SlideShare a Scribd company logo
1 of 5
Download to read offline
Collins, Steven ID#3678
                                                                                              EE175 Web Project
                                                                                                     Spring 2009
                                                                                               Professor Strasilla
Problem: Obtain the four-pole BS function that has maximally flat characteristics at ω = 0 and
ω = ∞. The bandwidth taken between the 1-dB down frequencies is to be 0.1ωm. Obtain a passive
realization for the fourth-order BS function, with a 50Ω load resistor.
Plan: The plan for this problem is to first obtain the transfer function and then the realization. To
solve for the transfer function, first solve for the normalized LP function. Next, de-normalize the
function for the pass-band ripple, rejection frequency and then finally transform the function into
the BS function. To obtain the realization, we will use the impedance of the LP function and
transform it into the BS impedance. From there we will construct the circuit.
Solution: Using Table 17.1 in Budak (p. 511, Budak), construct the 3-dB ripple, low-pass
Buttersworth transfer function:
                                                                 1
                                          ������������������3 (������) =
                                                           ������ 2 + 2������ + 1

To convert the pass-band ripple from 3 dB to 1dB, replace s with s ������ = ������ . 5089 = 0.7133������.
                                                                 1
                              ������������������1 (������) =
                                               (0.7133������)2 + 2(0.7133������) + 1
                                                                                                         0.1������
To obtain the frequency-normalized (with respect to ωm) BS function, replace s with s = (������ 2 +1):



                                                           (������ 2 + 1)2
                        ������������������������ =
                                                 0.1������ 2             0.1������
                                     (0.7133           ) + 2 0.7133 2      +1
                                               ������ 2 + 1            ������ + 1


                                                   (������ 2 + 1)2
                            =
                                ������ 4 + 0.1009������ 3 + 2.0021������ 2 + 0.1009������ + 1
                                              (������ 2 + 1)2
                    =
                           ������ + 0.246 2 + 0.97482 [ ������ + 0.0259             2   + 1.02522 ]


The resulting equation has the desired BS characteristics at ωm = 1. To move the rejection to
ω = ωm, replace s by s/ωm:


                                                                                                                 1
������
                                                          [(ω )2 + 1]2
                                                              m
              ������������������ =                           2
                             ������                                    ������
                                                      +. 097482 [(������ + 0.0259)2 + 0.102522 ]
                            ������������ + 0.0246                           ������




This is the first part of the problem. The next part is to obtain a passive realization. The poles of
this function are complex, and therefore the system is an LC network.
From the low-pass 1 dB equation:
                               1                1                  1            1
                ������������������1 =              2 + 1.9652) + 1.9824������
                                                              =
                            0.5089 (������                          0.5089 ������������������������ + ������������������
To construct the LP network with resistive load termination, divide the odd part of the
denominator by the even part, since n is even. This will give Z LP2LC.
                                                  1.9824������          1
                               ������������������2������������ =               =
                                               ������ 2+ 1.9652 0.5044������ +        1
                                                                           1.008������
With this impedance equation, it is obvious that L=0.5044 and C=1.008. The LP network is
shown below:




                                                                                                        2
To transform this into the BS network with ωm rejection frequency, replace s with:
                                                        0.1������
                                                s=            2
                                                     ������ 2 +������ ������


                                       1                                             1
   ������������������2������������ =                                                      =
                             0.1������            1                            0.05044������       1
                   0.5044( 2       2)+          0.1������                     ( 2     2 ) + 0.1008������
                          ������ + ������������                                        ������ + ������������
                                       1.008( 2       2)                               ( 2     2)
                                             ������ + ������������                                  ������ + ������������


                                                         1
                         =
                                        1                                 1
                                                   2         +            1
                                                 ������������
                              19.825������ +                                       2
                                                                             ������������
                                            . 05044������
                                                                 9.92������ + . 1008������




                                                         1
                          =
                                        1                                1
                                                   2         +     1      . 1008������
                                                 ������������
                              19.825������ +                                +
                                               . 05044������         9.92������        2
                                                                             ������������




                                      0.1008                                             0.05044
From this equation, we see that L1=       2     ‘ ������1 =9.9127, ������2 = 19.825, and ������2 =       2     .
                                       ������ ������                                              ������ ������




                                                                                                       3
The BS circuit is shown below. The inductors are multiplied by the load resistor R and the
capacitors are divided by the load resistor R to scale them. In this circuit R=1. Also, in this
circuit the rejection frequency hasn’t been chosen yet.




If we choose the load resistor to be R=50Ω and ωm= 1 kHz which implies that fm=
2π*ωm=6283.2 rad/s. Using these two values, the final circuit and the magnitude bode plot is
shown page 5.




                                                                                                  4
BS Circuit




                                    BS Magnitude Bode Plot
 2.0u




    0



                                            Collins, Steve ID#3678

                                        EE175 Web Project Spring '09


-2.0u




                                                                                                      (1.0000K,-4.2858u)
-4.0u




-6.0u
   0.1KHz        0.2KHz   0.3KHz   0.4KHz        0.5KHz        0.6KHz    0.7KHz     0.8KHz   0.9KHz     1.0KHz       1.1KHz
        DB(V(Vo)/V(Vi))
                                                                        Frequency




                                                                                                         5

More Related Content

What's hot

Introduction to Neural Netwoks
Introduction to Neural Netwoks Introduction to Neural Netwoks
Introduction to Neural Netwoks Abdallah Bashir
 
Bresenham's line algorithm
Bresenham's line algorithmBresenham's line algorithm
Bresenham's line algorithmPooja Dixit
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Dataswissnex San Francisco
 
Normal ditribution
Normal ditributionNormal ditribution
Normal ditributionsialkot123
 
Management Science
Management ScienceManagement Science
Management Sciencelisa1090
 

What's hot (9)

Neural Networks
Neural NetworksNeural Networks
Neural Networks
 
BS2506 tutorial 2
BS2506 tutorial 2BS2506 tutorial 2
BS2506 tutorial 2
 
Introduction to Neural Netwoks
Introduction to Neural Netwoks Introduction to Neural Netwoks
Introduction to Neural Netwoks
 
Bresenham's line algorithm
Bresenham's line algorithmBresenham's line algorithm
Bresenham's line algorithm
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Data
 
Normal ditribution
Normal ditributionNormal ditribution
Normal ditribution
 
Management Science
Management ScienceManagement Science
Management Science
 
Dyadics
DyadicsDyadics
Dyadics
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 

Viewers also liked

05 他のプログラムを動かす・メール送信
05 他のプログラムを動かす・メール送信05 他のプログラムを動かす・メール送信
05 他のプログラムを動かす・メール送信文樹 高橋
 
V May June Between Kolkata And Siliguri
V May June Between Kolkata And SiliguriV May June Between Kolkata And Siliguri
V May June Between Kolkata And SiliguriFanny Perregaux
 
Interpretation Of Chest X Rays
Interpretation Of Chest X RaysInterpretation Of Chest X Rays
Interpretation Of Chest X RaysGaynel Olsen
 
あと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめ
あと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめあと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめ
あと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめ文樹 高橋
 
06 再利用のためのインクルードとクラス
06 再利用のためのインクルードとクラス06 再利用のためのインクルードとクラス
06 再利用のためのインクルードとクラス文樹 高橋
 

Viewers also liked (6)

05 他のプログラムを動かす・メール送信
05 他のプログラムを動かす・メール送信05 他のプログラムを動かす・メール送信
05 他のプログラムを動かす・メール送信
 
V May June Between Kolkata And Siliguri
V May June Between Kolkata And SiliguriV May June Between Kolkata And Siliguri
V May June Between Kolkata And Siliguri
 
Interpretation Of Chest X Rays
Interpretation Of Chest X RaysInterpretation Of Chest X Rays
Interpretation Of Chest X Rays
 
あと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめ
あと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめあと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめ
あと一つプログラミング言語を
覚えたら死ぬ! 脳みそがパンクしそうな
あなたのための
nodeJSことはじめ
 
06 再利用のためのインクルードとクラス
06 再利用のためのインクルードとクラス06 再利用のためのインクルードとクラス
06 再利用のためのインクルードとクラス
 
8 Bit A L U
8 Bit  A L U8 Bit  A L U
8 Bit A L U
 

Similar to Ee175webproject Original

Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1jogerpow
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2José Encalada
 
Performance of Optimal Registration Estimator
Performance of Optimal Registration EstimatorPerformance of Optimal Registration Estimator
Performance of Optimal Registration EstimatorTuan Q. Pham
 
Design & Simulation of Cargo Stabilization System
Design & Simulation of Cargo Stabilization SystemDesign & Simulation of Cargo Stabilization System
Design & Simulation of Cargo Stabilization SystemHasnain Ali
 
Solving a trig equation
Solving a trig equationSolving a trig equation
Solving a trig equationTyler Murphy
 
digital-electronics.pptx
digital-electronics.pptxdigital-electronics.pptx
digital-electronics.pptxsulekhasaxena2
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
Binary Numbers
Binary NumbersBinary Numbers
Binary Numbersikjsamuel
 
Mathematical Induction
Mathematical InductionMathematical Induction
Mathematical InductionEdelyn Cagas
 
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptxchapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptxSurendra Loya
 
Lesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of FunctionsLesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of FunctionsMatthew Leingang
 

Similar to Ee175webproject Original (20)

Cutoff frequency
Cutoff frequencyCutoff frequency
Cutoff frequency
 
0007
00070007
0007
 
Den5200 ps1
Den5200 ps1Den5200 ps1
Den5200 ps1
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Capitulo 2
Capitulo 2Capitulo 2
Capitulo 2
 
Performance of Optimal Registration Estimator
Performance of Optimal Registration EstimatorPerformance of Optimal Registration Estimator
Performance of Optimal Registration Estimator
 
Design & Simulation of Cargo Stabilization System
Design & Simulation of Cargo Stabilization SystemDesign & Simulation of Cargo Stabilization System
Design & Simulation of Cargo Stabilization System
 
Numerical Methods Solving Linear Equations
Numerical Methods Solving Linear EquationsNumerical Methods Solving Linear Equations
Numerical Methods Solving Linear Equations
 
Solving a trig equation
Solving a trig equationSolving a trig equation
Solving a trig equation
 
digital-electronics.pptx
digital-electronics.pptxdigital-electronics.pptx
digital-electronics.pptx
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
Chapter4 tf
Chapter4 tfChapter4 tf
Chapter4 tf
 
Les3
Les3Les3
Les3
 
jacobi method, gauss siedel for solving linear equations
jacobi method, gauss siedel for solving linear equationsjacobi method, gauss siedel for solving linear equations
jacobi method, gauss siedel for solving linear equations
 
L2 number
L2 numberL2 number
L2 number
 
Binary Numbers
Binary NumbersBinary Numbers
Binary Numbers
 
Mathematical Induction
Mathematical InductionMathematical Induction
Mathematical Induction
 
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptxchapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
 
Lesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of FunctionsLesson 18: Geometric Representations of Functions
Lesson 18: Geometric Representations of Functions
 
BS2506 tutorial3
BS2506 tutorial3BS2506 tutorial3
BS2506 tutorial3
 

Ee175webproject Original

  • 1. Collins, Steven ID#3678 EE175 Web Project Spring 2009 Professor Strasilla Problem: Obtain the four-pole BS function that has maximally flat characteristics at ω = 0 and ω = ∞. The bandwidth taken between the 1-dB down frequencies is to be 0.1ωm. Obtain a passive realization for the fourth-order BS function, with a 50Ω load resistor. Plan: The plan for this problem is to first obtain the transfer function and then the realization. To solve for the transfer function, first solve for the normalized LP function. Next, de-normalize the function for the pass-band ripple, rejection frequency and then finally transform the function into the BS function. To obtain the realization, we will use the impedance of the LP function and transform it into the BS impedance. From there we will construct the circuit. Solution: Using Table 17.1 in Budak (p. 511, Budak), construct the 3-dB ripple, low-pass Buttersworth transfer function: 1 ������������������3 (������) = ������ 2 + 2������ + 1 To convert the pass-band ripple from 3 dB to 1dB, replace s with s ������ = ������ . 5089 = 0.7133������. 1 ������������������1 (������) = (0.7133������)2 + 2(0.7133������) + 1 0.1������ To obtain the frequency-normalized (with respect to ωm) BS function, replace s with s = (������ 2 +1): (������ 2 + 1)2 ������������������������ = 0.1������ 2 0.1������ (0.7133 ) + 2 0.7133 2 +1 ������ 2 + 1 ������ + 1 (������ 2 + 1)2 = ������ 4 + 0.1009������ 3 + 2.0021������ 2 + 0.1009������ + 1 (������ 2 + 1)2 = ������ + 0.246 2 + 0.97482 [ ������ + 0.0259 2 + 1.02522 ] The resulting equation has the desired BS characteristics at ωm = 1. To move the rejection to ω = ωm, replace s by s/ωm: 1
  • 2. ������ [(ω )2 + 1]2 m ������������������ = 2 ������ ������ +. 097482 [(������ + 0.0259)2 + 0.102522 ] ������������ + 0.0246 ������ This is the first part of the problem. The next part is to obtain a passive realization. The poles of this function are complex, and therefore the system is an LC network. From the low-pass 1 dB equation: 1 1 1 1 ������������������1 = 2 + 1.9652) + 1.9824������ = 0.5089 (������ 0.5089 ������������������������ + ������������������ To construct the LP network with resistive load termination, divide the odd part of the denominator by the even part, since n is even. This will give Z LP2LC. 1.9824������ 1 ������������������2������������ = = ������ 2+ 1.9652 0.5044������ + 1 1.008������ With this impedance equation, it is obvious that L=0.5044 and C=1.008. The LP network is shown below: 2
  • 3. To transform this into the BS network with ωm rejection frequency, replace s with: 0.1������ s= 2 ������ 2 +������ ������ 1 1 ������������������2������������ = = 0.1������ 1 0.05044������ 1 0.5044( 2 2)+ 0.1������ ( 2 2 ) + 0.1008������ ������ + ������������ ������ + ������������ 1.008( 2 2) ( 2 2) ������ + ������������ ������ + ������������ 1 = 1 1 2 + 1 ������������ 19.825������ + 2 ������������ . 05044������ 9.92������ + . 1008������ 1 = 1 1 2 + 1 . 1008������ ������������ 19.825������ + + . 05044������ 9.92������ 2 ������������ 0.1008 0.05044 From this equation, we see that L1= 2 ‘ ������1 =9.9127, ������2 = 19.825, and ������2 = 2 . ������ ������ ������ ������ 3
  • 4. The BS circuit is shown below. The inductors are multiplied by the load resistor R and the capacitors are divided by the load resistor R to scale them. In this circuit R=1. Also, in this circuit the rejection frequency hasn’t been chosen yet. If we choose the load resistor to be R=50Ω and ωm= 1 kHz which implies that fm= 2π*ωm=6283.2 rad/s. Using these two values, the final circuit and the magnitude bode plot is shown page 5. 4
  • 5. BS Circuit BS Magnitude Bode Plot 2.0u 0 Collins, Steve ID#3678 EE175 Web Project Spring '09 -2.0u (1.0000K,-4.2858u) -4.0u -6.0u 0.1KHz 0.2KHz 0.3KHz 0.4KHz 0.5KHz 0.6KHz 0.7KHz 0.8KHz 0.9KHz 1.0KHz 1.1KHz DB(V(Vo)/V(Vi)) Frequency 5