open  and close easier. As the most important probe is the XC6­1 I made a silicon for this specific  probe, but you can used it also for the SL10­2.  In the same tube is placed vertical again in a distance of 150 mm away from the first one, a  second tube(60 mm) which is purpose is to hold the cable of the probe. It consists of two  parts which when combined are form a box with a hole in the center(diameter 8.52mm). The  1​st​  part is stable in the tube and the 2​nd​  part can open and close with the use of screws.               
  • 4. The next step was to make a protocol to describe how the prototype works so everyone can                                  to measurements with it and to describe how you can find the axial and the lateral resolution                                  (Protocol for the prototype).    To check the efficiency of the prototype, I ask people in the company to do a resolution                                  measurement test, with and without the probe holder at the third group of 10.5 cm depth.  As a result the measurements with the use of the holder were reproducible, which was one                                of the goals and the axial resolution was the best that can be achieved. Without the holder                                  the measurements weren’t reproducible(Report 3). The time that requires to do the                        measurement was approximately 4 minutes for the both. However the prototype had some                          technical problems that occurred due to assembly, such as the vertical tube wasn’t well                            controlled and the right arm of the holder was hard to slide. Also the cable holder wasn’t                                  easy to set up and the probe repositioning wasn’t repeatable.     To eliminate these problems a new apparatus was builded with more stable and easy to                              assembly materials. The second design idea is consist of optical rails that can be used for                                quick and repeatable alignment. The base is an optical rail with metric and english scale. An                                optical rail carrier, is used to carry the vertical tube above the base. On the vertical tube                                  there also an optical rail carrier which carry the probe holder. The apparatus is fixed on a big                                    plate, for more stability. Likewise I made a protocol, to explain how the new holder is working                                  and how you can performed the measurements( New Protocol).        
  • 7. 5.Newport, Table Clamp, For 9731/9732 Quick Release Optical Rail , Model: 9739,  (​http://search.newport.com/?q=*&x2=sku&q2=9739​)         6. Metal Plate (295x450x10)  To check again the efficiency of the apparatus, I asked people in the company to do the                                  resolution measurement test. First I asked them to do the resolution measurement test in the                              third target group at 10.5cm depth so I could compare the results with the prototype and                                after at the second target group of 6.5 cm depth. As a result the resolution in the third group                                      was the same for the both holders, but the test was faster. Also the holder was more stable                                    and easy to use and the probe repositioning was repeatable (Report 3).   The final project was to process the images which are taken from the aixplorer. With the use                                  of matlab a program was made to give a reproducible results for the axial and lateral                                resolution. The program read the image, convert it in grayscale and compute the pixel                            dimension.It finds the center point of the image, which are there where the vertical and the                                horizontal wire targets are intersect. It zooms in the desired area, either the 6.5 cm depth                                target group or the 10.5 cm target group and it put in every target a cross. It makes pairs                                      between the neighbor targets and it draw a yellow line for the axial resolution pairs and blue                                  line for the lateral resolution pairs. For each pair it measure the brightness. If the brightness                                is zero then the targets can not be distinguished and the pair is marked with red line. When                                    all the computes finish it gives to the user the axial and the lateral resolution as given in the                                      phantom user guide.  To check the program, I took images with different gains, zoom, depths and combination of                              them with the use of the holder and with the XC6­1 and SL10­2 probe and without the probe                                    holder. I ran these images in the program in order to find out if axial and lateral resolution                                    vary, if you change the default conditions(Report 2). The images without the probe holder                            weren’t able to run in the program because of the rotation.   
  • 8. List of the primary objectives    Design a mechanical apparatus that hold the ultrasound probe with the existing resolution  phantoms, in order to measure the ultrasound imaging resolution in a precise and  reproducible manner.     The probe holder must satisfy the follow requirements:  ➢ The ultrasound scanning plan must be perpendicular to the phantom surface  ➢ The ultrasound scanning plan must intersect the reflecting objects in an optimal  manner.  ➢ The probe must be easy to install on the holder  ➢ The probe repositioning must be repeatable      Results     Some requirements were efficiently accomplished and some others require further  improvement    ➢ The apparatus can used with XC6­1, SC6­1, SL15­4, SL10­2 and with all the kind of  phantoms that need the probe to be perpendicular on it.   ➢ The apparatus consist of optical rails that can be used for quick and repeatable  alignment, so the placement of the holder can be precise and the measurements can  be reproducible.   ➢ The use of the apparatus is very easy and the probe can install readily.  ➢ The ultrasound scanning plan is not perfectly perpendicular to the phantom surface        List of possible improvements and recommendations      ➢ The apparatus could be lighter.  ➢ The probe holder could fix on the optical rail carrier with another way, in order to be  perfectly perpendicular.